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Central Limit Theorems for Quadratic Forms
in Random Variables Having Long-Range Dependence

Robert Fox* and Murad S. Tagqu** ¥
Cornell University, Ithaca, NY 14853, USA

1. Introduction

Let f(x) and g(x) be integrable real symmetric functions on [ —m, ] that are
bounded on subintervals that exclude the origin. Let X, X,,... be a mean
zero stationary Gaussian sequence with spectral density f(x), and let
.eey —dyq,dg, dy, ... be the Fourier coefficients of g(x). We prove that the dis-
tribution of the normalized quadratic form

1 N N N
ZNZW{Z Y a XX,—E} % ai—inXj}

i=1 j=1 i=1 j=1

converges to a normal distribution if there exist constants <1 and f<1 with
a+p<1/2 such that for each 6>0, f(x)=0(x|"*"% and g(x)=0(x|#~%) as
x—0.

Of particular interest are the cases where f(x)~x*L,(x) and
g(x)~x"PL,(x) as x—0 with L, and L, slowly varying. The exponents o and f
are allowed to be positive, zero or negative. The sequence {X;} is said to

exhibit a long-range dependence when o>0. When «<0, the covariances r
+

=EX;X;,, satisfy ) 1r=0.

k=—w

Suppose f(x)~x"*L,(x) and g(x)~x"?L,(x) as x—0. Rosenblatt (1961)
showed that in the special case 1/2<a<1 and g;_;=4;;, the quadratic form
N N
Y ¥ a;_;X;X;, adequately normalized, converges to a non-normal distribu-
i=1 j=1
tion. The assumption g, ;=0d,; implies g(x) constant and thus f=0. Our result
shows that the normalized quadratic form Z, converges to a normal distribu-

*  Present address: Department of Mathematics, Boston College, Chestnut Hill, MA 02167, USA
**  Present address: Department of Mathematics, Boston University, Boston, MA 02215, USA
¥ Research supported by the National Science Foundation grant ECS-80-15585



214 R. Fox and M.S. Taqqu

tion when 1/2<a<1 and f<1/2—a<0. If «<1/2, it is even possible to choose
B>0 as long as f<min(1/2~a,1).

These results are used in the study of the asymptotic behavior of maxi-
mum likelihood type estimators related to the sequence {X;} (Fox and Taqqu
1986). Examples of sequences {X;} satisfying f(x)~x""L, (x) that are of special
interest include fractional Gauss1an noise and fractional ARMA.

A sequence {X;} is fractional Gaussian noise (Mandelbrot and Van Ness
1968) if its covariance satisfies

r(k)= EX,X,+k—— {11k~ 17 = 2{k[*H + (k] + 1)1}

for 0<H < 1. In that case (Sinai 1976)

02

f(x)z;;r————*—(l—cosx) E“O |x+2knl‘1‘2H,
[ (1—cosy)ly|~'=2"dy k=

so that a=2H —1e(—1,1).
A sequence {X} is fractional ARMA (Hoskings 1981) if its spectral density
is .
; _alpe™)?
x) — lezx . 1| d —
I IRk

where ¢ and ¥ are polynomials having no zeroes on the unit circle and d< 1.
In that case a=d. Heuristically, fractional ARMA is the sequence, which, when
differenced d/2 times, yields an autoregressive-moving average (ARMA) se-
quence with spectral density |p(e™)|?/|¥(e™))%.

Our main results are in Sect. 2. Sections 3 through 7 are devoted to the
proof of Theorem 1. That proof uses “power counting” arguments in the sense
of mathematical physics. In Sect. 3 we introduce the power counting set-up
and state an extension of a power counting theorem of Lowenstein and
Zimmerman (1975). Preliminary lemmas are proven in Sect. 4 and, together
with the results of Sect. 5, they are used to establish Propositions 6.1 and 6.2 of
Sect. 6. These propositions describe the asymptotic behavior of certain multiple
integrals. Section 7 contains the proof of Theorem 1. Theorem 4 is proven in
Sect. 8.

2. Main Results

Let f(x) and g(x) be integrable real symmetric functions on [—=n, 7], not
necessarily non-negative. Define the Fourier coefficients

ry= E e f(x)dx

and

T

= | e g(x)dx.
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Let Ry and Ay be the N x N matrices with entries (Ry); ,=r_, and (4y);,
=a; ;,0=j, kSN —1. Let Tr M denote the trace of a matrix M.

We say that f satisfies the regularity condition if the discontinuities of f
have Lebesgue measure 0 and f is bounded on the interval [, 7] for all § >0.

Theorem 1. Suppose that f and g each satisfy the regularity condition. Suppose in
addition that there exist a<<1 and f<1 such that for each >0

If()I=0(x|"*"%)  as x—0

and
lg(x)|=0(x|"#"%) as x-0.
Then
a) If pla+p)<1,
T r T
tim A et o f g7
N—oo g

b) If pla+p)21,
Tr(RyAy)? =0(N?*+P+4) for every £>0.

The theorem is proven in Sect. 7. The proof of Part a) amounts to showing
that

lim | Q0duy(y)= [ Qdu(y)

Now [—x,x]2P [—m,m]2P
where

Q) =/(v) g f(a) g .. by, 1) 813,

d“N(y)zm Z Z 1 =iy pilja—is)y2

j1=0  j2p=0
__'ei(jzp—1~jzp)yzp-1ei(j2p~j1)yzpdy1__.dyzp’
and where u is Lebesgue measure concentrated on the diagonal of [ — 7, n]%.

Introduce now a stationary Gaussian sequence X;, j=1 with mean 0 and
spectral density f(x)=0, so that

EX. X, =n= | *f(x)dx.

Let x, denote the random vector (X, X,, ..., Xy). Put uy=ExyAyXy.

Theorem 2. Suppose that f and g each satisfy the regularity condition. Suppose in
addition that there exist a<<1 and p<1 such that o+ p<1/2 and such that for
each 6>0

S)=0(x]"*"% as x—0

g(x)=0(x|"#7% as x—0.
Then
Xy AnXy— ty

VN
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tends in distribution to a normal random variable with mean 0 and variance
167° | [f(x)g(x)]*dx.

Proof. Since the sequence X; is Gaussian, the p™ cumulant of xjAyxy is equal
to 27" '(p—1)!Tr(RyAy)”. (See, for example, Grenander and Szego 1958,
p. 218). Thus the p™* cumulant of

Xy AnXy— Uy
VN
0 if p=1

_ Tr(RyAy)?
RS e

is given by

c(N)= if p22.

