Central Limit Theorems for Quadratic Forms in Random Variables Having Long-Range Dependence

Probability

C Springer-Verlag 1987

Robert Fox* and Murad S. Taqqu**, †

Cornell University, Ithaca, NY 14853, USA

1. Introduction

Let f(x) and g(x) be integrable real symmetric functions on $[-\pi, \pi]$ that are bounded on subintervals that exclude the origin. Let X_1, X_2, \ldots be a mean zero stationary Gaussian sequence with spectral density f(x), and let $\ldots, -a_1, a_0, a_1, \ldots$ be the Fourier coefficients of g(x). We prove that the distribution of the normalized quadratic form

$$Z_{N} = \frac{1}{\sqrt{N}} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i-j} X_{i} X_{j} - E \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i-j} X_{i} X_{j} \right\}$$

converges to a normal distribution if there exist constants $\alpha < 1$ and $\beta < 1$ with $\alpha + \beta < 1/2$ such that for each $\delta > 0$, $f(x) = O(|x|^{-\alpha - \delta})$ and $g(x) = O(|x|^{-\beta - \delta})$ as $x \to 0$.

Of particular interest are the cases where $f(x) \sim x^{-\alpha}L_1(x)$ and $g(x) \sim x^{-\beta}L_2(x)$ as $x \to 0$ with L_1 and L_2 slowly varying. The exponents α and β are allowed to be positive, zero or negative. The sequence $\{X_j\}$ is said to exhibit a long-range dependence when $\alpha > 0$. When $\alpha < 0$, the covariances r_k

$$= EX_j X_{j+k} \text{ satisfy } \sum_{\substack{k=-\infty \\ k=-\infty \\ k=$$

Suppose $f(x) \sim x^{-\alpha} L_1(x)$ and $g(x) \sim x^{-\beta} L_2(x)$ as $x \to 0$. Rosenblatt (1961) showed that in the special case $1/2 < \alpha < 1$ and $a_{i-j} = \delta_{ij}$, the quadratic form $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i-j} X_i X_j$, adequately normalized, converges to a *non-normal* distribution. The assumption $a_{i-j} = \delta_{ij}$ implies g(x) constant and thus $\beta = 0$. Our result shows that the normalized quadratic form Z_N converges to a *normal* distribution.

^{*} Present address: Department of Mathematics, Boston College, Chestnut Hill, MA 02167, USA

^{**} Present address: Department of Mathematics, Boston University, Boston, MA 02215, USA

[†] Research supported by the National Science Foundation grant ECS-80-15585

tion when $1/2 < \alpha < 1$ and $\beta < 1/2 - \alpha < 0$. If $\alpha \leq 1/2$, it is even possible to choose $\beta > 0$ as long as $\beta < \min(1/2 - \alpha, 1)$.

These results are used in the study of the asymptotic behavior of maximum likelihood type estimators related to the sequence $\{X_j\}$ (Fox and Taqqu 1986). Examples of sequences $\{X_j\}$ satisfying $f(x) \sim x^{-\alpha}L_1(x)$ that are of special interest include fractional Gaussian noise and fractional ARMA.

A sequence $\{X_j\}$ is *fractional Gaussian noise* (Mandelbrot and Van Ness 1968) if its covariance satisfies

$$r(k) = EX_j X_{j+k} = \frac{\sigma^2}{2} \{ ||k| - 1|^{2H} - 2|k|^{2H} + (|k| + 1)^{2H} \}$$

for 0 < H < 1. In that case (Sinai 1976)

$$f(x) = \frac{\sigma^2}{\int\limits_{-\infty}^{+\infty} (1 - \cos y) |y|^{-1 - 2H} dy} (1 - \cos x) \sum_{k = -\infty}^{+\infty} |x + 2k\pi|^{-1 - 2H},$$

so that $\alpha = 2H - 1 \in (-1, 1)$.

A sequence $\{X_j\}$ is fractional ARMA (Hoskings 1981) if its spectral density is

$$f(x) = |e^{ix} - 1|^{-d} \frac{|\varphi(e^{ix})|^2}{|\psi(e^{ix})|^2}$$

where φ and Ψ are polynomials having no zeroes on the unit circle and d < 1. In that case $\alpha = d$. Heuristically, fractional ARMA is the sequence, which, when differenced d/2 times, yields an autoregressive-moving average (ARMA) sequence with spectral density $|\varphi(e^{ix})|^2/|\Psi(e^{ix})|^2$.

Our main results are in Sect. 2. Sections 3 through 7 are devoted to the proof of Theorem 1. That proof uses "power counting" arguments in the sense of mathematical physics. In Sect. 3 we introduce the power counting set-up and state an extension of a power counting theorem of Lowenstein and Zimmerman (1975). Preliminary lemmas are proven in Sect. 4 and, together with the results of Sect. 5, they are used to establish Propositions 6.1 and 6.2 of Sect. 6. These propositions describe the asymptotic behavior of certain multiple integrals. Section 7 contains the proof of Theorem 1. Theorem 4 is proven in Sect. 8.

2. Main Results

Let f(x) and g(x) be integrable real symmetric functions on $[-\pi, \pi]$, not necessarily non-negative. Define the Fourier coefficients

$$r_n = \int_{-\pi}^{\pi} e^{inx} f(x) dx$$
$$a_n = \int_{-\pi}^{\pi} e^{inx} g(x) dx.$$

and

Central Limit Theorems for Quadratic Forms

Let R_N and A_N be the $N \times N$ matrices with entries $(R_N)_{j,k} = r_{j-k}$ and $(A_N)_{j,k}$ $=a_{i-k}, 0 \leq j, k \leq N-1$. Let Tr M denote the trace of a matrix M.

We say that f satisfies the regularity condition if the discontinuities of fhave Lebesgue measure 0 and f is bounded on the interval $[\delta, \pi]$ for all $\delta > 0$.

Theorem 1. Suppose that f and g each satisfy the regularity condition. Suppose in addition that there exist $\alpha < 1$ and $\beta < 1$ such that for each $\delta > 0$

$$|f(x)| = O(|x|^{-\alpha-\delta})$$
 as $x \to 0$

and

$$|g(x)| = O(|x|^{-\beta-\delta}) \quad as \ x \to 0.$$

Then

a) If
$$p(\alpha + \beta) < 1$$
,

$$\lim_{N \to \infty} \frac{\operatorname{Tr}(R_N A_N)^p}{N} = (2\pi)^{2p-1} \int_{-\pi}^{\pi} [f(x)g(x)]^p dx$$
b) If $p(\alpha + \beta) \ge 1$,

$$\operatorname{Tr}(R_N A_N)^p = o(N^{p(\alpha+\beta)+\varepsilon}) \text{ for every } \varepsilon > 0.$$

The theorem is proven in Sect. 7. The proof of Part a) amounts to showing that

$$\lim_{N\to\infty}\int_{[-\pi,\pi]^{2p}}Q(y)d\mu_N(y)=\int_{[-\pi,\pi]^{2p}}Q(y)d\mu(y)$$

where

$$Q(y) = f(y_1) g(y_2) f(y_3) g(y_4) \dots b(y_{2p-1}) g(y_{2p}),$$

$$d\mu_N(y) = \frac{1}{(2\pi)^{2p-1} N} \sum_{j_1=0}^{N-1} \dots \sum_{j_{2p}=0}^{N-1} e^{i(j_1-j_2)y_1} e^{i(j_2-j_3)y_2}$$

$$\dots e^{i(j_{2p-1}-j_{2p})y_{2p-1}} e^{i(j_{2p}-j_1)y_{2p}} dy_1 \dots dy_{2p},$$

and where μ is Lebesgue measure concentrated on the diagonal of $[-\pi,\pi]^{2p}$.

Introduce now a stationary Gaussian sequence X_i , $j \ge 1$ with mean 0 and spectral density $f(x) \ge 0$, so that

$$EX_j X_{j+k} = r_k = \int_{-\pi}^{\pi} e^{ikx} f(x) dx.$$

Let x_N denote the random vector $(X_1, X_2, ..., X_N)$. Put $\mu_N = E x'_N A_N x_N$.

Theorem 2. Suppose that f and g each satisfy the regularity condition. Suppose in addition that there exist $\alpha < 1$ and $\beta < 1$ such that $\alpha + \beta < 1/2$ and such that for each $\delta > 0$

 $f(x) = O(|x|^{-\alpha - \delta})$ as $x \to 0$ $g(x) = O(|x|^{-\beta-\delta})$ as $x \to 0$. $x'_N A_N$ $x_N - \mu_N$

Then

$$\frac{A_N X_N - \mu_1}{\sqrt{N}}$$

tends in distribution to a normal random variable with mean 0 and variance $16\pi^3 \int_{-\pi}^{\pi} [f(x)g(x)]^2 dx.$

Proof. Since the sequence X_j is Gaussian, the p^{th} cumulant of $x'_N A_N x_N$ is equal to $2^{p-1}(p-1)! \operatorname{Tr}(R_N A_N)^p$. (See, for example, Grenander and Szego 1958, p. 218). Thus the p^{th} cumulant of

$$\frac{x'_N A_N x_N - \mu_N}{\sqrt{N}}$$

is given by

$$c_{p}(N) = \begin{cases} 0 & \text{if } p = 1 \\ 2^{p-1}(p-1)! \frac{\operatorname{Tr}(R_{N}A_{N})^{p}}{N^{p/2}} & \text{if } p \ge 2 \end{cases}$$

An application of Theorem 1 yields

$$\lim c_P(N) = \begin{cases} 0 & \text{if } p \neq 2 \\ 16\pi^3 \int_{-\pi}^{\pi} [f(x)g(x)]^2 dx & \text{if } p = 2. \end{cases}$$

This implies the conclusion of Theorem 2. \Box

The following is an immediate consequence of Theorem 2.

Theorem 3. Suppose that f and g each satisfy the regularity condition. Suppose in addition that there exist $\alpha < 1$ and $\beta < 1$ such that $\alpha + \beta < 1/2$,

$$f(x) \sim |x|^{-\alpha} L_1(x) \quad \text{as } x \to 0$$

and

 $g(x) \sim |x|^{-\beta} L_2(x)$ as $x \to 0$,

where L_1 and L_2 are slowly varying at 0. Then the conclusion of Theorem 2 holds.

The next theorem, which is used in Fox and Taqqu (1986), is proven in Sect. 8. Define $\bar{X}_N = (1/N) \sum_{j=1}^N X_j$ and the random vector $\tilde{x}_N = (X_1 - \bar{X}_N, \dots, X_N - \bar{X}_N)$.

Theorem 4. If the conditions of Theorem 2 are satisfied, then

$$\frac{\tilde{\mathbf{x}}_{N}^{\prime} A_{N} \tilde{\mathbf{x}}_{N} - E\{\tilde{\mathbf{x}}_{N}^{\prime} A_{N} \tilde{\mathbf{x}}_{N}\}}{\sqrt{N}}$$

tends in distribution to a normal random vector with mean 0 and variance $16\pi^3 \int_{-\pi}^{\pi} [f(x)g(x)]^2 dx.$

3. Power Counting Theorems

Power counting methods can be used to verify the convergence of multiple integrals whose integrands are products of powers of affine functionals. Let b_1, \ldots, b_m and $\theta_1, \ldots, \theta_m$ be real constants and let $M_1(x), \ldots, M_m(x)$ be *m* linear functionals on \mathbb{R}^n . Put $L_j(x) = M_j(x) + \theta_j$, $j = 1, \ldots, m$. Define the function *P*: $\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ by $P(x) = |L_j(x)|^{b_1} |L_j(x)|^{b_2} = |L_j(x)|^{b_m}$

$$P(x) = |L_1(x)|^{b_1} |L_2(x)|^{b_2} \dots |L_m(x)|^{b_m}.$$

Define $T = \{L_1, ..., L_m\}$ and let $W \subset T$. Let span $\{W\}$ denote the set of linear combinations of elements of W and s(W) denote those linear combinations which coincide with elements of T. Thus

$$s(W) = T \cap \operatorname{span}\{W\}.$$

For each $W \subset T$ we define the quantity

$$d(P, W) = |W| + \sum_{\{j: L_j \in s(W)\}} b_j,$$

where |W| denotes the cardinality of W. We refer to d(P, W) as the dimension of P with respect to W. We say that $W = \{L_{i_1}, \ldots, L_{i_k}\}$ is strongly independent if M_{i_1}, \ldots, M_{i_k} are linearly independent. Let S be the set of those L_j in T that have exponents $b_j < 0$. Finally, for each t > 0, let

$$U_t = [-t, t]^n = \{x \in \mathbb{R}^n : |x_i| \le t, i = 1, ..., n\}.$$

The next theorem extends a basic result of Lowenstein and Zimmermann (1975). It is proved at the end of Sect. 4.