An application of Theorem 1 yields
0 if p£2

RN 600 § [y gax if p=2

This implies the conclusion of Theorem 2. [

The following is an immediate consequence of Theorem 2.
Theorem 3. Suppose that f and g each satisfy the regularity condition. Suppose in
addition that there exist a<<1 and B<1 such that a+ p<1/2,

SE)~x7*Li(x)}) as x—0
and
gl)~Ix]7 Ly(x)  as x—0,
where L, and L, are slowly varying at 0. Then the conclusion of Theorem 2
holds.
The next theorem, which is used in Fox and Taqqu (1986), is proven in

N
Sect. 8. Define Xy=(1/N) 3. X, and the random vector %y=(X,—Xy, ..., Xy
— Xy =1

Theorem 4. If the conditions of Theorem 2 are satisfied, then

% Ay — E{Fy Ay %y}
/N

tends in distribution to a normal random vector with mean 0 and variance

167 | [£(x)g0a%dx.
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3. Power Counting Theorems

Power counting methods can be used to verify the convergence of multiple
integrals whose integrands are products of powers of affine functionals. Let
by,....b, and 6,,...,0, be real constants and let M,(x),..., M, (x) be m linear
functionals on R". Put L/(x)=M;(x)+0;, j=1,...,m. Define the function P:
R"->R {0} by

P(x)=|L(x)"* | L, (x| Ly ()P,

Define T={L,,...,L,} and let W< T Let span{W} denote the set of linear
combinations of elements of W and s(W) denote those linear combinations
which coincide with elements of T. Thus

s(W)=T nspan{W}.
For each W < T we define the quantity

dP,W)=Wl+ ¥ b,

{j: Ljes(W)}
where |W| denotes the cardinality of W. We refer to d(P, W) as the dimension
of P with respect to W. We say that W={L, , ..., L, } is strongly independent if
M,,,...,M,; are linearly independent. Let S be the set of those L; in T that

have exponents b;<0. Finally, for each ¢>0, let
U=[—tt]"={xeR": |x,|<t, i=1,...,n}.

The next theorem extends a basic result of Lowenstein and Zimmermann
(1975). It 1s proved at the end of Sect. 4.

Theorem 3.1. Suppose that d(P, W)>0 for every strongly independent set W <S.
Then | P(x)dx< oo for all t>0.
U;
To illustrate the application of the theorem, let n=3 and define P(x):
R*->Ru{w} by

P(x)=|x; +x,+ 2P |x; +x, + x5 — 1[*2|x5 = 3>,

where b, b,, b, <0. Define L;(x)=x,+x,+2, L,(x)=x,4+x,+Xx;—1 and L,(x)
=x3—3. Then S=T={L,,L,,L;}. The strongly independent subsets of S are
{Li}, 1L}, {Ls}, {Ly, Ly}, {Ly, Ly} and {L,, Ls}. We have d(P,{L})=1+b;, j
=1,2,3. The other three dimensions are all equal to 2+5, +b, +b, because for
example s({L,,L,})={L,,L,,L,}. Therefore | P(x)dx will be finite provided
that b, +b,+b;>—2and b, b,,b;>—1. U

Remark. Suppose the condition of Theorem 3.1 is satisfied. Then in fact
d(P, W)>0 for every W =T To see this, suppose first that W < T contains only
one element not in S, say L. Then W=W,U{L}, where W,cS§ and
d(P, Wy)>0. If d(P, W) <0 then s(W) must contain some element of § which is
not in W,, say L. Then W,=W,u{L} satisfies W,<S and d(P,W,)
=d(P, W)<0, since S(W,)=S(W,) and |W,|=|W,|. This contradicts the assump-
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tion. Hence any subset of T which differs from a subset of S by one element
has positive dimension. The same method can be used inductively to show that
all subsets of T have positive dimension.

4. Preliminary Lemmas

Retain the notation introduced in Sect. 3. Fix a permutation 0=(v,...,0,,) of
{L,...,m} and let

E,={xeU: |L, ()| =|L,,(0I= ... 1L, (X1}

We use the greedy algorithm to construct a basis B, for T. The greedy
algorithm proceeds as follows. We put L, €B,. We put L_,eB, if L,, is not in
the span of {L_ }. On the j* step we put L,eB, if L,, is not in the span of
{Lyps--sL,, }. Tt is well known that in this way we obtain a basis B,
={L,,,...,L_} for T, where r is the rank of T. We then have

T2 °
ILJSIL <. <IL,|,  xeE.. (4.1)

The functions L, ,...,L_ are linearly independent but not necessarily strongly
independent.
We use B, to construct the partition of T given by

TIZS{LH}
and
To=s{L.,... L }/s{L.,....L,_}, k=2,...,r

Lemma 4.1. For each permutation ¢ there is a constant C, (independent of x and
t) such that if LeT, then

a) |LI=C,|L,,|, xeEy,
and
b) |L, | £|L], xeE;.

Proof. a) 1If LeT, then L=a,L +...+qL, for some constants a,...,a,.
Therefore

|LIZla||L,, |+ ... +laglIL xelR™

o

Relation (4.1) implies that for xeE! the right hand side is less than (ja,|+...
+la) Ly, |-

b) Suppose that LeT,. We must have either L=L__or else L was rejected
by the greedy algorithm. In proving b) we can thus assume that L was rejected
by the greedy algorithm. Since LeT, it follows that L¢s{L,,...,L,, }. There-
fore it must be that L was considered by the greedy algorithm after L_. But the
greedy algorithm considers candidates in order of increasing absolute value on
E.. Thus we must have |L_|<|L|, xeE . This completes the proof of Lem-
ma 4.1. [

The next lemma provides a majorant for P(x) involving only elements of
B

o
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Lemma 4.2. For each permutation o there is a constant C, (independent of x and
£} such that
P(x)=C,IL, 1" \L |*, xeE,
where
A, =d(P,{L_})—1,
and

Ag=d(P{L,,....L ) ~d(P,{L,,,....L,_ =1, k=2,..r

ITERRRE

Proof. We have
P(x)= [] Fi(x),
k=1

where

Fx)= J[ [L7=C [1 ILMC TT 1L

{ji:LjeTi} {j:LjeTi~ S} {j:LjeTnS}

Fix k<r and consider the two products on the right hand side. In the first
product all of the exponents are non-negative because the L/s do not belong
to S. Therefore Lemma 4.1a implics that the first product is majorized on E!

by
[T L, .

Ui LjeTic\ 8}

In the second product all of the exponents are negative. Thus Lemma 4.1b
implies that the second product is majorized on E!, by

T L,

{i:LjeTunS}
Combining these facts we conclude that there is a constant C, such that

F(x)SC,lL, |P%,  x€E,, k=,

b= 2 bj'

{J:LjeTy}

where

Lemma 4.2 will follow from this inequality if we show that 4,=p,, k
=1,...,r. We have

dP L =1+ Y b=1+ ¥ b=l+p.
(s Ljes(Le,)} {j: LjeT1}
Thus
4;=d(P,{L })—1=p,.
If k=22 then

d(P,(L,,,....L ) =k+ ¥ b,

J
{JrLjes(Ly s, Ly}
=1+(k—1)+ ) b)+ ¥ b
{rLjes(Ley, oLy, () (i Lye i)

=14d(P{L,,....L_})+Dp,.
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Thus

A,=d(P,{L,,,....L.)—d(P,{L ,....,L,_})—1=p,

This completes the proof of Lemma 4.2. []

IR

Lemma 4.3. Let ¢, ¢,, ..., @, be given real numbers. Then for all t>0

| Ix|91]x, 192 %, |7 dx  dx ... dx, < 0,
il Zlx2| £ Slxnl| St

k
if dy=k+ 3 ¢;>0 for k=1,...,n.
j=1

Proof. 1t clearly suffices to consider the case t=1. We proceed by induction on
n. The lemma is obviously true for n=1. Now suppose that the lemma holds
for n—1 and that we are given ¢,,...,¢, satisfying the hypotheses of the
lemma. Choose §=0 such that d,—6>0 and ¢,—d+ —1. (If ¢,% —1 we can
take 6=0). Then the above integral (with t=1) is less than

B P P L BN L PPN 5
[xi| %2 2. Zlxnl 21

= i [x 190 lx, (o f x|~ %dx,dx,...dx,
[x1] Elx2) S0 Eloxn - 1| [xn—1]Slxn) 1

n

After evaluating the integral over x,, we obtain

2
Pu=0+1 i cnls g 51

- I 120, 1o 2 x, |0 e dx, )
x| Zlxz| 2. Slxn -1 £1

|x1l¢1~--‘xn_1‘¢"'1dx1...dxn_1

The induction hypothesis implies that the first integral in the braces is finite.
To apply the induction hypothesis to the second integral, note that

=D+, +...4¢,_ ,+(@,_1+¢,—0+)=n+o+..+¢,—0=d,—5>0.

Thus the second integral is finite, which completes the proof of Lem-
ma43. O

Lemma 4.4. Let ¢ be a permutation of {1,...,m} and let I be the largest index
such that {L L.} is strongly independent. If

CTERREE]

d(PAL,,...,L . )>0, k=1,..,1I,

T1%"®

then
§ P(x)dx< c0.
E%

Proof. According to Lemma 4.2 it suffices to show

Ej L, 1. L, [*dx < oo,

where 4,,..., 4, are as defined in Lemma 4.2.
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Case 1. I=r. Let Cy=max{|L(x)|: xeU, 1<j<m}. The last integral is majo-
rized by

[y dyy...dy,,

C, ] [yl ly,

rilsly2 £ 2yl 2Cs

where C, is a constant obtained by integrating over n—r extraneous variables.
Note that 4, ..., 4, satisfy

k
k+ Y A,=d(P,{L
i=1

4

L.Y)>0, k=1,...,r

ry2 rees gy

Hence Lemma 4.4 implies the conclusion in this case.

Case 2. [ <r. In this case there are constants 4,,...,¢; so that

M :alMtl-f-...'f—alMU.

Tr+

Then
LTI+1:M11+1+91'1+1

=a,M, +...+a;M, +0_

=a L +..+aL +w
where w=0,  —a,0,...—a;0,. Since L is not a linear combination of
L.,...,L,, if follows that w=0. Thus we can choose a constant / so that

w
L., | 5 whenever [L_[<...Z|L |4

Since |L, |£|L,, . |<...Z|L, | for xeE,, there is a constant C; depending on 4

and w so that

TI+1

IL, [ L S ClL L | if xeEL, L 1S4
and also a constant Cy depending on 4 so that

L1 L [ S CIL 1 L, if xeE,, |L,|>2

r-1

Since {L,,...,L, } and {L_,...,L__} are strongly independent, the proof can
be completed as in Case 1. []

Proof of Theorem 3.1. Suppose that the conditions of Theorem 3.1 hold. Let o
be a permutation of {I,...,m} and define I as in Lemma 44. The remark
following Theorem 3.1 implies that d(P,{L,,...,L,})>0, k=1,...,1. Thus we

can use Lemma 4.4 to conclude that | P(x)dx<oc. Theorem 3.1 follows be-
E
cause U, is the union over o of the sets E.. [

5. Counting Powers

This section is devoted to “counting powers” in the function p,: R*”~IR given
by
py(x)=|x,+ "'+x2p‘”_1\x2|"_l‘x3r}_l"'[x2p!”_1lxl‘-alxl +2,| T x X, x50

g xy xR X Xy, I TEX X,
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where a<1, f<1 and 0<#<1. The results are stated in Propositions 5.1 and
5.2. Introduce the set of linear functionals on R??

T={X,4 . X5, X0 X550005 X5, X1, X1+ Xg, 000, Xy X5

For each W< T we define the set s{W} and the quantity d(F,, W) as in Sect. 3
and we say that W is an independent set if it is strongly independent. (Here W
does not involve additive constants.)

Proposition 5.1. Let a<1, <1 and let y satisfy O<n <l and n>(a+B2. If W
=T is an independent set such that |W|=2p—1 and Wc{x,+...
+ X5, X0, X3, .00, Xg,), then d(B, W)=2pn—1.

Proof. 1t is clear that if W satisfies the conditions of Proposition 5.1 then s{W}
={X,+ ... +x3,,X3,X3,..., X, ,}. Therefore

dB, W)=Q2p—~1)+2p(n—1)=2pn—-1. O

Proposition 5.2. Let a<1, f<1 and let n satisfy 0<n<1 and n>(+B)/2. If W
©T is an independent set such that either |W|%2p—1 or Wd{x,+...
T X305 X35 X35 005 Xy, ), then d(B, W)>0.

The rest of this section is devoted to the proof of Proposition 5.2.

In proving that proposition we can restrict ourselves to considering sets W
T which do not contain x,+...+x,,. To see this, assume that x,-...
+x,,EW. Suppose first that the set s{W}\s{W\x,+...+x,,} contains some
functional L other than x,+...+x,,. Then we consider the set W’ which is W
with x,+...+x,, replaced by L, that is W'=W U {L}\{x,+... +x,,}. Clearly,
X,+...+x,,¢ W' Furthermore, W’ has the same span and cardinality as W.
Therefore d(F,, W)=d(F,, W). On the other hand, suppose that there is no such
L. In this case we put W =W\{x,+...+x,,}. We have |W|=|{W|-1 and
S{W'}=s{Wi\{x,+... +x,,}. Hence

4B, W) =d(B, W)~ 1—(n—1)=d(E, W)~ <d(B, W).

Thus in either case there is a set W’ which does not contain x,+...+x,, and
satisfies d(F,, W')<d(F,, W). Hence we can assume that W does not contain x,
F o Xy

In proving Proposition 5.2 we can also restrict ourselves to sets Wa T
which satisfy {x;,x;+...+x,}&W, k=2,...,2p. For suppose that T does not
satisfy this restriction. Let j be the largest k for which {x,,x, +... +x,} = W. Let
W'=Wou{x;+...+x;_ J\{x; +...+x;}. Since the sets {x;,x,+...+x;_,} and
{xj,x1+...+xj} have the same span and cardinality, it follows that d(F,, W)
=d(B,W). It is clear that the largest value of k for which {x;,x;+...+x.}
o W' is at most j—1. After repeating this process at most j—2 more times we
obtain a set W" satisfying d(B,, W")=d(F,,W) and {x,,x,+...+x} EW’, k
=2,...,2p. Thus we can restrict ourselves to sets W which do not contain both
X, and x4+ ... 4 x,.

We will assume from now on that WcT satisfies both of the above
restrictions. To describe the sets W which we will be considering, it is helpful
to think of the elements of T\{x,+...+x,,} arranged in columns as follows:
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Xy
XX,

X3 X2p

Xy 4o+ Xg,|

Xy Xyt X, + X3

In the rest of this section we consider sets W which contain at most one
element from each column. For any set T'< T we say that T’ contains the k'™
column if x, €T’ or x, +...+x,eT".

The proof of Proposition 5.2 involves three lemmas.

Lemma 5.3. Suppose that W does not contain the k™ column. Then s{W} does
not contain the k'™ column.

Proof. We prove that neither x, nor x, +... +x, is in s{W}. We distinguish two
cases.

Case I. There is no j>k such that x;+...+x,eW. In this casc the conclusion
of the lemma is clear since no element of W contains the summand x,.

Case II. There exists j>k such that x, +... +x;eW.