Theorem 3.1. Suppose that d(P, W) > 0 for every strongly independent set $W \subset S$. Then $\int_{U} P(x)dx < \infty$ for all t > 0.

ι

To illustrate the application of the theorem, let n=3 and define P(x): $\mathbb{R}^3 \to \mathbb{R} \cup \{\infty\}$ by

$$P(x) = |x_1 + x_2 + 2|^{b_1} |x_1 + x_2 + x_3 - 1|^{b_2} |x_3 - 3|^{b_3},$$

where $b_1, b_2, b_3 < 0$. Define $L_1(x) = x_1 + x_2 + 2$, $L_2(x) = x_1 + x_2 + x_3 - 1$ and $L_3(x) = x_3 - 3$. Then $S = T = \{L_1, L_2, L_3\}$. The strongly independent subsets of S are $\{L_1\}, \{L_2\}, \{L_3\}, \{L_1, L_2\}, \{L_1, L_3\}$ and $\{L_2, L_3\}$. We have $d(P, \{L_j\}) = 1 + b_j, j = 1, 2, 3$. The other three dimensions are all equal to $2 + b_1 + b_2 + b_3$ because for example $s(\{L_1, L_2\}) = \{L_1, L_2, L_3\}$. Therefore $\int_{U_1} P(x) dx$ will be finite provided that $b_1 + b_2 + b_3 > -2$ and $b_1, b_2, b_3 > -1$.

Remark. Suppose the condition of Theorem 3.1 is satisfied. Then in fact d(P, W) > 0 for every $W \subset T$. To see this, suppose first that $W \subset T$ contains only one element not in S, say L. Then $W = W_0 \cup \{L\}$, where $W_0 \subset S$ and $d(P, W_0) > 0$. If $d(P, W) \leq 0$ then s(W) must contain some element of S which is not in W_0 , say L. Then $W_1 = W_0 \cup \{L\}$ satisfies $W_1 \subset S$ and $d(P, W_1) = d(P, W) < 0$, since $S(W_1) = S(W_2)$ and $|W_1| = |W_2|$. This contradicts the assump-

tion. Hence any subset of T which differs from a subset of S by one element has positive dimension. The same method can be used inductively to show that all subsets of T have positive dimension.

4. Preliminary Lemmas

Retain the notation introduced in Sect. 3. Fix a permutation $\sigma = (\sigma_1, ..., \sigma_m)$ of $\{1, ..., m\}$ and let

$$E_{\sigma}^{t} = \{ x \in U_{t} \colon |L_{\sigma_{1}}(x)| \leq |L_{\sigma_{2}}(x)| \leq \ldots \leq |L_{\sigma_{m}}(x)| \}.$$

We use the greedy algorithm to construct a basis B_{σ} for T. The greedy algorithm proceeds as follows. We put $L_{\sigma_1} \in B_{\sigma}$. We put $L_{\sigma_2} \in B_{\sigma}$ if L_{σ_2} is not in the span of $\{L_{\sigma_1}\}$. On the j^{th} step we put $L_{\sigma_j} \in B_{\sigma}$ if L_{σ_j} is not in the span of $\{L_{\sigma_1}, \ldots, L_{\sigma_{j-1}}\}$. It is well known that in this way we obtain a basis B_{σ} $= \{L_{\tau_1}, \ldots, L_{\tau_r}\}$ for T, where r is the rank of T. We then have

$$|L_{\tau_1}| \leq |L_{\tau_2}| \leq \dots \leq |L_{\tau_r}|, \quad x \in E_{\sigma}^t.$$

$$(4.1)$$

The functions $L_{\tau_1}, \ldots, L_{\tau_r}$ are linearly independent but not necessarily strongly independent.

We use B_{σ} to construct the partition of T given by

and

$$T_k = s\{L_{\tau_1}, \dots, L_{\tau_k}\}/s\{L_{\tau_1}, \dots, L_{\tau_{k-1}}\}, \quad k=2, \dots, r.$$

 $T_1 = s\{L_{r_1}\}$

Lemma 4.1. For each permutation σ there is a constant C_{σ} (independent of x and t) such that if $L \in T_k$ then

a)
$$|L| \leq C_{\sigma} |L_{\tau_{\mu}}|, x \in E_{\sigma}^{t},$$

and

b)
$$|L_{\tau_{\mu}}| \leq |L|, x \in E_{\sigma}^{t}$$

Proof. a) If $L \in T_k$ then $L = a_1 L_{\tau_1} + \ldots + a_k L_{\tau_k}$ for some constants a_1, \ldots, a_k . Therefore $|L| \leq |a_1| |L_{\tau_1}| + \ldots + |a_k| |L_{\tau_k}|, \quad x \in \mathbb{R}^n.$

Relation (4.1) implies that for $x \in E_{\sigma}^{t}$ the right hand side is less than $(|a_{1}| + ... + |a_{k}|)|L_{\tau_{k}}|$.

b) Suppose that $L \in T_k$. We must have either $L = L_{\tau_k}$ or else L was rejected by the greedy algorithm. In proving b) we can thus assume that L was rejected by the greedy algorithm. Since $L \in T_k$ it follows that $L \notin s\{L_{\tau_1}, \ldots, L_{\tau_{k-1}}\}$. Therefore it must be that L was considered by the greedy algorithm after L_{τ_k} . But the greedy algorithm considers candidates in order of increasing absolute value on E_{σ}^t . Thus we must have $|L_{\tau_k}| \leq |L|$, $x \in E_{\sigma}$. This completes the proof of Lemma 4.1. \Box

The next lemma provides a majorant for P(x) involving only elements of B_{σ} .

Lemma 4.2. For each permutation σ there is a constant C_1 (independent of x and t) such that

$$P(\mathbf{x}) \leq C_1 |L_{\tau_1}|^{d_1} \dots |L_{\tau_r}|^{d_r}, \quad \mathbf{x} \in E_{\sigma}^t,$$
$$d_1 = d(P, \{L_{\tau_1}\}) - 1,$$

and

where

$$\Delta_k = d(P, \{L_{\tau_1}, \dots, L_{\tau_k}\}) - d(P, \{L_{\tau_1}, \dots, L_{\tau_{k-1}}\}) - 1, \quad k = 2, \dots, r$$

Proof. We have

$$P(x) = \prod_{k=1}^{r} F_k(x),$$

where

$$F_k(x) = \prod_{\{j: L_j \in T_k\}} |L_j|^{b_j} = (\prod_{\{j: L_j \in T_k \smallsetminus S\}} |L_j|^{b_j}) (\prod_{\{j: L_j \in T_k \cap S\}} |L_j|^{b_j})$$

Fix $k \leq r$ and consider the two products on the right hand side. In the first product all of the exponents are non-negative because the L_j 's do not belong to S. Therefore Lemma 4.1a implies that the first product is majorized on E_{σ}^t by

$$\prod_{\{j: L_j \in T_k \smallsetminus S\}} C^{b_j}_{\sigma} |L_{\tau_k}|^{b_j}.$$

In the second product all of the exponents are negative. Thus Lemma 4.1b implies that the second product is majorized on E_{σ}^{t} by

$$\prod_{j: L_j \in \mathcal{T}_k \cap S} |L_{\tau_k}|^{b_j}$$

Combining these facts we conclude that there is a constant C_2 such that

$$F_k(x) \leq C_2 |L_{\tau_k}|^{p_k}, \quad x \in E_{\sigma}^t, \ k \leq r,$$
$$p_k = \sum_{i=1}^{n} b_i.$$

where

$$p_k = \sum_{\{j: L_j \in T_k\}} b_j.$$

Lemma 4.2 will follow from this inequality if we show that $\Delta_k = p_k$, k = 1, ..., r. We have

$$d(P, \{L_{\tau_1}\}) = 1 + \sum_{\{j: L_j \in \mathcal{S}(L_{\tau_1})\}} b_j = 1 + \sum_{\{j: L_j \in T_1\}} b_j = 1 + p_1.$$

Thus

$$\Delta_1 = d(P, \{L_{\tau_1}\}) - 1 = p_1.$$

If $k \ge 2$ then

$$d(P, (L_{\tau_1}, \dots, L_{\tau_k})) = k + \sum_{\{j: L_j \in s(L_{\tau_1}, \dots, L_{\tau_k})\}} b_j$$

= 1 + ((k-1) + $\sum_{\{j: L_j \in s(L_{\tau_1}, \dots, L_{\tau_{k-1}})\}} b_j$) + $\sum_{\{j: L_j \in T_k\}} b_j$
= 1 + $d(P\{L_{\tau_1}, \dots, L_{\tau_{k-1}}\}) + p_k$.

Thus

$$\Delta_k = d(P, \{L_{\tau_1}, \dots, L_{\tau_k}\}) - d(P, \{L_{\tau_1}, \dots, L_{\tau_{k-1}}\}) - 1 = p_k.$$

This completes the proof of Lemma 4.2. \Box

Lemma 4.3. Let $\varphi_1, \varphi_2, ..., \varphi_n$ be given real numbers. Then for all t > 0

$$\int_{|x_1| \le |x_2| \le \dots \le |x_n| \le t} |x_1|^{\varphi_1} |x_2|^{\varphi_2} \dots |x_n|^{\varphi_n} dx_1 dx_2 \dots dx_n < \infty,$$

if $d_k = k + \sum_{j=1}^k \varphi_j > 0$ for $k = 1, \dots, n$.

Proof. It clearly suffices to consider the case t=1. We proceed by induction on n. The lemma is obviously true for n=1. Now suppose that the lemma holds for n-1 and that we are given $\varphi_1, \ldots, \varphi_n$ satisfying the hypotheses of the lemma. Choose $\delta \ge 0$ such that $d_n - \delta > 0$ and $\varphi_n - \delta \neq -1$. (If $\varphi_n \neq -1$ we can take $\delta = 0$). Then the above integral (with t=1) is less than

$$\int_{|x_1| \le |x_2| \le \dots \le |x_n| \le 1} |x_1|^{\varphi_1} \dots |x_{n-1}|^{\varphi_{n-1}} |x_n|^{\varphi_{n-\delta}} dx_1 \dots dx_n$$

=
$$\int_{|x_1| \le |x_2| \le \dots \le |x_{n-1}|} |x_1|^{\varphi_1} \dots |x_{n-1}|^{\varphi_{n-1}} \int_{|x_{n-1}| \le |x_n| \le 1} |x_n|^{\varphi_n - \delta} dx_n dx_1 \dots dx_{n-1}$$

After evaluating the integral over x_n , we obtain

$$\frac{2}{\varphi_n - \delta + 1} \{ \int_{|x_1| \le |x_2| \le \dots \le |x_{n-1}| \le 1} |x_1|^{\varphi_1} \dots |x_{n-1}|^{\varphi_{n-1}} dx_1 \dots dx_{n-1} \\ - \int_{|x_1| \le |x_2| \le \dots \le |x_{n-1}| \le 1} |x_1|^{\varphi_1} \dots |x_{n-2}|^{\varphi_{n-2}} |x_{n-1}|^{\varphi_{n-1} + \varphi_n - \delta + 1} dx_1 \dots dx_n \}.$$

The induction hypothesis implies that the first integral in the braces is finite. To apply the induction hypothesis to the second integral, note that

$$(n-1) + \varphi_1 + \ldots + \varphi_{n-2} + (\varphi_{n-1} + \varphi_n - \delta + 1) = n + \varphi_1 + \ldots + \varphi_n - \delta = d_n - \delta > 0.$$

Thus the second integral is finite, which completes the proof of Lemma 4.3. \Box

Lemma 4.4. Let σ be a permutation of $\{1, ..., m\}$ and let I be the largest index such that $\{L_{\tau_1}, ..., L_{\tau_I}\}$ is strongly independent. If

$$d(P, \{L_{\tau_1}, \dots, L_{\tau_k}\}) > 0, \quad k = 1, \dots, I,$$
$$\int_{E_{\sigma}} P(x) dx < \infty.$$

then

Proof. According to Lemma 4.2 it suffices to show

$$\int_{E_{\sigma}} |L_{\tau_1}|^{d_1} \dots |L_{\tau_r}|^{d_r} dx < \infty,$$

where $\Delta_1, \ldots, \Delta_r$ are as defined in Lemma 4.2.