Suppose that j is the smallest index with this property. Then the only
elements of W which contain the summand x, are among {x; +...+x;, x; +...
+X; 45X ..+ X,,} Since x;¢W these are also the only elements of W
which contain the summand x;. Thus in any linear combination of the ele-
ments of W the summands x, and x; appear with the same coefficient. Hence
neither x, nor x, +...+x, can be linear combinations of elements of W. This
completes the proof of Lemma 5.3. [

We now partition W into blocks of contiguous columns. Any two blocks
are separated by at least one column not in W, Formally, we will say that a set
BcWis a block of columns, if there exist [y <ry such that

1) W contains neither column [z~ 1 nor column rz+ L.
2) B contains column [, through r; and no other columns.

With this definition we obtain a partition W= U B;, where each B, is a

block of columns. We will assume that B; is to the left of B, , for each j.

Define the function Q,(x)=F(x) - |x,+ .. .+ X,,|" 7" It is clear that

d(P W)__ d(QrpW): if x2++x2p¢S{W}
T n—1+dQ,, W) if x4 .. +x,,es{W}.

Furthermore Lemma 5.3 implies that d(Q,, W)= Y d(Q,, B)). Thus we have
j=1

_i di@,. B)) if x,+...4+x,,Es(W)

n

n—1+Y d(Q,,B) if x,+...4+x,,es(W).
j=1

(P, Wy=17 (5.1)

The next lemma is useful in determining the quantities d(Q,, B;). A block of
columns will be called nonsimple if it contains x, + ... +x, for some k= 1.

Lemma 5.4. Let B be a nonsimple block of columns. Put l=1; and r=rg. Let m
be the smallest k satisfying x,+ ... +x,€B.
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1) If I<j<m, then x;es(B) and x,+ ... +x;¢s(B).
2) x,¢s(B) and x + ... +x,€5(B).
3) If m<j<r, then x;es(B) and x, +...+x;es(B).

Proof. 1) Let [£j<m. Since j<m we have {x,,x, _,,...,X;} = B. Suppose that x,
+...+x;es(B). The identity x,+...+x, ,=(x;+.. +x) X=X =X
implies that Xy +...+x,_,es(B). ThlS contradicts Lemma 5.3. We conclude that
X+ X ¢S(B)

2) The definition of m implies that x, +... +x,eB. Suppose that x,es(B).

We have
Xid o X =00 F X)) =X X T Xy

again contradicting Lemma 5.3.

3) This is proven by induction. It is clear that if x, +...+x;es(B) and B
contains column j+1, then {x; ;,x;+...+x;,,}<=s(B). To start the induction
off, note that x,+...+x,€es(B) and B contains column m+1. This completes
the proof of Lemma 54. [

If B is a simple block of columns, then B< {x;, x5, ...,X,,} and therefore
d(@Q,, B)=1B|+|B|(n—1)=|B|n>0. (5.2)

To determine d(Q,, B) for a nonsimple block, we need to take into account the
parities of the integers m and r introduced in the statement of Lemma 5.4. This
is done in the next lemma. First define

(o -12— ﬁ)]

v1=(m—l)n+(r—m)[ -

and

(x+pB)
yo=m—Dn+r—m+1) [n— > ]
Note that under the conditions of Proposition 5.2 we have y, 20 and y,>0.

Lemma 5.5. Suppose that the conditions of Proposition 5.2 hold. Let B be a
nonsimple block of columns.

1) If m and r are both odd, then
d@,,B)=(1-2)+7y,=21—-a>0.

2) If m and r are both even, then
d@Q,,B)=(1-p+7,21-p>0.

3) If m and r have different parities, then
dQ,,B)=(1-n)+y,>1-n>0.

Proof. Note that d(Q,, B) is equal to the cardinality of B plus the sum of the
powers of all the elements of s(B)\{x,+...4x,,}. The cardinality of B contrib-
utes (r—1)+1 to d(Q,, B).
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According to Lemma 5.4, the set s(B)\{x,+... +x,,} is equal to W,UuW,,
where

Wl={x17xl+1’""xm—l’xm+1’xm+25"'7xr}

and
Wo={x;+ ... +Xp, X+ X0 X T X0

(When m=1 we let W, ={x,, ..., x,}.)

Counting the powers associated with W, we obtain a contribution (v —I)(y
—D=—F-DH+m—-Dhn+{r—mmn.

Counting the powers associated with W, we obtain a contribution

_“_(r—zm) (o4 p) if m,r are both odd
(r—m) ~
—p— 5 (a+pB) if m,r are both even
— 1
._(LL;U—_l (4 p) if m,r have different parities.

Summing the appropriate contributions and using the inequalities a<1, f<1,
y, =20 and y, =20 we obtain the results of Lemma 5.5. [

Proof of Proposition 5.2. Suppose that the conditions of Proposition 5.2 hold
and that the independent subset W of T also satisfies the restrictions described
above. (Namely, W does not contain x,+...+x,, and {x,,x; +...+x,} & W, k
=2,...,2p.) Relation (5.1), relation (5.2) and Lemma 5.5 imply that d(F,, W)>0
if x,+...4+x,,¢s(W). To complete the proof, assume that x,+...+x,,es(W).
This implies that ry; =2p (where B, is the rightmost block of W), because the
summand x,, appears only in the 2p* column.

First we will show that B, is nonsimple, that is, it contains x,+ ... +x, for
some k=1. Put [=1; . Put =1, then x,€B, and so B, is nonsimple. If /=2 and
B, is simple, then W =B, ={x,,...,X,,}, contradicting the assumptions of the
proposition. If />2 and B, is simple, then no element of W contains the
summand x;_;, contradicting the assumption that x, + ... +x,,€s(W). Thus B,
must be nonsimple.

Next we will show that [z =1. Since B, is nonsimple, Lemma 5.4 shows
that x,+...+x,,€s(W). Since we have assumed that x,+...+x,,es(W), it
follows that x,es(W). Thus we must have [z =1 in order to avoid contradict-
ing Lemma 5.3.

To complete the proof, we distinguish two cases, according to whether W
consists of a single block or more than one block.

Case I. n=1. In this case we have only one block B, satisfying Iy =mp =1
and ry =2p. Lemma 5.5 implies that d(Q,, B,)=1—#+7,. According to (5.1),

d(B, W)=d(Q,. B,)+n—1=7,>0.

Case II. n>1. We again have [y =mp =1. Thus either Part 1 or Part 3 of
Lemma 5.5 applies. Hence d(Q,, B;)21~a or d(Q,, B))=1—n.
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Since ry, =2p and B, is nonsingular, either Part 2 or Part 3 of Lemma 5.5
applies to B,. Thus d(Q,,B)=1—p or d(Q,,B)=1—1.

The proof can now be completed as follows. According to (5.2) and Lem-
ma 5.5, we have d(Q,,B)>0, j=1,...,n. Thus by (5.1),

A5, W)=n-1+ Y. d(©,.B)
i=1
gn— 1 +d(Qqs B1)+d(Qq5 Bn)

It dQ,,B)=1-n, then d(F,W)zd(Q,,B,)>0. Similarly, d(F,W)>0 if
d(Q,, B,)=1—n. Therefore we can assume that d(Q,,B,)=1—« and d(Q,,B)=1
—p. Then d(B,W)zn—1+(1—a)+(1—B)=1—n+2[n—(a+p)/2]>1—4>0.
This completes the proof of Proposition 52. [

6. Applications of Power Counting
In this section, we establish Propositions 6.1 and 6.2, which will be used in the

proof of Theorem 1.
For each integer N =1 define the function

1
min(——,N) ~2nLzL -1
|z42m)

1
hy(z)= min('—’,N) ~nZzgm
z

1
min( ,N) n<z=2n
|z—2m)

and the function fy: R*’—>R by

Iny)=hy(y, ”‘yZp)hN(J’z—Y1)hN(J’3‘yz)--‘hzv(yzp—y”—ﬂ
20 it 2 I 2N F O 9

where a<1 and f<1. Given >0 put U=[—tt]*’? and V
Z{YEIRZP: Iy1l_§%|yZ|}-

The following results are useful in studying the behavior of | fy(y)dy as
N—oo. U,

Proposition 6.1. Let a <1 and f<1.
a) If o+ B <0, then as N— o,

§ fv(ydy=0(N)
UpnV
for every £>0,

b) If a+ p>0, then as N— 0,

5 fu(y)dy=O(Nre+he)

UpnV
for every £>0.
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Proposition 6.2. Let «<1 and f<1.

a) If pla+p) <1, then
[ fu»dy

lim limsup 2 —=0.
t—=0 N—’oop N

b) If p(a+p)=1, then as N—co

| fu(y)dy=0(Nre+P+s)
U‘!ﬁ
for every £>0.

In order to prove Propositions 6.1 and 6.2 we need to put the problem into
the framework described in Sect. 4. Choose  satisfying 0 <y < 1. If 1I/N Z|z|<n
then we have

—

L
hyte) =%

N*jzi'=N"|z|*~ L.

||

[N}

If {z|<1/N then

hy(z)=N"N*""< N7jz["~ 1,
Thus
hy(D)SNYzP !, —n<z<n, O<p<l.

This implies fy(y) < fy,,(¥), where fy () is defined as fy(y) with hy replaced by
Nz2q""! —2n£z<—n
hy o (2)={ N"[z[""! —nLz<n
N"z—2zp~' nZz£2n
To study [ fy (y)dy we make the change of variable x, =y, x, =y~ y,_;,
U:
k=2,...,2p. Thus we define
fl\',(x)th(xz-i—...+x2p)hN(x2)...hN(x2p)
Py 7%y A X I X s T Xy x|
and fy ,(x) in the same way, with &, replaced by hy ,. Define the set U/ so that

J,f&(X)dX=JfN(J’)dy and let V'={x: {x,|S|x; +x,[}-

3
Note that if yeU, and lyk—yk_llgi, then |y, ,|=n/2 and |y lzn/2.
Hence for xeU, 2

Xy +...+x_412F if |x,+27|<%, (6.1a)
P, 4. 4x (|22 if [x,—2x|<LE, (6.1b)
[, +...+x/=%F if |x+2r =5 (6.22)
and
Ix;4+...+x, =%  if |x, 27|32 (6.2b)
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It is clear that if ye U, "V then |y, —y,|<3|y,| £37/2. Thus

3,

lleé 2 >

xeU.nV. (6.3)

In order to apply the lemmas of Sect. 4 introduce the functionals

M(x)=X,+...+x,,
M, (x)=x,

MZp(x):XZp
M,,, ()=,
M2p+2(x)=x1+x2

M, ()=x;+...+x,,.

Choose {0,...,0,,} ={—2%,0,2xn} and put 6,,,,=0,,, ,=...=0,,=0. Define
Lix)=M{x)+0;, j=1,...,4p. Let U be the subset of U/ on which fy (x)
= N?P"P/(x), where

B/(x)=|L,|" "L, I"t. Ly, 1"t

) ‘L2p+ 1|7aIL2p+2I_ﬁ--"L4p|~ﬁ'

In the proofs of Propositions 6.1 and 6.2 we use the notation introduced in
Sect. 3. For example T={L,,...,L,,} and r is the rank of T.
Fixing a permutation ¢=(0;, ..., 64,) of {1, ..., 4p} we define

E,={xeU/:|L, (»)|<... SIL,,, ()1}
and, as in Sect. 4 construct a basis {L, , ..., L_} for T satisfying
LS|l S SIL,),  xeE..

In proving Propositions 6.1 and 6.2 it suffices to show that the conclusions
hold with U, replaced by E!, V replaced by V' and f(y) replaced by fy(x) or

Jan)-

Proof of Proposition 6.1. Fix n satisfying 0<n <1 and n>(a+ §)/2. Since fy (x)
=N2pn B/(x), both parts of Proposition 6.1 will follow if we show

| B(x)dx<oo. (6.4)

EZnV’
To show (6.4) we distinguish two cases.
Case I {L.,....L _}&{L,....L,,}
In this case we will show that in fact | P'(x)dx < oo.
Subcase 11 0,=...=6, =0. Eg

In this case B/(x)=FB(x), where B(x) is as defined in Sect. 5. Thus Proposi-
tion 5.2 and Lemma 4.4 imply | B/(x)dx < o0.
E%



Central Limit Theorems for Quadratic Forms 229

Subcase 1.2. 6+ 0 for some j.

Here some of the dimensions may be non-positive, but relations (6.1)-(6.3)
will allow us to deal with that situation. If d(E/,{L,,,...,L, })>0, k=1,...,2p,
then Lemma 4.4 implies that [ P/(x)dx<co. Otherwise put W={L,,...,L },

E'I‘:

where k is the smallest index satisfying d(F), {L,,, ..., L, })<0. As in Sect. 5,
s(W) cousists of a collection of blocks of columns, plus possibly L;. Let B be a
block whose contribution to d(E/, W) is non-positive. Then it is clear that 8,0
for some j satisfying I, <j<rg and that x, +... +x,€s(B) for some m satisfying
ls<m<rg. (For d(P/, B) would be positive if there were no such j (Lemma 5.5)
or if there were no such m (direct computation).)

Let m be the smallest index with this property. We distinguish two cases, in
both of which we will show that P/(x) is at most a constant times
|L, 4. |L, _ |*-*, with 4, defined as in Lemma 4.2.

Subcase 1.2.i. Some j satisfies m <j<rg, L;es(B) and 6;+0.

Let j be the smallest index with this property. Then it is clear that x, +...
+x;_,€s(B). By Lemma 4.2, F/(x) is at most a constant times [L, 4L |
Since L; and x;+...+x; ; are in s{L,,....,L} and |[L I=...S|L | on E,
Lemma 4.1 implies that there is a constant C such that if xeE]

Clx,+...+x; 4|=S|L,,]
and
CILI<IL

al-

Thus if x€E} and |L;|z#/2, L, is bounded away from 0. If |L;[=/2, relation
(6.1) implies that L_ is bounded away from 0, since L;=x,+2n. So L, is
bounded away from O on E?, which implies that L _,...,L, are bounded
away from O also. It follows that P/(x) is at most a constant times
|L %L, _ |**on Ef.

Subcase I1.2.ii. No j satisfies m <j<ry, L;es(B) and 0,;+0.