Case 1. I = r. Let $C_3 = \max\{|L_j(x)|: x \in U_t, 1 \le j \le m\}$. The last integral is majorized by $C_4 \qquad \int |v_1|^{d_1} \dots |v_r|^{d_r} dv_1 \dots dv_r$.

$$C_{4} \int |y_{1}|^{\leq |y_{2}| \leq \dots \leq |y_{r}| \leq C_{3}} |y_{1}|^{a_{1}} \dots |y_{r}|^{a_{r}} dy_{1} \dots dy_{r}$$

where C_4 is a constant obtained by integrating over n-r extraneous variables. Note that $\Delta_1, \ldots, \Delta_r$ satisfy

$$k + \sum_{i=1}^{k} \Delta_i = d(P, \{L_{\tau_1}, \dots, L_{\tau_k}\}) > 0, \quad k = 1, \dots, r.$$

Hence Lemma 4.4 implies the conclusion in this case.

Case 2. I < r. In this case there are constants a_1, \ldots, a_I so that

$$L_{\tau_{I+1}} = M_{\tau_{I+1}} + \theta_{\tau_{I+1}}$$

= $a_1 M_{\tau_1} + \dots + a_I M_{\tau_I} + \theta_{\tau_{I+1}}$
= $a_1 L_{\tau_1} + \dots + a_I L_{\tau_I} + w,$

 $M_{\tau_{I+1}} = a_1 M_{\tau_1} + \ldots + a_I M_{\tau_I}$

where $w = \theta_{\tau_{I+1}} - a_1 \theta_{\tau_1} \dots - a_I \theta_{\tau_I}$. Since $L_{\tau_{I+1}}$ is not a linear combination of $L_{\tau_1}, \dots, L_{\tau_I}$, if follows that $w \neq 0$. Thus we can choose a constant λ so that

$$|L_{\tau_{I+\tau}}| \leq \left|\frac{w}{2}\right|$$
 whenever $|L_{\tau_{I}}| \leq \ldots \leq |L_{\tau_{I}}| \leq \lambda$.

Since $|L_{\tau_I}| \leq |L_{\tau_{I+1}}| \leq \dots \leq |L_{\tau_r}|$ for $x \in E_{\sigma}^t$, there is a constant C_5 depending on λ and w so that

$$|L_{\tau_1}|^{A_1} \dots |L_{\tau_r}|^{A_r} \leq C_5 |L_{\tau_1}|^{A_1} \dots |L_{\tau_I}|^{A_I} \quad \text{ if } x \in E_{\sigma}^t, \quad |L_{\tau_I}| \leq \lambda$$

and also a constant C_6 depending on λ so that

$$|L_{\tau_1}|^{d_1} \dots |L_{\tau_r}|^{d_r} \leq C_6 |L_{\tau_1}|^{d_1} \dots |L_{\tau_{I-1}}|^{d_{I-1}} \quad \text{if } x \in E_{\sigma}^t, \quad |L_{\tau_I}| > \lambda.$$

Since $\{L_{\tau_1}, ..., L_{\tau_I}\}$ and $\{L_{\tau_1}, ..., L_{\tau_{I-1}}\}$ are strongly independent, the proof can be completed as in Case 1. \Box

Proof of Theorem 3.1. Suppose that the conditions of Theorem 3.1 hold. Let σ be a permutation of $\{1, ..., m\}$ and define I as in Lemma 4.4. The remark following Theorem 3.1 implies that $d(P, \{L_{\tau_1}, ..., L_{\tau_k}\}) > 0, k = 1, ..., I$. Thus we can use Lemma 4.4 to conclude that $\int_{E_{\sigma}} P(x) dx < \infty$. Theorem 3.1 follows because U_t is the union over σ of the sets E_{σ}^t . \Box

5. Counting Powers

This section is devoted to "counting powers" in the function $p_{\eta} \colon \mathbb{R}^{2p} \to \mathbb{R}$ given by

$$p_{\eta}(x) = |x_{2} + \ldots + x_{2p}|^{\eta - 1} |x_{2}|^{\eta - 1} |x_{3}|^{\eta - 1} \ldots |x_{2p}|^{\eta - 1} |x_{1}|^{-\alpha} |x_{1} + x_{2}|^{-\beta} |x_{1} + x_{2} + x_{3}|^{-\alpha} \\ \cdot |x_{1} + x_{2} + x_{3} + x_{4}|^{-\beta} \ldots |x_{1} + \ldots + x_{2p-1}|^{-\alpha} |x_{1} + \ldots + x_{2p}|^{-\beta},$$

where $\alpha < 1$, $\beta < 1$ and $0 < \eta < 1$. The results are stated in Propositions 5.1 and 5.2. Introduce the set of linear functionals on \mathbb{R}^{2p}

$$T = \{x_2 + \dots + x_{2p}, x_2, x_3, \dots, x_{2p}, x_1, x_1 + x_2, \dots, x_1 + \dots + x_{2p}\}.$$

For each $W \subset T$ we define the set $s\{W\}$ and the quantity $d(P_{\eta}, W)$ as in Sect. 3 and we say that W is an independent set if it is strongly independent. (Here W does not involve additive constants.)

Proposition 5.1. Let $\alpha < 1$, $\beta < 1$ and let η satisfy $0 < \eta < 1$ and $n > (a+\beta)/2$. If $W \subset T$ is an independent set such that |W| = 2p-1 and $W \subset \{x_2 + ... + x_{2p}, x_2, x_3, ..., x_{2p}\}$, then $d(P_n, W) = 2p\eta - 1$.

Proof. It is clear that if W satisfies the conditions of Proposition 5.1 then $s\{W\} = \{x_2 + ... + x_{2p}, x_2, x_3, ..., x_{2p}\}$. Therefore

$$d(P_n, W) = (2p-1) + 2p(\eta - 1) = 2p\eta - 1.$$

Proposition 5.2. Let $\alpha < 1$, $\beta < 1$ and let η satisfy $0 < \eta < 1$ and $n > (\alpha + \beta)/2$. If $W \subset T$ is an independent set such that either $|W| \neq 2p-1$ or $W \notin \{x_2 + ... + x_{2p}, x_2, x_3, ..., x_{2p}\}$, then $d(P_\eta, W) > 0$.

The rest of this section is devoted to the proof of Proposition 5.2.

In proving that proposition we can restrict ourselves to considering sets W
ightharpoondown T which do not contain $x_2 + \ldots + x_{2p}$. To see this, assume that $x_2 + \ldots + x_{2p} \in W$. Suppose first that the set $s\{W\} \setminus s\{W \setminus x_2 + \ldots + x_{2p}\}$ contains some functional L other than $x_2 + \ldots + x_{2p}$. Then we consider the set W' which is W with $x_2 + \ldots + x_{2p}$ replaced by L, that is $W' = W \cup \{L\} \setminus \{x_2 + \ldots + x_{2p}\}$. Clearly, $x_2 + \ldots + x_{2p} \notin W'$. Furthermore, W' has the same span and cardinality as W. Therefore $d(P_{\eta}, W') = d(P_{\eta}, W)$. On the other hand, suppose that there is no such L. In this case we put $W' = W \setminus \{x_2 + \ldots + x_{2p}\}$. We have |W'| = |W| - 1 and $s\{W'\} = s\{W\} \setminus \{x_2 + \ldots + x_{2p}\}$. Hence

$$d(P_n, W') = d(P_n, W) - 1 - (\eta - 1) = d(P_n, W) - \eta < d(P_n, W).$$

Thus in either case there is a set W' which does not contain $x_2 + \ldots + x_{2p}$ and satisfies $d(P_n, W') \leq d(P_n, W)$. Hence we can assume that W does not contain $x_2 + \ldots + x_{2p}$.

In proving Proposition 5.2 we can also restrict ourselves to sets $W \subset T$ which satisfy $\{x_k, x_1 + ... + x_k\} \notin W$, k=2, ..., 2p. For suppose that T does not satisfy this restriction. Let j be the largest k for which $\{x_k, x_1 + ... + x_k\} \subset W$. Let $W' = W \cup \{x_1 + ... + x_{j-1}\} \setminus \{x_1 + ... + x_j\}$. Since the sets $\{x_j, x_1 + ... + x_{j-1}\}$ and $\{x_j, x_1 + ... + x_j\}$ have the same span and cardinality, it follows that $d(P_n, W')$ $= d(P_n, W)$. It is clear that the largest value of k for which $\{x_k, x_1 + ... + x_k\} \subset W'$ is at most j-1. After repeating this process at most j-2 more times we obtain a set W'' satisfying $d(P_n, W'') = d(P_n, W)$ and $\{x_k, x_1 + ... + x_k\} \notin W'$, k = 2, ..., 2p. Thus we can restrict ourselves to sets W which do not contain both x_k and $x_1 + ... + x_k$.

We will assume from now on that $W \subset T$ satisfies both of the above restrictions. To describe the sets W which we will be considering, it is helpful to think of the elements of $T \setminus \{x_2 + ... + x_{2p}\}$ arranged in columns as follows:

Central Limit Theorems for Quadratic Forms

$$x_{1} \begin{vmatrix} x_{2} \\ x_{1} \end{vmatrix} x_{1} + x_{2} \begin{vmatrix} x_{3} \\ x_{1} + x_{2} + x_{3} \end{vmatrix} \cdots \begin{vmatrix} x_{2p} \\ x_{1} + \dots + x_{2p} \end{vmatrix}$$

In the rest of this section we consider sets W which contain at most one element from each column. For any set $T' \subset T$ we say that T' contains the k^{th} column if $x_k \in T'$ or $x_1 + \ldots + x_k \in T'$.

The proof of Proposition 5.2 involves three lemmas.

Lemma 5.3. Suppose that W does not contain the k^{th} column. Then $s\{W\}$ does not contain the k^{th} column.

Proof. We prove that neither x_k nor $x_1 + \ldots + x_k$ is in $s\{W\}$. We distinguish two cases.

Case I. There is no j > k such that $x_1 + ... + x_j \in W$. In this case the conclusion of the lemma is clear since no element of W contains the summand x_k .

Case II. There exists j > k such that $x_1 + \ldots + x_j \in W$.