Tie—1

Note that x,¢s(B), for otherwise we would have x, +... +x,,_,€s(B), con-
tracting our choice of m. Since L, =x,,+0,, it follows that either L, ¢s(B) or 0,
+0. If L_¢s(B), then

SBY={L s Ly 1> Xy 5o Xy Xq e F X X+

e X s X X )

,L,_,=x,_ ,, but with
this change it becomes the dimension of the block described in Lemma 5.4,
which is positive by Lemma 5.5, contradicting our assumption. Hence L, es(B)
and 6,40. But then relation (6.2) allows us to argue as in Subcase 1.2.i that
|L,,|*...|L, "' provides a majorant for P/(x).

We see that d(P),B) would not change if L, =x,,,....,L,_;=x

T 1

To complete the proof in Subcase L2 it suffices to show that
IL, |"...|L, _ " is integrable on E}. But this follows from Lemma 4.4, since
d(B.{L.,....L })>0, j=1,....k—1. This establishes that [ B(x)dx<oo in
Subcase 1.2. £z
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Case II. {L,,,...,L,, }<{L;,....Ly,}.
Subcase 11.1. 6,=0,+...+0,,

In this case we have s{L Y={L
S{Leyyoos Ly, 3={Ly, .., Ly,

Suppose first that 6,40, so that L,=x,+2x Then (6.3) implies that
|LylZz7/2 on E;nV'. According to Lemma 4.2, B/(x) is at most a constant

times ]LI‘I“’_..[L%[“ZP. Let j<2p be the i'nteger satisfying L,eT;. Then Lem-

eyr oo Loy ) oL, k=1,...,2p—2, and

ma 4.1 implies that [L,, [2...2|L; I> [L,[2 C = for xeE}. Hence E/(x) 1s at

most a constant times |L, {‘" IL l"f ¢ for xeETnV' Since j—1Z2p—2,
dB{L,,....,L,}})>0, k=1,...,j—1. 'Therefore Lemma 4.4 implies that the in-
tegrdl of this product over E’;m V' is finite, establishing (6.4) when 8, 0.
Now suppose 6,=0, so that L, =x,. Define

Lo={Li . Ly ,\{L, s, Ly

T,={L )}, k=1,..,2p—2

Then

and
T 1={Ly, s Ly PN {Ley o Loy, 3 =H{L,,, L)
The next step is to use this to establish
Ly 1L, xeE NV (6.5)

Since L,eT,, ;, Lemma 4.1b implies that |L.,, ,|=|L,| for xeE7. Hence
iLti}§1L12[§...g[Ltzp_!lgqul for xeE}. Therefore on E; we have L ,=
max {{L|, |L,l, ..., |Ly,l}. In particular |L,|<|L,|] on E7. For xeV’ we have
[Ly, ¢ 1l=1x1Z[x,[=|L,|. These last two inequalities imply (6.5).

Since

B{x)=|L, " .. K PN LT SR e PP R | PR

itzpj

relation (6.5) implies that P'(x)< B'(x), xe Ezn V', where

B =L, "L

— — 1 — _
zzp_[in 1]L2p+1’ arn ]L2p+2’ B!L4pl ﬂ

Hence (6.4) will follow if we show
{ P/(x)dx< co. (6.6)
Ez
To show (6.6) we use Lemma 44. For k<2p—2 we have s{L,,....L.}
={L L.}, from which it follows that
L. N=ktkin—1)=kn>0, k=2p-2.

PR RARE]
dB AL,

Since s{L,,....L., _}={Ly,...,L;,} we have

AR {L,,....L,,, D=0Cp-D+2p-1n—-1)=Q2p—-1)n>0.

7 ?
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Finally, if 6, =...=0,,=0, then

2 (a + ﬁ)

UB ALy s Ly ) =29+ 2000 )= pa—pf=2p[ =" 32| >0

On the other hand, if some 6,#0 then {x;+...+x,,Ls... sz}
cs{L,,...,L,, } for some m and we can argue as in Subcase 1.2 that B is at
most a constant times |L_|""*...[L,, — =1, Either way, (6.6) follows from
Lemma 4.4, completing the proof in Subcase II L.

Subcase 11.2. 0, %0, +...+0,,

In this case we will show that { B'(x)dx < oo. We have
E5

s{L L }={L.,....L,}, k=1,...2p—1

L RREE)

Put L ={L,,....L, ,}\{L,,, ... L, _ .}
Suppose first that L, =L, Then S{Ln"' Lo, }={Ly, ... Ly}, so that
d{L,,....L }=k(n— 1)+k kn>0 k=1,...,2p. Hence Lemma 4.4 implies that

| E7’(x)dx< 0.
E3

Now suppose that L,, +L,so L., =x;+...+Xx,, for some 1<m=2p. Since
0,#0 for some j, we can argue as in Subcase [.2 that F is at most a constant
Himes IL, "~ .. |L,, "' Since d(B,{L,,....L, })>0 k=1,...,2p—1, this
product is integrable over E7, completing the proof of Proposition 6.1. O

Proof of Proposition 6.2. Let ¢ be a permutation of {1,...,4p}.
Case I {L,....L., _}F{L;,....Ly,}
As in Case I of the proof of Proposition 6.1, we show that | P'(x)dx<co if

EZ
n>(o+ B)/2. Since fb’,’n(x)=N2"”E1’(x), both parts of Proposition 6.2 follow by
choosing n appropriately.

Case II. {L.,....L,, _ }={Ly,....L,,}.
Subcase I1.1. 6, =0,+...+0,,
Proof of Part a in Subcase 11.1. We saw in the proof of Proposition 6.1 that

IL, I=IL |=...SIL,,, [SIL), xeE, (6.7)

t2p-1

where
L= {L,, ...,sz}\{Ln, ...,LIZIH}.

Since hy(z) <N, we have
f]\’,(x)gNzl’Isz+ 1|‘“|L2p+2|‘ﬁ...IL4p|"’, xelR??,

If 6,=...=0,,=0 then T,,={L,,,,,...,L,,} and Lemma 4.1 implies that
L1l 1Ly, 0177 |Ly,|7# is at most a constant times |L |7#@*P for
xeE7. On the other hand if some 6,0 the fact that L _=x, + .+x,, for
some m allows us to argue as in Subcase I.21 that L, “is bounded away
from 0 on E7, which implies that [L,,. {[7%...[L,,[” —#is bounded on E7. Thus



232 R. Fox and M.S. Taqqu

this product is at most a constant times M (L.,,), where
M(z)=max(|z|~ PP, 1).
Hence there is a constant C so that
S = CN“M(L%), xeE7. (6.8)

Define the sets

1
Gy o=E n=<IL
N,O am{N_l t1|}7

1 .
GN,j=Ef, {IL |<N_|Lr]+1|} j=1,...,2p-2
and
1
Because of (6.7) it is clear that
E.=Gy UGy 1U...UGy 5,_.

Thus it suffices to show that the conclusion of Part a holds with U, replaced by
Gy ;»j=0,...,2p—1. Define also the sets

1 :
{ILtkl __N“ k= 1, 7]}

1 .
m{—N§|er|, L ed, k=j+1,...,2p— l}m{erpeAt},

4p
where 4,= | } {L,(x): xeE.}. Note that the measure of 4, tends to 0 as t—0.
k=1

In view of (6.7) we have Gy =Ky ;. To prove Part a we distinguish two
subcases according to whether j=2p—1 or not.