Suppose that j is the smallest index with this property. Then the only elements of W which contain the summand x_k are among $\{x_1 + \ldots + x_j, x_1 + \ldots + x_{j+1}, \ldots, x_1 + \ldots + x_{2p}\}$. Since $x_j \notin W$ these are also the only elements of W which contain the summand x_j . Thus in any linear combination of the elements of W the summands x_k and x_j appear with the same coefficient. Hence neither x_k nor $x_1 + \ldots + x_k$ can be linear combinations of elements of W. This completes the proof of Lemma 5.3. \Box

We now partition W into blocks of contiguous columns. Any two blocks are separated by at least one column not in W. Formally, we will say that a set $B \subset W$ is a block of columns, if there exist $l_B < r_B$ such that

- 1) W contains neither column $l_B 1$ nor column $r_B + 1$.
- 2) B contains column l_B through r_B and no other columns.

With this definition we obtain a partition $W = \bigcup_{j=1}^{n} B_j$, where each B_j is a block of columns. We will assume that B_j is to the left of B_{j+1} for each j.

Define the function $Q_{\eta}(x) = P_{\eta}(x) \cdot |x_2 + ... + x_{2p}|^{1-\eta}$. It is clear that

$$d(P_{\eta}, W) = \begin{cases} d(Q_{\eta}, W), & \text{if } x_{2} + \ldots + x_{2p} \notin s\{W\} \\ n - 1 + d(Q_{\eta}, W) & \text{if } x_{2} + \ldots + x_{2p} \notin s\{W\}. \end{cases}$$

Furthermore Lemma 5.3 implies that $d(Q_{\eta}, W) = \sum_{j=1}^{n} d(Q_{\eta}, B_{j})$. Thus we have

$$d(P_{\eta}, W) = \begin{cases} \sum_{j=1}^{n} d(Q_{\eta}, B_{j}) & \text{if } x_{2} + \dots + x_{2p} \notin s(W) \\ n - 1 + \sum_{j=1}^{n} d(Q_{\eta}, B_{j}) & \text{if } x_{2} + \dots + x_{2p} \in s(W). \end{cases}$$
(5.1)

The next lemma is useful in determining the quantities $d(Q_{\eta}, B_j)$. A block of columns will be called *nonsimple* if it contains $x_1 + \ldots + x_k$ for some $k \ge 1$.

Lemma 5.4. Let B be a nonsimple block of columns. Put $l=l_B$ and $r=r_B$. Let m be the smallest k satisfying $x_1 + \ldots + x_k \in B$.

- 1) If $l \leq j < m$, then $x_j \in s(B)$ and $x_1 + \ldots + x_j \notin s(B)$.
- 2) $x_m \notin s(B)$ and $x_1 + ... + x_m \in s(B)$.
- 3) If $m < j \leq r$, then $x_j \in s(B)$ and $x_1 + \ldots + x_j \in s(B)$.

Proof. 1) Let $l \leq j < m$. Since j < m we have $\{x_l, x_{l+1}, \dots, x_j\} \subset B$. Suppose that $x_1 + \dots + x_j \in s(B)$. The identity $x_1 + \dots + x_{l-1} = (x_1 + \dots + x_j) - x_l - x_{l+1} - \dots - x_j$ implies that $x_1 + \dots + x_{l-1} \in s(B)$. This contradicts Lemma 5.3. We conclude that $x_1 + \dots + x_j \notin s(B)$.

2) The definition of *m* implies that $x_1 + \ldots + x_m \in B$. Suppose that $x_m \in s(B)$. We have

$$x_1 + \ldots + x_{l-1} = (x_1 + \ldots + x_m) - x_l - x_{l+1} - \ldots - x_m,$$

again contradicting Lemma 5.3.

3) This is proven by induction. It is clear that if $x_1 + ... + x_j \in s(B)$ and B contains column j+1, then $\{x_{j+1}, x_1 + ... + x_{j+1}\} \subset s(B)$. To start the induction off, note that $x_1 + ... + x_m \in s(B)$ and B contains column m+1. This completes the proof of Lemma 5.4. \Box

If B is a simple block of columns, then $B \subset \{x_2, x_3, \dots, x_{2p}\}$ and therefore

$$d(Q_n, B) = |B| + |B|(\eta - 1) = |B|\eta > 0.$$
(5.2)

To determine $d(Q_{\eta}, B)$ for a nonsimple block, we need to take into account the parities of the integers *m* and *r* introduced in the statement of Lemma 5.4. This is done in the next lemma. First define

$$\gamma_1 = (m-l)\eta + (r-m)\left[\eta - \frac{(\alpha+\beta)}{2}\right]$$

and

$$\gamma_2 = (m-l)\eta + (r-m+1)\left[\eta - \frac{(\alpha+\beta)}{2}\right].$$

Note that under the conditions of Proposition 5.2 we have $\gamma_1 \ge 0$ and $\gamma_2 > 0$.

Lemma 5.5. Suppose that the conditions of Proposition 5.2 hold. Let B be a nonsimple block of columns.

1) If m and r are both odd, then

$$d(Q_n, B) = (1 - \alpha) + \gamma_1 \ge 1 - \alpha > 0.$$

2) If m and r are both even, then

$$d(Q_n, B) = (1 - \beta) + \gamma_1 \ge 1 - \beta > 0.$$

3) If m and r have different parities, then

$$d(Q_n, B) = (1 - \eta) + \gamma_2 > 1 - \eta > 0.$$

Proof. Note that $d(Q_{\eta}, B)$ is equal to the cardinality of B plus the sum of the powers of all the elements of $s(B) \setminus \{x_2 + ... + x_{2p}\}$. The cardinality of B contributes (r-l)+1 to $d(Q_{\eta}, B)$.

Central Limit Theorems for Quadratic Forms

According to Lemma 5.4, the set $s(B) \setminus \{x_2 + \ldots + x_{2p}\}$ is equal to $W_1 \cup W_2$, where

$$W_1 = \{x_l, x_{l+1}, \dots, x_{m-1}, x_{m+1}, x_{m+2}, \dots, x_r\}$$

and

$$W_2 = \{x_1 + \ldots + x_m, x_1 + \ldots + x_{m+1}, \ldots, x_1 + \ldots + x_r\}$$

(When m = 1 we let $W_1 = \{x_2, ..., x_r\}$.)

Counting the powers associated with W_1 we obtain a contribution $(r-l)(\eta - 1) = -(r-l) + (m-l)\eta + (r-m)\eta$.

Counting the powers associated with W_2 we obtain a contribution

$$-\alpha - \frac{(r-m)}{2}(\alpha + \beta) \quad \text{if } m, r \text{ are both odd}$$
$$-\beta - \frac{(r-m)}{2}(\alpha + \beta) \quad \text{if } m, r \text{ are both even}$$
$$- \frac{(r-m+1)}{2}(\alpha + \beta) \quad \text{if } m, r \text{ have different parities.}$$

Summing the appropriate contributions and using the inequalities $\alpha < 1$, $\beta < 1$, $\gamma_1 \ge 0$ and $\gamma_2 \ge 0$ we obtain the results of Lemma 5.5. \Box

Proof of Proposition 5.2. Suppose that the conditions of Proposition 5.2 hold and that the independent subset W of T also satisfies the restrictions described above. (Namely, W does not contain $x_2 + ... + x_{2p}$ and $\{x_k, x_1 + ... + x_k\} \notin W$, k = 2, ..., 2p.) Relation (5.1), relation (5.2) and Lemma 5.5 imply that $d(P_n, W) > 0$ if $x_2 + ... + x_{2p} \notin s(W)$. To complete the proof, assume that $x_2 + ... + x_{2p} \in s(W)$. This implies that $r_{B_n} = 2p$ (where B_n is the rightmost block of W), because the summand x_{2p} appears only in the $2p^{\text{th}}$ column.

First we will show that B_n is nonsimple, that is, it contains $x_1 + ... + x_k$ for some $k \ge 1$. Put $l = l_{B_n}$. Put l = 1, then $x_1 \in B_n$ and so B_n is nonsimple. If l = 2 and B_n is simple, then $W = B_n = \{x_2, ..., x_{2p}\}$, contradicting the assumptions of the proposition. If l > 2 and B_n is simple, then no element of W contains the summand x_{l-1} , contradicting the assumption that $x_2 + ... + x_{2p} \in s(W)$. Thus B_n must be nonsimple.

Next we will show that $l_{B_1} = 1$. Since B_n is nonsimple, Lemma 5.4 shows that $x_1 + \ldots + x_{2p} \in s(W)$. Since we have assumed that $x_2 + \ldots + x_{2p} \in s(W)$, it follows that $x_1 \in s(W)$. Thus we must have $l_{B_1} = 1$ in order to avoid contradicting Lemma 5.3.

To complete the proof, we distinguish two cases, according to whether W consists of a single block or more than one block.

Case I. n=1. In this case we have only one block B_1 satisfying $l_{B_1} = m_{B_1} = 1$ and $r_{B_1} = 2p$. Lemma 5.5 implies that $d(Q_n, B_1) = 1 - \eta + \gamma_2$. According to (5.1),

$$d(P_{\eta}, W) = d(Q_{\eta}, B_{1}) + \eta - 1 = \gamma_{2} > 0.$$

Case II. n>1. We again have $l_{B_1}=m_{B_1}=1$. Thus either Part 1 or Part 3 of Lemma 5.5 applies. Hence $d(Q_n, B_1) \ge 1-\alpha$ or $d(Q_n, B_1) \ge 1-\eta$.

Since $r_{B_n} = 2p$ and B_n is nonsingular, either Part 2 or Part 3 of Lemma 5.5 applies to B_n . Thus $d(Q_n, B_n) \ge 1 - \beta$ or $d(Q_n, B_n) \ge 1 - \eta$.

The proof can now be completed as follows. According to (5.2) and Lemma 5.5, we have $d(Q_n, B_j) > 0, j = 1, ..., n$. Thus by (5.1),

$$d(P_{\eta}, W) = \eta - 1 + \sum_{j=1}^{n} d(Q_{\eta}, B_{j})$$

$$\geq n - 1 + d(Q_{\eta}, B_{1}) + d(Q_{\eta}, B_{n})$$

If $d(Q_{\eta}, B_1) \ge 1 - \eta$, then $d(P_{\eta}, W) \ge d(Q_{\eta}, B_n) > 0$. Similarly, $d(P_{\eta}, W) > 0$ if $d(Q_{\eta}, B_n) \ge 1 - \eta$. Therefore we can assume that $d(Q_{\eta}, B_1) \ge 1 - \alpha$ and $d(Q_{\eta}, B_n) \ge 1 - \beta$. Then $d(P_{\eta}, W) \ge \eta - 1 + (1 - \alpha) + (1 - \beta) = 1 - \eta + 2[\eta - (\alpha + \beta)/2] > 1 - \eta > 0$. This completes the proof of Proposition 5.2. \Box

6. Applications of Power Counting

In this section, we establish Propositions 6.1 and 6.2, which will be used in the proof of Theorem 1.

For each integer $N \ge 1$ define the function

$$h_N(z) = \begin{cases} \min\left(\frac{1}{|z+2\pi|}, N\right) & -2\pi \leq z \leq -\pi \\ \min\left(\frac{1}{|z|}, N\right) & -\pi \leq z \leq \pi \\ \min\left(\frac{1}{|z-2\pi|}, N\right) & \pi \leq z \leq 2\pi \end{cases}$$

and the function $f_N: \mathbb{R}^{2p} \to \mathbb{R}$ by

$$f_N(y) = h_N(y_1 - y_{2p})h_N(y_2 - y_1)h_N(y_3 - y_2)\dots h_N(y_{2p} - y_{2p-1})$$
$$\cdot |y_1|^{-\alpha}|y_2|^{-\beta}|y_3|^{-\alpha}\dots |y_{2p}|^{-\beta}$$

where $\alpha < 1$ and $\beta < 1$. Given t > 0 put $U_t = [-t, t]^{2p}$ and $V = \{y \in \mathbb{R}^{2p} : |y_1| \le \frac{1}{2} |y_2|\}.$

The following results are useful in studying the behavior of $\int_{U_{\pi}} f_N(y) dy$ as $N \to \infty$.

Proposition 6.1. Let $\alpha < 1$ and $\beta < 1$.

a) If $\alpha + \beta \leq 0$, then as $N \rightarrow \infty$,

$$\int_{U_{\pi} \cap V} f_N(y) \, dy = O(N^{\varepsilon})$$

for every $\varepsilon > 0$.

b) If $\alpha + \beta > 0$, then as $N \rightarrow \infty$,

$$\int_{U_{\pi} \cap V} f_N(y) \, dy = O(N^{p(\alpha+\beta)+\varepsilon})$$

for every $\varepsilon > 0$.

Proposition 6.2. Let $\alpha < 1$ and $\beta < 1$.

a) If $p(\alpha + \beta) < 1$, then

$$\lim_{t\to 0} \limsup_{N\to\infty} \frac{\int_{U_t} f_N(y) \, dy}{N} = 0.$$

b) If $p(\alpha + \beta) \ge 1$, then as $N \rightarrow \infty$

$$\int_{U_{\pi}} f_N(y) \, dy = O(N^{p(\alpha+\beta)+\varepsilon})$$

for every $\varepsilon > 0$.

In order to prove Propositions 6.1 and 6.2 we need to put the problem into the framework described in Sect. 4. Choose η satisfying $0 < \eta < 1$. If $1/N \leq |z| \leq \pi$ then we have

$$h_N(z) = \frac{1}{|z|} \le \frac{1}{|z|} N^n |z|^n = N^n |z|^{n-1}.$$

If |z| < 1/N then

$$h_N(z) = N^{\eta} N^{1-\eta} \le N^{\eta} |z|^{\eta-1}.$$

Thus

$$h_N(z) \le N^{\eta} |z|^{\eta-1}, \quad -\pi \le z \le \pi, \ 0 < \eta < 1.$$

This implies $f_N(y) \leq f_{N,\eta}(y)$, where $f_{N,\eta}(y)$ is defined as $f_N(y)$ with h_N replaced by

$$h_{N,\eta}(z) = \begin{cases} N^{\eta} | z + 2\pi |^{\eta - 1} & -2\pi \leq z \leq -\pi \\ N^{\eta} | z |^{\eta - 1} & -\pi \leq z \leq \pi \\ N^{\eta} | z - 2\pi |^{\eta - 1} & \pi \leq z \leq 2\pi. \end{cases}$$

To study $\int_{U_t} f_{N,\eta}(y) dy$ we make the change of variable $x_1 = y_1$, $x_k = y_k - y_{k-1}$, k = 2, ..., 2p. Thus we define

$$f'_{N}(x) = h_{N}(x_{2} + \dots + x_{2p})h_{N}(x_{2})\dots h_{N}(x_{2p})$$
$$\cdot |x_{1}|^{-\alpha}|x_{1} + x_{2}|^{-\beta}|x_{1} + x_{2} + x_{3}|^{-\alpha}\dots|x_{1} + \dots + x_{2p}|^{-\beta}$$

and $f'_{N,\eta}(x)$ in the same way, with h_N replaced by $h_{N,\eta}$. Define the set U'_i so that $\int_{U'_i} f'_N(x) dx = \int_{U_i} f_N(y) dy$ and let $V' = \{x : |x_1| \le \frac{1}{2} |x_1 + x_2|\}.$

Note that if $y \in U_{\pi}$ and $|y_k - y_{k-1}| \ge \frac{3\pi}{2}$, then $|y_{k-1}| \ge \pi/2$ and $|y_k| \ge \pi/2$. Hence for $x \in U'_{\pi}$

 $|x_1 + \ldots + x_{k-1}| \ge \frac{\pi}{2}$ if $|x_k + 2\pi| \le \frac{\pi}{2}$, (6.1a)

$$|x_1 + \ldots + x_{k-1}| \ge \frac{\pi}{2}$$
 if $|x_k - 2\pi| \le \frac{\pi}{2}$, (6.1b)

$$|x_1 + \dots + x_k| \ge \frac{\pi}{2}$$
 if $|x_k + 2\pi| \le \frac{\pi}{2}$, (6.2a)

and

$$|x_1 + \ldots + x_k| \ge \frac{\pi}{2}$$
 if $|x_k - 2\pi| \le \frac{\pi}{2}$. (6.2b)

It is clear that if $y \in U_{\pi} \cap V$ then $|y_2 - y_1| \leq \frac{3}{2} |y_2| \leq 3\pi/2$. Thus

$$|x_2| \le \frac{3\pi}{2}; \quad x \in U'_{\pi} \cap V'.$$
 (6.3)

In order to apply the lemmas of Sect. 4 introduce the functionals

$$M_{1}(x) = x_{2} + \dots + x_{2p}$$

$$M_{2}(x) = x_{2}$$

$$\vdots$$

$$M_{2p}(x) = x_{2p}$$

$$M_{2p+1}(x) = x_{1}$$

$$M_{2p+2}(x) = x_{1} + x_{2}$$

$$\vdots$$

$$M_{4p}(x) = x_{1} + \dots + x_{2p}.$$

Choose $\{\theta_1, \dots, \theta_{2p}\} \subset \{-2\pi, 0, 2\pi\}$ and put $\theta_{2p+1} = \theta_{2p+2} = \dots = \theta_{4p} = 0$. Define $L_j(x) = M_j(x) + \theta_j$, $j = 1, \dots, 4p$. Let U''_t be the subset of U'_t on which $f'_{N,\eta}(x) = N^{2p\eta} P'_{\eta}(x)$, where

$$P_{\eta}^{\prime}(\mathbf{x}) = |L_{1}|^{\eta-1} |L_{2}|^{\eta-1} \dots |L_{2p}|^{\eta-1} \cdot |L_{2p+1}|^{-\alpha} |L_{2p+2}|^{-\beta} \dots |L_{4p}|^{-\beta}.$$

In the proofs of Propositions 6.1 and 6.2 we use the notation introduced in Sect. 3. For example $T = \{L_1, ..., L_{4p}\}$ and r is the rank of T.

Fixing a permutation $\sigma = (\sigma_1, ..., \sigma_{4p})$ of $\{1, ..., 4p\}$ we define

$$E_{\sigma}^{t} = \{x \in U_{t}^{\prime\prime} : |L_{\sigma_{1}}(x)| \leq \ldots \leq |L_{\sigma_{4}}(x)|\}$$

and, as in Sect. 4 construct a basis $\{L_{\tau_1}, \ldots, L_{\tau_r}\}$ for T satisfying

$$|L_{\tau_1}| \leq |L_{\tau_2}| \leq \dots \leq |L_{\tau_r}|, \quad x \in E_{\sigma}^t.$$

In proving Propositions 6.1 and 6.2 it suffices to show that the conclusions hold with U_t replaced by E_{σ}^t , V replaced by V' and $f_N(y)$ replaced by $f'_N(x)$ or $f'_{N,n}(x)$.

Proof of Proposition 6.1. Fix η satisfying $0 < \eta < 1$ and $\eta > (\alpha + \beta)/2$. Since $f'_{N,\eta}(x) = N^{2p\eta} P'_{\eta}(x)$, both parts of Proposition 6.1 will follow if we show

$$\int_{E_{\tau}^{\pi} \cap V'} P_{\eta}'(x) dx < \infty.$$
(6.4)

To show (6.4) we distinguish two cases.

Case I. $\{L_{\tau_1}, \dots, L_{\tau_{2,p-1}}\} \notin \{L_1, \dots, L_{2,p}\}.$

In this case we will show that in fact $\int_{E_{\sigma}} P'_{\eta}(x) dx < \infty$.

Subcase I.1. $\theta_1 = \ldots = \theta_{2p} = 0.$

In this case $P'_{\eta}(x) = P_{\eta}(x)$, where $P_{\eta}(x)$ is as defined in Sect. 5. Thus Proposition 5.2 and Lemma 4.4 imply $\int_{E_{\mathfrak{F}}} P'_{\eta}(x) dx < \infty$.

Subcase I.2. $\theta_j \neq 0$ for some j.

Here some of the dimensions may be non-positive, but relations (6.1)-(6.3) will allow us to deal with that situation. If $d(P'_{\eta}, \{L_{\tau_1}, \dots, L_{\tau_k}\}) > 0, k = 1, \dots, 2p$, then Lemma 4.4 implies that $\int_{E_{\pi}} P'_{\eta}(x) dx < \infty$. Otherwise put $W = \{L_{\tau_1}, \dots, L_{\tau_k}\}$,

where k is the smallest index satisfying $d(P'_{\eta}, \{L_{\tau_1}, \ldots, L_{\tau_k}\}) \leq 0$. As in Sect. 5, s(W) consists of a collection of blocks of columns, plus possibly L_1 . Let B be a block whose contribution to $d(P'_{\eta}, W)$ is non-positive. Then it is clear that $\theta_j \neq 0$ for some j satisfying $l_B \leq j \leq r_B$ and that $x_1 + \ldots + x_m \in s(B)$ for some m satisfying $l_B \leq m \leq r_B$. (For $d(P'_{\eta}, B)$ would be positive if there were no such j (Lemma 5.5) or if there were no such m (direct computation).)

Let *m* be the smallest index with this property. We distinguish two cases, in both of which we will show that $P'_{\eta}(x)$ is at most a constant times $|L_{\tau_1}|^{d_1} \dots |L_{\tau_{k-1}}|^{d_{k-1}}$, with Δ_i defined as in Lemma 4.2.

Subcase I.2.i. Some j satisfies $m < j \leq r_B$, $L_j \in s(B)$ and $\theta_j \neq 0$.

Let j be the smallest index with this property. Then it is clear that $x_1 + ... + x_{j-1} \in s(B)$. By Lemma 4.2, $P'_{\eta}(x)$ is at most a constant times $|L_{\tau_1}|^{d_1}...|L_{\tau_r}|^{d_r}$. Since L_j and $x_1 + ... + x_{j-1}$ are in $s\{L_{\tau_1}, ..., L_{\tau_k}\}$ and $|L_{\tau_1}| \leq ... \leq |L_{\tau_r}|$ on E^{π}_{σ} , Lemma 4.1 implies that there is a constant C such that if $x \in E^{\pi}_{\sigma}$

$$C|x_1 + \ldots + x_{j-1}| \leq |L_{\tau_k}|$$
$$C|L_j| \leq |L_{\tau_k}|.$$

and

Thus if $x \in E_{\sigma}^{\pi}$ and $|L_j| \ge \pi/2$, L_{τ_k} is bounded away from 0. If $|L_j| \le \pi/2$, relation (6.1) implies that L_{τ_k} is bounded away from 0, since $L_j = x_2 \pm 2\pi$. So L_{τ_k} is bounded away from 0 on E_{σ}^{π} , which implies that $L_{\tau_{k+1}}, \ldots, L_{\tau_r}$ are bounded away from 0 also. It follows that $P'_{\eta}(x)$ is at most a constant times $|L_{\tau_1}|^{d_1} \ldots |L_{\tau_{k-1}}|^{d_{k-1}}$ on E_{σ}^{π} .

Subcase I.2.ii. No j satisfies $m < j \leq r_{\rm B}$, $L_j \in s(B)$ and $\theta_j \neq 0$.