Subcase I1.1.i. j=2p—1. From (6.8) we conclude that |  fy(x)dx is at most
a constant times G, 2p-1

N> | M(L,)SN*® | ML

Gn,2p-1 Kn,op-1

where on Ky ,, ;, we have |L, |<1/N for k=1,....2p—1 and L, e4,. We see,
on making the appropriate change of varlable that the nght hand side is
majorized by

tzp)’

1N 2p—1
Nzl’[ f dw] [ M(z)dz.
A

—i/N
Therefore
1
limsup — | fy(x)dx
N N GN,2p-1

is at most a constant times | M(z)dz, which implies the conclusion of Part a.
Ae
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Subcase I1.1.ii. j<2p—1. For xeGy ; we have
hy(L,)=N, k=1,...,j,

hy(L,)=IL, "% k=j+1,....2p—1,
and, by (6.7)

hN(Lq)= |qu— ! g |erp, 1]_ 1'
These facts in combination with (6.8) yield

fv(x)S CNI|L [~*L [2M(L xeGy ;.

L )
rj+1| N T2p-2 Tap-1 T2p/?

According to (6.7), [L | <|L

T2p-1

|, k=j+1,...,2p—1, and thus fy(x) is at most

) 2p—-1 1 1

CNJ{ IT L., I” 2p—1—1}M(Lup)
k=j+1

for xeGy ;. Integrating this expression over Ky ; we have at most a constant

times

Nf(lfv dv)j(i j w‘{”’2p~—11~7}dw>2p4#j};M(z)dz.

~1/N NS W, wede

The first integral in brackets is 2N~'. The second is O(N'??=1-7). So the
whole expression is O(N)jM(z )dz. This concludes the proof of Parta in
Subcase II.1.

Proof of Part b in Subcase I1.1. Fix ¢>0. Under the conditions of Part b we
can choose # satisfying 0<n <1, n>(ax+f)/2 and 1<2pny<p(o+ f)+e Thus it
suffices to show that | P'(x)dx < oo under these conditions.

Ex

First suppose that 6;=0,=...=0,,=0. Then Propositions 5.1 and 5.2
imply that d(E,W)>min(2pn—1,0) for every strongly independent W< T.
Since 2pn>1, Theorem 3.1 implies the desired conclusion in this case.

On the other hand if some 6;+0, then some dimensions may be negative.
However, since 2pn>1, d(B/, W)>0 whenever W< {L,,...,L,,}. Hence if k is
the smallest index satisfying d(B,{L,,,...,L,}) <0, then we must have x, +..
+x,es{l,,,...,L.} for some m, and thus we can argue as Subcase 1.2 of the
proof of Proposition 6.1 that P’ is at most a constant times |L, |**...|L, _ [*-},
so that Lemma 4.4 can be used to complete the proof of Part b in Subcase II.1.

Subcase 11.2. 6, #0,+...4+0,,
As in Subcase I1.2 of the proof of Proposition 6.1, we have

B(x)dx<oo if n>(ax+f)/2.

EZ

Since fz(,,n(x)zNzl’”E,’(x), both parts of Proposition 6.2 follow by choosing #
appropriately. []
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7. Proof of Theorem 1

The proof requires a lemma in addition to Propositions 6.1 and 6.2. We use
the notation introduced in Sect. 2 prior to the statement of Theorem 1. Fix
p=1 and note that

N-1 N-1

Tr(RNAN)pz Z Z rjl—jzajz—jsrjs—jq‘"ajzp—h
=0 j2p=0
N-1 N—-1 T n
- Z Z (j j' =iy gia—ja)y2  pilizp—j1)y2,p

j1=0  jap=0 \-—m -x

SOIEGDS 0802 ),y )

= | R(»QU)dy, (7.1)

U
where

N-1 N—-1

By=> ... Y Qi =2y piliz=jave | giliap—iivzp
=0  j2p=0
Q=)&) S (ys)--8(yz,)

and

U=[-1,1t]*".
To state the lemma, introduce the diagonal

D={yelU, y;=y,=...=y,,}.

Let p be the measure on U, which is concentrated on D and satisfies
uly:agy,=y,=...=y,,<b}=b—afor all ~-n<a=<b<n. Thus u is Lebesgue
measure on D, normalized so that u(D)=2n.

Lemma 7.1. Define the measure uy on U, by

1
HN(E)=m iPN(y)dy, EcU,.

Then py converges weakly to p as N— 0.

Proof. Since U, is compact, it suffices to show that the Fourier coefficients of
py converge to those of u. Fixing integers ny,n,,...,n,,, the corresponding
Fourier coefficient of y is

T
j‘ei(n1y1+..‘+n2py2p)d'u(y)= j’ ei(n1+...+n2p)xdx
Uxr

2p
0 if Y n#0
j=1

2p
2z if Y n=0.
j=1
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The corresponding Fourier coefficient of py is

Cy=Cylny,n,,...,1n,,)

_ _f glmyi+ ...+n2pYZp]duN(y)

Ur

(2@217 1N Z Z {j i[”l+j1‘j2]Y1dyl

j1=0 sz-O -7

T 3
. j’ ei[nz+jz~j3]hdy2.“j' ei[n2p+j2p~j1]y2pdy2p}_ (72)

—n -

Fix ji,...,j;,- In order for the expression in braces to be nonzero we must
have

ny=—(1=j,)
= —(j,—Ja)
: (7.3)
Nyp1=—(2p1—J2p)
—(2p=J1)-

But then n,+...+n,,=0. Thus if n,+...4n,,+0 each of the summands in
(7.2) is equal to 0. Therefore Cy=0 1f ny+...+ny,=*0.

Suppose n, +...+n,,=0. Then each summand in (7.2) equals 0 or (27)*%.
When the summand equals (2m)*?, the indices ji,...,j,, satisfy (7.3), which
implies

Ja=ji+(ny)
]'3=j1""(”1 +n,) (7.4)
Jap=J1+m+..+ny, ).
Define
M=max{n, +...+n.: k=1,....2p—1}, M*=max(M,0),

m=min{n, +...+n,: k=1,...,2p—1}, and m*=max(—m,0).

Fix j, satisfying 0<j, <N—1 and determine j,,...,j,, according to (7.4). In
order for the inequalities 0<j, <N —1, k=2,...,2p to be satisfied we must have
JiEN—1—M and j, 2m. Thus the sum in (7. 2) is equal to
N-1-M*
Y Q2uPP=(N-M*—m")2n)*".
Ji=m%*

Therefore
2a(N—M™* —m™)

N b

Cy=

which tends to 2 as N—oo. This completes the proof of Lemma 7.1. []

Proof of Theorem 1. We must evaluate the asymptotic behavior of

g Py(»)0(»)dy.
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Introduce the sets

1,....2p—1,

I

Wk={ye]R“: lyk|§lyk2+1|}, k
|
sz:{yE]RZPZ |y2pl§121_| s
and
W=W,oW,u..0W,,.
We shall divide the domain of integration U, into three parts as follows. Let
E=U\N{WuUy},

E=U\W,
and
G=UnW

For each 0<t<m, the sets E,, F, and G are disjoint and satisfy U, =E,UF,UG.
According to (7.1), Part a of the theorem will be proven if we show that p(x
+ B)<1 implies :

[ RO
lim 2 _—=Qn)?*~' [ [f(2)g(z)]Pdz, O<t<I, (7.5)
Now N PP
| PO
lim lim sup F =0, (7.6)
t-0 N-oow N
and
[ PO
lim & =0. 7.7
N1—>n;10 N 0 (.7)

To prove (7.6) it is enough to show that when p(a+ ) <1

10
lim lim sup % N =0. (7.8)

=0 N-ow

2p
Since G= | ) [W,nU,], relation (7.7) will bold, if p(ax+ ) <1 implies
k=1

IRLTY
lim &% 0, k=1,...,2p. (7.9)

N- o

From the definitions of P, and Q it is clear that

j |PNQ|= _‘ |PNQ|=---= f |PNQ|
UpenWy UpnWs Unn\Wap—1
and
| IRQl= | IRQI=...= | IRQI

UpnW U,nWs UnnWip
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Because of the symmetry between o and [ in the hypotheses of the theorem, it
is clear that if we prove that p(x+ f) <1 implies

. i 150
tim s o
we will have also established
. JW I
i 0

Thus (7.9) will follow from (7.10).