Note that $x_m \notin s(B)$, for otherwise we would have $x_1 + \ldots + x_{m-1} \in s(B)$, contracting our choice of *m*. Since $L_m = x_m + \theta_m$ it follows that either $L_m \notin s(B)$ or $\theta_m \neq 0$. If $L_m \notin s(B)$, then

$$s(B) = \{L_{l_B}, \dots, L_{m-1}, x_{m+1}, \dots, x_{r_B}, x_1 + \dots + x_m, x_1 + \dots + x_{m+1}, \dots, x_1 + \dots + x_{r_B}\}.$$

We see that $d(P'_{\eta}, B)$ would not change if $L_{l_B} = x_{l_B}, \ldots, L_{m-1} = x_{m-1}$, but with this change it becomes the dimension of the block described in Lemma 5.4, which is positive by Lemma 5.5, contradicting our assumption. Hence $L_m \in s(B)$ and $\theta_m \neq 0$. But then relation (6.2) allows us to argue as in Subcase I.2.i that $|L_{\tau_1}|^{d_1} \ldots |L_{\tau_{k-1}}|^{d_{k-1}}$ provides a majorant for $P'_{\eta}(x)$.

To complete the proof in Subcase I.2 it suffices to show that $|L_{\tau_1}|^{d_1} \dots |L_{\tau_{k-1}}|^{d_{k-1}}$ is integrable on E_{σ}^{π} . But this follows from Lemma 4.4, since $d(P'_{\eta}, \{L_{\tau_1}, \dots, L_{\tau_j}\}) > 0, \ j=1, \dots, k-1$. This establishes that $\int_{E_{\overline{\sigma}}} P'_{\eta}(x) dx < \infty$ in Subcase I.2.

Case II. $\{L_{t_1}, ..., L_{t_{2n-1}}\} \subset \{L_1, ..., L_{2n}\}.$

Subcase II.1. $\theta_1 = \theta_2 + \ldots + \theta_{2n}$

In this case we have $s\{L_{\tau_1}, ..., L_{\tau_k}\} = \{L_{\tau_1}, ..., L_{\tau_k}\}, k = 1, ..., 2p-2$, and $s\{L_{\tau_1}, \ldots, L_{\tau_{2p-1}}\} = \{L_1, \ldots, L_{2p}\}.$

Suppose first that $\theta_2 \neq 0$, so that $L_2 = x_2 \pm 2\pi$. Then (6.3) implies that $|L_2| \ge \pi/2$ on $E_{\sigma}^{\pi} \cap V'$. According to Lemma 4.2, $P_{\eta}'(x)$ is at most a constant times $|L_{\tau_1}|^{d_1} \dots |L_{\tau_2 n}|^{d_{2p}}$. Let j < 2p be the integer satisfying $L_2 \in T_j$. Then Lemma 4.1 implies that $|L_{\tau_{2p}}| \ge \dots \ge |L_j| \ge \frac{1}{C_{\sigma}} |L_2| \ge \frac{\pi}{2C_{\sigma}}$ for $x \in E_{\sigma}^{\pi}$. Hence $P_{\eta}'(x)$ is at most a constant times $|L_{\tau_1}|^{d_1} \dots |L_{\tau_{j-1}}|^{d_{j-1}}$ for $x \in E_{\sigma}^{\pi} \cap V'$. Since $j-1 \leq 2p-2$, $d(P'_{\eta}, \{L_{\tau_1}, \dots, L_{\tau_k}\}) > 0, \ k=1, \dots, j-1$. Therefore Lemma 4.4 implies that the integral of this product over $E_{\sigma}^{\pi} \cap V'$ is finite, establishing (6.4) when $\theta_2 \neq 0$.

Now suppose $\theta_2 = 0$, so that $L_2 = x_2$. Define

$$L_{q} = \{L_{1}, \dots, L_{2p}\} \setminus \{L_{\tau_{1}}, \dots, L_{\tau_{2p-1}}\}.$$

Then

$$T_k = \{L_{\tau_k}\}, \quad k = 1, \dots, 2p-2$$

and

$$T_{2p-1} = \{L_1, \ldots, L_{2p}\} \setminus \{L_{\tau_1}, \ldots, L_{\tau_{2p-2}}\} = \{L_{\tau_{2p-1}}, L_q\}$$

The next step is to use this to establish

$$|L_{2p+1}| \leq |L_q|, \quad x \in E_{\sigma}^t \cap V'.$$
(6.5)

Since $L_q \in T_{2p-1}$, Lemma 4.1b implies that $|L_{\tau_{2p-1}}| \leq |L_q|$ for $x \in E_{\sigma}^{\pi}$. Hence $|L_{\tau_1}| \leq |L_{\tau_2}| \leq \ldots \leq |L_{\tau_{2p-1}}| \leq |L_q| \text{ for } x \in E_{\sigma}^{\pi}. \text{ Therefore on } E_{\sigma}^{\pi} \text{ we have } L_q =$ $\max\{|L_1|, |L_2|, \dots, |\tilde{L}_{2p}|\}. \text{ In particular } |L_2| \leq |L_q| \text{ on } E_{\sigma}^{\pi}. \text{ For } x \in V' \text{ we have}$ $|L_{2p+1}| = |x_1| \le |x_2| = |L_2|$. These last two inequalities imply (6.5). Since

$$P'_{\eta}(x) = |L_{\tau_1}|^{\eta-1} \dots |L_{\tau_{2p-1}}|^{\eta-1} |L_q|^{\eta-1} |L_{2p+1}|^{-\alpha} |L_{2p+2}|^{-\beta} \dots |L_{4p}|^{-\beta},$$

relation (6.5) implies that $P'_{\eta}(x) \leq P''_{\eta}(x), x \in E^{\pi}_{\sigma} \cap V'$, where

$$P_{\eta}^{\prime\prime}(x) = |L_{\tau_1}|^{\eta-1} \dots |L_{\tau_{2p-1}}|^{\eta-1} |L_{2p+1}|^{-\alpha+\eta-1} |L_{2p+2}|^{-\beta} \dots |L_{4p}|^{-\beta}.$$

Hence (6.4) will follow if we show

$$\int_{E_{\eta}} P_{\eta}'(x) dx < \infty.$$
(6.6)

To show (6.6) we use Lemma 4.4. For $k \leq 2p-2$ we have $s\{L_{\tau_1}, \ldots, L_{\tau_k}\}$ $= \{L_{\tau_1}, \dots, L_{\tau_k}\},$ from which it follows that

$$d(P_{\eta}^{\prime\prime}, \{L_{\tau_1}, \dots, L_{\tau_k}\}) = k + k(\eta - 1) = k\eta > 0, \quad k \leq 2p - 2.$$

Since $s\{L_{\tau_1}, \dots, L_{\tau_{2n-1}}\} = \{L_1, \dots, L_{2n}\}$ we have

$$d(P_{\eta}^{\prime\prime}, \{L_{\tau_1}, \dots, L_{\tau_{2p-1}}\}) = (2p-1) + (2p-1)(\eta-1) = (2p-1)\eta > 0.$$

Finally, if $\theta_1 = \ldots = \theta_{2p} = 0$, then $d(P_{\eta}^{\prime\prime}, \{L_{\tau_1}, \dots, L_{\tau_{2p}}\}) = 2p + 2p(\eta - 1) - p\alpha - p\beta = 2p\left[\eta - \frac{(\alpha + \beta)}{2}\right] > 0.$

On the other hand, if some $\theta_i \neq 0$ then $\{x_1 + \dots + x_m, L_1, \dots, L_{2p}\}$ $\subset s\{L_{\tau_1}, ..., L_{\tau_{2p}}\}$ for some *m* and we can argue as in Subcase I.2 that P''_{η} is at most a constant times $|L_{\tau_1}|^{\eta-1}...|L_{\tau_{2p-1}}|^{\eta-1}$. Either way, (6.6) follows from Lemma 4.4, completing the proof in Subcase II.1.

Subcase II.2. $\theta_1 \neq \theta_2 + \ldots + \theta_{2p}$.

In this case we will show that $\int_{E_{\pi}} P_{\eta}'(x) dx < \infty$. We have

$$s\{L_{\tau_1},\ldots,L_{\tau_k}\}=\{L_{\tau_1},\ldots,L_{\tau_k}\}, \quad k=1,\ldots,2p-1.$$

Put $L_q = \{L_1, ..., L_{2p}\} \setminus \{L_{\tau_1}, ..., L_{\tau_{2p-1}}\}$. Suppose first that $L_{\tau_{2p}} = L_q$. Then $s\{L_{\tau_1}, ..., L_{\tau_{2p}}\} = \{L_1, ..., L_{2p}\}$, so that $d\{L_{\tau_1}, ..., L_{\tau_k}\} = k(\eta - 1) + k = k\eta > 0, \ k = 1, ..., 2p$. Hence Lemma 4.4 implies that $\int P_n'(x)\,dx < \infty.$ ĔŦ

Now suppose that $L_{\tau_{2p}} \neq L_q$ so $L_{\tau_{2p}} = x_1 + \ldots + x_m$ for some $1 \leq m \leq 2p$. Since $\theta_j \neq 0$ for some *j*, we can argue as in Subcase I.2 that P'_{η} is at most a constant times $|L_{\tau_1}|^{\eta-1} \dots |L_{\tau_{2p-1}}|^{\eta-1}$. Since $d(P'_{\eta}, \{L_{\tau_1}, \dots, L_{\tau_k}\}) > 0, k = 1, \dots, 2p-1$, this product is integrable over E_{σ}^{π} , completing the proof of Proposition 6.1.

Proof of Proposition 6.2. Let σ be a permutation of $\{1, \dots, 4p\}$.

Case I. $\{L_{\tau_1}, ..., L_{\tau_{2n-1}}\} \notin \{L_1, ..., L_{2n}\}.$

As in Case I of the proof of Proposition 6.1, we show that $\int P'_{\eta}(x) dx < \infty$ if $\eta > (\alpha + \beta)/2$. Since $f'_{N,n}(x) = N^{2p\eta} P'_n(x)$, both parts of Proposition 6.2 follow by choosing η appropriately.

Case II. $\{L_{\tau_1}, ..., L_{\tau_{2p-1}}\} \subset \{L_1, ..., L_{2p}\}.$ Subcase II.1. $\theta_1 = \theta_2 + \ldots + \theta_{2n}$.

Proof of Part a in Subcase II.1. We saw in the proof of Proposition 6.1 that

$$|L_{\mathfrak{r}_1}| \leq |L_{\mathfrak{r}_2}| \leq \dots \leq |L_{\mathfrak{r}_{2p-1}}| \leq |L_q|, \quad x \in E_{\sigma}^t, \tag{6.7}$$

where

$$L_q = \{L_1, \ldots, L_{2p}\} \setminus \{L_{\tau_1}, \ldots, L_{\tau_{2p-1}}\}.$$

Since $h_N(z) \leq N$, we have

$$f'_{N}(x) \leq N^{2p} |L_{2p+1}|^{-\alpha} |L_{2p+2}|^{-\beta} \dots |L_{4p}|^{-\beta}, \quad x \in \mathbb{R}^{2p}.$$

If $\theta_1 = \ldots = \theta_{2p} = 0$ then $T_{2p} = \{L_{2p+1}, \ldots, L_{4p}\}$ and Lemma 4.1 implies that $|L_{2p+1}|^{-\alpha}|L_{2p+2}|^{-\beta}\dots|L_{4p}|^{-\beta}$ is at most a constant times $|L_{\tau_{2p}}|^{-p(\alpha+\beta)}$ for $x \in E_{\sigma}^{\pi}$. On the other hand if some $\theta_j \neq 0$ the fact that $L_{\tau_{2p}} = x_1 + \ldots + x_m$ for some m allows us to argue as in Subcase I.2.i that $L_{\tau_{2p}}$ is bounded away from 0 on E_{σ}^{π} , which implies that $|L_{2p+1}|^{-\alpha} \dots |L_{4p}|^{-\beta}$ is bounded on E_{σ}^{π} . Thus this product is at most a constant times $M(L_{\tau_{2n}})$, where

$$M(z) = \max(|z|^{-p(\alpha+\beta)}, 1).$$

Hence there is a constant C so that

$$f'_{N}(x) \leq C N^{2p} M(L_{\tau_{2p}}), \quad x \in E^{\pi}_{\sigma}.$$
 (6.8)

Define the sets

$$G_{N,0} = E_{\sigma}^t \cap \left\{ \frac{1}{N} \leq |L_{\tau_1}| \right\},$$

$$G_{N,j} = E_{\sigma}^{t} \cap \left\{ |L_{\tau_{j}}| \leq \frac{1}{N} \leq |L_{\tau_{j+1}}| \right\}, \quad j = 1, \dots, 2p-2$$

and

$$G_{N,2p-1} = E_{\sigma}^t \cap \left\{ |L_{\tau_{2p-1}}| \leq \frac{1}{N} \right\}.$$

Because of (6.7) it is clear that

$$E_{\sigma}^{t} = G_{N, 0} \cup G_{N, 1} \cup \ldots \cup G_{N, 2p-1}$$

Thus it suffices to show that the conclusion of Part a holds with U_t replaced by $G_{N,j}, j=0, \ldots, 2p-1$. Define also the sets

$$K_{N,j} = \left\{ |L_{\tau_k}| \leq \frac{1}{N}, k = 1, \dots, j \right\}$$

$$\cap \left\{ \frac{1}{N} \leq |L_{\tau_k}|, L_{\tau_k} \in A_t, k = j+1, \dots, 2p-1 \right\} \cap \{L_{\tau_{2p}} \in A_t\},$$

where $A_t = \bigcup_{k=1}^{4p} \{L_k(x): x \in E_{\sigma}^t\}$. Note that the measure of A_t tends to 0 as $t \to 0$. In view of (6.7) we have $G_{N,j} \subset K_{N,j}$. To prove Part a we distinguish two subcases according to whether j = 2p - 1 or not.

Subcase II.1.i. j=2p-1. From (6.8) we conclude that $\int_{G_{N,2p-1}} f'_N(x) dx$ is at most a constant times

$$N^{2p} \int_{G_{N,2p-1}} M(L_{\tau_{2p}}) \leq N^{2p} \int_{K_{N,2p-1}} M(L_{\tau_{2p}}),$$

where on $K_{N,2p-1}$, we have $|L_{\tau_k}| \leq 1/N$ for $k=1,\ldots,2p-1$ and $L_{\tau_{2p}} \in A_i$. We see, on making the appropriate change of variable, that the right hand side is majorized by

$$N^{2p}\left[\int_{-1/N}^{1/N} dw\right]^{2p-1} \int_{A_t} M(z) dz.$$

Therefore

$$\limsup_N \frac{1}{N} \int_{G_{N,2p-1}} f'_N(x) dx$$

is at most a constant times $\int_{A_t} M(z) dz$, which implies the conclusion of Part a.

Subcase II.1.ii. j < 2p - 1. For $x \in G_{N,j}$ we have

$$h_N(L_{\tau_k}) = N, \quad k = 1, ..., j,$$

 $h_N(L_{\tau_k}) = |L_{\tau_k}|^{-1}, \quad k = j+1, ..., 2p-1,$

and, by (6.7)

$$h_N(L_q) = |L_q|^{-1} \leq |L_{\tau_{2p-1}}|^{-1}$$

These facts in combination with (6.8) yield

$$f'_{N}(x) \leq CN^{j} |L_{\tau_{j+1}}|^{-1} \dots |L_{\tau_{2p-2}}|^{-1} |L_{\tau_{2p-1}}|^{-2} M(L_{\tau_{2p}}), \quad x \in G_{N,j}.$$

According to (6.7), $|L_{\tau_k}| \leq |L_{\tau_{2p-1}}|$, $k=j+1,\ldots,2p-1$, and thus $f'_N(x)$ is at most

$$CN^{j}\left\{\prod_{k=j+1}^{2p-1}|L_{\tau_{k}}|^{-1-\frac{1}{2p-1-j}}\right\}M(L_{\tau_{2p}})$$

for $x \in G_{N,j}$. Integrating this expression over $K_{N,j}$ we have at most a constant times

$$N^{j} \left(\int_{-1/N}^{1/N} dv\right)^{j} \left(\int_{\overline{N} \leq w, w \in A_{t}} w^{-\left\{1 + \frac{1}{2p - 1 - j}\right\}} dw\right)^{2p - 1 - j} \int_{A_{t}} M(z) dz$$

The first integral in brackets is $2N^{-1}$. The second is $O(N^{1/(2p-1-j)})$. So the whole expression is $O(N) \int_{A_t} M(z) dz$. This concludes the proof of Part a in Subcase II.1.

Proof of Part b in Subcase II.1. Fix $\varepsilon > 0$. Under the conditions of Part b we can choose η satisfying $0 < \eta < 1$, $\eta > (\alpha + \beta)/2$ and $1 < 2p\eta < p(\alpha + \beta) + \varepsilon$. Thus it suffices to show that $\int P'_{\eta}(x) dx < \infty$ under these conditions.

First suppose that $\theta_1 = \theta_2 = ... = \theta_{2p} = 0$. Then Propositions 5.1 and 5.2 imply that $d(P'_{\eta}, W) > \min(2p\eta - 1, 0)$ for every strongly independent $W \subset T$. Since $2p\eta > 1$, Theorem 3.1 implies the desired conclusion in this case.

On the other hand if some $\theta_j \neq 0$, then some dimensions may be negative. However, since $2p\eta > 1$, $d(P'_{\eta}, W) > 0$ whenever $W \subset \{L_1, \ldots, L_{2p}\}$. Hence if k is the smallest index satisfying $d(P'_{\eta}, \{L_{\tau_1}, \ldots, L_{\tau_k}\}) \leq 0$, then we must have $x_1 + \ldots + x_m \in s\{L_{\tau_1}, \ldots, L_{\tau_k}\}$ for some m, and thus we can argue as Subcase I.2 of the proof of Proposition 6.1 that P'_{η} is at most a constant times $|L_{\tau_1}|^{d_1} \ldots |L_{\tau_{k-1}}|^{d_{k-1}}$, so that Lemma 4.4 can be used to complete the proof of Part b in Subcase II.1.

Subcase II.2. $\theta_1 \neq \theta_2 + \ldots + \theta_{2p}$.

As in Subcase II.2 of the proof of Proposition 6.1, we have

$$\int_{E_{\sigma}^{\infty}} P_{\eta}'(x) dx < \infty \quad \text{if } \eta > (\alpha + \beta)/2.$$

Since $f'_{N,\eta}(x) = N^{2p\eta} P'_{\eta}(x)$, both parts of Proposition 6.2 follow by choosing η appropriately. \Box

7. Proof of Theorem 1

The proof requires a lemma in addition to Propositions 6.1 and 6.2. We use the notation introduced in Sect. 2 prior to the statement of Theorem 1. Fix $p \ge 1$ and note that

$$\operatorname{Tr}(R_{N}A_{N})^{p} = \sum_{j_{1}=0}^{N-1} \dots \sum_{j_{2p}=0}^{N-1} r_{j_{1}-j_{2}}a_{j_{2}-j_{3}}r_{j_{3}-j_{4}}\dots a_{j_{2p}-j_{1}}$$

$$= \sum_{j_{1}=0}^{N-1} \dots \sum_{j_{2p}=0}^{N-1} \left(\int_{-\pi}^{\pi} \dots \int_{-\pi}^{\pi} e^{i(j_{1}-j_{2})y_{1}} e^{i(j_{2}-j_{3})y_{2}}\dots e^{i(j_{2p}-j_{1})y_{2p}} \right)$$

$$\cdot f(y_{1})g(y_{2})f(y_{3})\dots g(y_{2p})dy_{1}\dots dy_{2p}$$

$$= \int_{U_{\pi}} P_{N}(y)Q(y)dy, \qquad (7.1)$$

where

$$P_{N}(y) = \sum_{j_{1}=0}^{N-1} \dots \sum_{j_{2p}=0}^{N-1} e^{i(j_{1}-j_{2})y_{1}} e^{i(j_{2}-j_{3})y_{2}} \dots e^{i(j_{2p}-j_{1})y_{2p}}$$
$$Q(y) = f(y_{1})g(y_{2})f(y_{3})\dots g(y_{2p}),$$
$$U = [-t,t]^{2p}$$

and

$$U_t = [-t, t]^{2p}$$
.

To state the lemma, introduce the diagonal

$$D = \{ y \in U_{\pi} : y_1 = y_2 = \dots = y_{2p} \}.$$

Let μ be the measure on U_{π} which is concentrated on D and satisfies $\mu\{y: a \le y_1 = y_2 = \dots = y_{2p} \le b\} = b - a$ for all $-\pi \le a \le b \le \pi$. Thus μ is Lebesgue measure on D, normalized so that $\mu(D) = 2\pi$.

Lemma 7.1. Define the measure μ_N on U_{π} by

$$\mu_N(E) = \frac{1}{(2\pi)^{2p-1} N} \int_E P_N(y) \, dy, \qquad E \subset U_{\pi}$$

Then μ_N converges weakly to μ as $N \rightarrow \infty$.

Proof. Since U_{π} is compact, it suffices to show that the Fourier coefficients of μ_N converge to those of μ . Fixing integers n_1, n_2, \dots, n_{2p} , the corresponding Fourier coefficient of μ is

$$\int_{U_{\pi}} e^{i(n_1y_1 + \dots + n_{2p}y_{2p})} d\mu(y) = \int_{-\pi}^{\pi} e^{i(n_1 + \dots + n_{2p})x} dx$$
$$= \begin{cases} 0 & \text{if } \sum_{j=1}^{2p} n_j \neq 0\\ 2\pi & \text{if } \sum_{j=1}^{2p} n_j = 0 \end{cases}$$

The corresponding Fourier coefficient of μ_N is

$$C_{N} = C_{N}(n_{1}, n_{2}, ..., n_{2p})$$

$$= \int_{U_{\pi}} e^{i[n_{1}y_{1} + ... + n_{2p}y_{2p}]} d\mu_{N}(y)$$

$$= \frac{1}{(2\pi)^{2p-1}N} \sum_{j_{1}=0}^{N-1} ... \sum_{j_{2p}=0}^{N-1} \left\{ \int_{-\pi}^{\pi} e^{i[n_{1}+j_{1}-j_{2}]y_{1}} dy_{1} \right\}$$

$$\cdot \int_{-\pi}^{\pi} e^{i[n_{2}+j_{2}-j_{3}]y_{2}} dy_{2} ... \int_{-\pi}^{\pi} e^{i[n_{2p}+j_{2p}-j_{1}]y_{2p}} dy_{2p} \right\}.$$
(7.2)

Fix j_1, \ldots, j_{2p} . In order for the expression in braces to be nonzero we must have

$$n_{1} = -(j_{1} - j_{2})$$

$$n_{2} = -(j_{2} - j_{3})$$

$$\vdots$$

$$n_{2p-1} = -(j_{2p-1} - j_{2p})$$

$$n_{2p} = -(j_{2p} - j_{1}).$$
(7.3)

But then $n_1 + \ldots + n_{2p} = 0$. Thus if $n_1 + \ldots + n_{2p} \neq 0$ each of the summands in (7.2) is equal to 0. Therefore $C_N = 0$ if $n_1 + \ldots + n_{2p} \neq 0$.