In conclusion, Part a of the theorem will be proven if we show that p(«
+ f) <1 implies (7.5), (7.8) and (7.10).

To prove Part b, we must show that for p(a+f)=1

[ |BQl=0o(NPC*P+%)  for every &>0. (7.11)
Ur

We start with relation (7.5) and show that it holds in fact for all real values
of o and B. We begin by showing that Q is bounded on E,. Let yeE,. Since E,
is in the complement of U, there is some k such that |y,|>t. Since E, is also in
the complement of W,, j=1,...,2p, we have |y,(>|y, /2|, j=1,...,2p—1 and
V2,>¥1/2. Thus we have

s ol sl 1y2,l 1yl Vil !
ka+1|>wk—2+"2_>—%>“'>22§-pk>22p-1k+1> 22;{ 1>22p 1°
Therefore |y;|>1/2??~", j=1,...,2p, for yeE, Hence Q is bounded on E,.
Since E,nD={y: y;=...=y,,, t<|y;|<n}, relation (7.5) follows from Lem-

ma 7.1.

Before proving (7.8), (7.10) and (7.11) we need to obtain majorants for P
and Q. We have

N-1 N—1
N(y)_ ( Z eivi— yzp)u) ( Z ei(yz-ynjz)m( Z ei(yzp—yzpq)jzp)
Jj

j1=0 \j2=0 jap=0

h% (1 yZp)h (y2 yl)---h;r‘l(J’zp"y”aO’
where

N-1 o
hi(z)= Y e
j=0

Since h%(z)=(1—e™)/(1 —€™) for z40, [1—e™?*|<2 and |l —e?|=|z|/2 for
[zl<n, we obtain hi(z)<4z|~! for [z]<n. For n<z<2n this implies h*(z)
=h{(z—2n)<4|z—2xn|"'. For —2n<z<-—n we have hi(z)=hk(z+2n)<
4]z+2xn|"'. Since |h§(z)]<N, these inequalities imply that |h%(z)|<4hy(2),
—2n=z=2m, where hy(z) is as defined at the beginning of Sect. 6.

Thus | P,(y)| is at most 4?7 times

hy(yy _yZP)hN(yZ _yl)"'hN(yZp —Vap- s
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For fixed 6>0 let ay=a+0 and Bo=p+6. It is clear that under the
hypotheses of the theorem, Q(y) is at most a constant times

Q/(y)zly1lmaol)ﬁl_ﬁol)’sl—ao---lyzpl_ﬁo~

Thus, the proof of the theorem can be completed by showing that (7.8), {7.10)
and (7.11) hold with the integrand ByQ replaced by fy(y), defined as in Sect. 6.
We can now apply Propositions 6.1 and 6.2. Assume first that p(a+p)=1.
Choose 6>0. Then p(aq+f,)>1. Therefore Part b of Proposition 6.2 implies
that

| f(y)dy=0(Nreotbotey= Q(NPOE+H+2po+e)
Un

Since § can be made arbitrarily small, (7.11) follows.

Now suppose p(a+f)<1. To prove (7.8), choose 9>0 such that
plag+ o)< 1. Then (7.8) follows from Part a of Proposition 6.2. To prove (7.10)
we consider two cases. If a4+ <0 choose >0 such that «,+ f,<0. Then (7.10)
is a consequence of Part a of Proposition 6.1. If a4+ =0, choose  such that
plag+B,)<1 and use Part b of Proposition 6.1. This completes the proof
of Theorem 1. [

8. Proof of Theorem 4

Lemma 8.1. If the conditions of Theorem 2 are satisfied, then
lim —= E|xyAyxy—XyAxXyl=0.
N-w ]/

Proof. The beginning of the proof follows Walker (1964). Note

j—k(XZ%’—XjXN_XkXN)

an

N
: N
Xy AyXy—XyAyZy= Z

N N
=X2 f gx) Y Y eUREdx

~T ji=1k=1
_ = N N .
—2Xy [ gx) Y, Y X;eUmP¥dx
B j=1 k=1
—F,—G,.

We consider E|Fy| first. We have

N N
EXy=s Y S = (WY U

j=1k=1 —T j=1k=1

Nz ff(x)h (X)hE(—x)dx,
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which is at most a constant times

1

N2 jlxl‘“ () hy(—x)dx S N?=2 | |x|=7 2721~ 2dx,

— T -7

N-1
where 6>0, 0<n<1, h¥( Z e/ and hy(x)<hy (x) as at the beginning of

Sect. 6. Choose 6 so that oc+25<1 and put n=(1+«+29)/2. Then the last
integral is finite, so EX2=O0(N*~1+29).
A similar argument shows that

T

N N

[egx) Y Y eU-Prdx=0(NF*+1+27),
-7 j=1 k=1

Hence

E|Fy| =o(N?).
Next we consider

T N N 2
(E|GN[)2§4EX§,E{ [e Y ¥ Xjei(j_k)xdx}.

-n j=1 k=1

The second expectation above is equal to

I f ng)g(y (Z)Z Z

- -7 -7 ky=0 ka=0

. gilki—ka)x yilks —ka)y Hilky —ka)z dxdydz,

which 1s at most a constant times

| f FAXI7 =20yl 2=212 =P hy(x + 2) (= x) iy (y = 2) (= y)dx d y d z.

Put n,=f+20 and n,=(1+«)/2. We have hy(—x)<N"hy , (—Xx),
(=Y SNy, (=9, hy(x+2=N"hy . (x+2)

and hy(y —2)=N"hy , .(y—2).
In order for |x+z| to exceed 37/2 we must have |x|=n/2 and |z|=7/2, in
which case the integrand is majorized by N2+ 2% times

|y|_’3_5+'“_1|X+Z+91|”“1|y—2+92|”271,

where {0,,0,}={—2m,0,2n}. This product is clearly integrable for any choice
of 0, and 6,.

In order for |y—z| to exceed 37/2 we must have |y|=n/2 and |z|=Z#/2 in
which case the integrand is majorized by N2+ 2" times

le—ﬂ—5+m—llx+z+93[nz~1|y_2+94|n271

for some 6,, 6, = {—2=,0,2=}. This product is also integrable.
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If neither of the above cases holds, then the integrand is majorized by
N2m+2m2 times

R LS PRl

Using Theorem 3.1, it is easily checked that this product is integrable. Thus we

conclude that B
(EIGyl? SAEXFON?™ +2) = O(N?+20+40),

Since a+pf<1/2, we see that E|Gy|=0(N?), completing the proof of
Lemma 8.1. []
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