Suppose $n_1 + ... + n_{2p} = 0$. Then each summand in (7.2) equals 0 or $(2\pi)^{2p}$. When the summand equals $(2\pi)^{2p}$, the indices $j_1, ..., j_{2p}$ satisfy (7.3), which implies

$$j_{2} = j_{1} + (n_{1})$$

$$j_{3} = j_{1} + (n_{1} + n_{2})$$

$$\vdots$$

$$j_{2p} = j_{1} + (n_{1} + \dots + n_{2p-1}).$$
(7.4)

Define

$$M = \max\{n_1 + \dots + n_k: k = 1, \dots, 2p - 1\}, \qquad M^+ = \max(M, 0),$$

$$m = \min\{n_1 + \dots + n_k: k = 1, \dots, 2p - 1\}, \text{ and } m^+ = \max(-m, 0)$$

Fix j_1 satisfying $0 \leq j_1 \leq N-1$ and determine j_2, \ldots, j_{2p} according to (7.4). In order for the inequalities $0 \leq j_k \leq N-1$, $k=2, \ldots, 2p$ to be satisfied we must have $j_1 \leq N-1-M$ and $j_1 \geq m$. Thus the sum in (7.2) is equal to

$$\sum_{j_1=m^+}^{N-1-M^+} (2\pi)^{2p} = (N-M^+-m^+)(2\pi)^{2p}.$$

Therefore

$$C_{N} = \frac{2\pi(N - M^{+} - m^{+})}{N},$$

which tends to 2π as $N \rightarrow \infty$. This completes the proof of Lemma 7.1. \Box *Proof of Theorem 1.* We must evaluate the asymptotic behavior of

$$\int_{U_{\pi}} P_N(y) Q(y) dy$$

Introduce the sets

$$W_{k} = \left\{ y \in \mathbb{R}^{2p} \colon |y_{k}| \leq \frac{|y_{k+1}|}{2} \right\}, \quad k = 1, \dots, 2p - 1,$$
$$W_{2p} = \left\{ y \in \mathbb{R}^{2p} \colon |y_{2p}| \leq \frac{|y_{1}|}{2} \right\},$$

and

$$W = W_1 \cup W_2 \cup \ldots \cup W_{2p}.$$

We shall divide the domain of integration U_{π} into three parts as follows. Let

$$E_t = U_{\pi} \setminus \{W \cup U_t\},$$
$$F_t = U_t \setminus W,$$
$$G = U_{\pi} \cap W.$$

and

For each $0 < t \le \pi$, the sets E_t , F_t and G are disjoint and satisfy $U_{\pi} = E_t \cup F_t \cup G$.

According to (7.1), Part a of the theorem will be proven if we show that $p(\alpha + \beta) < 1$ implies

$$\lim_{N \to \infty} \frac{\int_{E_t} P_N Q}{N} = (2\pi)^{2p-1} \int_{t \le |z| \le \pi} [f(z)g(z)]^p dz, \quad 0 < t \le 1,$$
(7.5)

$$\lim_{t \to 0} \limsup_{N \to \infty} \frac{\int_{F_t} P_N Q}{N} = 0, \tag{7.6}$$

and

$$\lim_{N \to \infty} \frac{\int P_N Q}{N} = 0.$$
(7.7)

To prove (7.6) it is enough to show that when $p(\alpha + \beta) < 1$

$$\lim_{t \to 0} \limsup_{N \to \infty} \frac{\int_{U_t} |P_N Q|}{N} = 0.$$
(7.8)

Since $G = \bigcup_{k=1}^{2p} [W_k \cap U_{\pi}]$, relation (7.7) will hold, if $p(\alpha + \beta) < 1$ implies

$$\lim_{N \to \infty} \frac{\int |P_N Q|}{N} = 0, \quad k = 1, \dots, 2p.$$
(7.9)

From the definitions of P_N and Q it is clear that

$$\int_{U_{\pi} \cap W_1} |P_N Q| = \int_{U_{\pi} \cap W_3} |P_N Q| = \dots = \int_{U_{\pi} \cap W_{2p-1}} |P_N Q|$$

and

$$\int_{U_{\pi}\cap W_2} |P_N Q| = \int_{U_{\pi}\cap W_4} |P_N Q| = \ldots = \int_{U_{\pi}\cap W_{2p}} |P_N Q|.$$

Because of the symmetry between α and β in the hypotheses of the theorem, it is clear that if we prove that $p(\alpha + \beta) < 1$ implies

$$\lim_{N \to \infty} \frac{\int |P_N Q|}{N} = 0, \tag{7.10}$$

we will have also established

$$\lim_{N \to \infty} \frac{\int_{u_{\pi} \cap W_2} |P_N Q|}{N} = 0$$

Thus (7.9) will follow from (7.10).

In conclusion, Part a of the theorem will be proven if we show that $p(\alpha + \beta) < 1$ implies (7.5), (7.8) and (7.10).

To prove Part b, we must show that for $p(\alpha + \beta) \ge 1$

$$\int_{U_{\pi}} |P_N Q| = o(N^{p(\alpha+\beta)+\varepsilon}) \quad \text{for every } \varepsilon > 0.$$
(7.11)

We start with relation (7.5) and show that it holds in fact for all real values of α and β . We begin by showing that Q is bounded on E_t . Let $y \in E_t$. Since E_t is in the complement of U_t , there is some k such that $|y_k| > t$. Since E_t is also in the complement of W_j , j = 1, ..., 2p, we have $|y_j| > |y_{j+1}/2|$, j = 1, ..., 2p - 1 and $y_{2p} > y_1/2$. Thus we have

$$|y_{k+1}| > \frac{|y_{k+2}|}{2} > \frac{|y_{k+3}|}{4} > \dots > \frac{|y_{2p}|}{2^{2p-k}} > \frac{|y_1|}{2^{2p-k+1}} > \dots > \frac{|y_k|}{2^{2p-1}} > \frac{t}{2^{2p-1}}.$$

Therefore $|y_j| > t/2^{2p-1}$, j=1,...,2p, for $y \in E_t$. Hence Q is bounded on E_t . Since $E_t \cap D = \{y: y_1 = ... = y_{2p}, t \leq |y_1| \leq \pi\}$, relation (7.5) follows from Lemma 7.1.

Before proving (7.8), (7.10) and (7.11) we need to obtain majorants for P_N and Q. We have

$$P_{N}(y) = \left(\sum_{j_{1}=0}^{N-1} e^{i(y_{1}-y_{2p})j_{1}}\right) \left(\sum_{j_{2}=0}^{N-1} e^{i(y_{2}-y_{1})j_{2}}\right) \dots \left(\sum_{j_{2}p=0}^{N-1} e^{i(y_{2}p-y_{2p-1})j_{2p}}\right)$$
$$= h_{N}^{*}(y_{1}-y_{2p})h_{N}^{*}(y_{2}-y_{1})\dots h_{N}^{*}(y_{2p}-y_{2p-1}),$$

where

$$h_N^*(z) = \sum_{j=0}^{N-1} e^{izj}$$

Since $h_N^*(z) = (1 - e^{iNz})/(1 - e^{ix})$ for $z \neq 0$, $|1 - e^{iNz}| \leq 2$ and $|1 - e^{iz}| \geq |z|/2$ for $|z| \leq \pi$, we obtain $h_N^*(z) \leq 4|z|^{-1}$ for $|z| \leq \pi$. For $\pi \leq z \leq 2\pi$ this implies $h_N^*(z) = h_N^*(z - 2\pi) \leq 4|z - 2\pi|^{-1}$. For $-2\pi \leq z \leq -\pi$ we have $h_N^*(z) = h_N^*(z + 2\pi) \leq 4|z + 2\pi|^{-1}$. Since $|h_N^*(z)| \leq N$, these inequalities imply that $|h_N^*(z)| \leq 4h_N(z)$, $-2\pi \leq z \leq 2\pi$, where $h_N(z)$ is as defined at the beginning of Sect. 6.

Thus $|P_N(y)|$ is at most 4^{2p} times

$$h_N(y_1 - y_{2p})h_N(y_2 - y_1)...h_N(y_{2p} - y_{2p-1}).$$

For fixed $\delta > 0$ let $\alpha_0 = \alpha + \delta$ and $\beta_0 = \beta + \delta$. It is clear that under the hypotheses of the theorem, Q(y) is at most a constant times

$$Q'(y) = |y_1|^{-\alpha_0} |y_2|^{-\beta_0} |y_3|^{-\alpha_0} \dots |y_{2p}|^{-\beta_0}.$$

Thus, the proof of the theorem can be completed by showing that (7.8), (7.10) and (7.11) hold with the integrand P_NQ replaced by $f_N(y)$, defined as in Sect. 6. We can now apply Propositions 6.1 and 6.2. Assume first that $p(\alpha + \beta) \ge 1$. Choose $\delta > 0$. Then $p(\alpha_0 + \beta_0) > 1$. Therefore Part b of Proposition 6.2 implies that

$$\int_{U_{\pi}} f(y) dy = O(N^{p(\alpha_0 + \beta_0) + \varepsilon}) = O(N^{p(\alpha + \beta) + 2p\delta + \varepsilon}).$$

Since δ can be made arbitrarily small, (7.11) follows.

Now suppose $p(\alpha+\beta)<1$. To prove (7.8), choose $\delta>0$ such that $p(\alpha_0+\beta_0)<1$. Then (7.8) follows from Part a of Proposition 6.2. To prove (7.10) we consider two cases. If $\alpha+\beta<0$ choose $\delta>0$ such that $\alpha_0+\beta_0<0$. Then (7.10) is a consequence of Part a of Proposition 6.1. If $\alpha+\beta\geq0$, choose δ such that $p(\alpha_0+\beta_0)<1$ and use Part b of Proposition 6.1. This completes the proof of Theorem 1. \Box

8. Proof of Theorem 4

Lemma 8.1. If the conditions of Theorem 2 are satisfied, then

$$\lim_{N\to\infty}\frac{1}{\sqrt{N}}E|x'_NA_Nx_N-\tilde{x}'_NA_N\tilde{x}_N|=0.$$

Proof. The beginning of the proof follows Walker (1964). Note

$$\begin{aligned} x'_{N}A_{N}x_{N} - \tilde{x}'_{N}A_{N}\tilde{x}_{N} &= \sum_{j=1}^{N} \sum_{k=1}^{N} a_{j-k}(\bar{X}_{N}^{2} - X_{j}\bar{X}_{N} - X_{k}\bar{X}_{N}) \\ &= \bar{X}_{N}^{2} \int_{-\pi}^{\pi} g(x) \sum_{j=1}^{N} \sum_{k=1}^{N} e^{i(j-k)x} dx \\ &- 2\bar{X}_{N} \int_{-\pi}^{\pi} g(x) \sum_{j=1}^{N} \sum_{k=1}^{N} X_{j} e^{i(j-k)x} dx \\ &=: F_{N} - G_{N}. \end{aligned}$$

We consider $E|F_N|$ first. We have

$$E\bar{X}_{N}^{2} = \frac{1}{N^{2}} \sum_{j=1}^{N} \sum_{k=1}^{N} r_{j-k} = \frac{1}{N^{2}} \int_{-\pi}^{\pi} f(x) \sum_{j=1}^{N} \sum_{k=1}^{N} e^{i(j-k)x} dx$$
$$= \frac{1}{N^{2}} \int_{-\pi}^{\pi} f(x) h_{N}^{*}(x) h_{N}^{*}(-x) dx,$$

which is at most a constant times

$$\frac{1}{N^2} \int_{-\pi}^{\pi} |x|^{-\alpha-\delta} h_N(x) h_N(-x) dx \leq N^{2\eta-2} \int_{-\pi}^{\pi} |x|^{-\alpha-\delta+2\eta-2} dx,$$

where $\delta > 0$, $0 < \eta < 1$, $h_N^*(x) = \sum_{j=1}^{N-1} e^{ixj}$ and $h_N(x) \le h_{N,\eta}(x)$ as at the beginning of Sect. 6. Choose δ so that $\alpha + 2\delta < 1$ and put $\eta = (1 + \alpha + 2\delta)/2$. Then the last integral is finite, so $E\bar{X}_N^2 = O(N^{\alpha-1+2\delta})$.

A similar argument shows that

$$\int_{-\pi}^{\pi} g(x) \sum_{j=1}^{N} \sum_{k=1}^{N} e^{i(j-k)x} dx = O(N^{\beta+1+2\delta}).$$

Hence

$$E|F_N| = o(N^{\frac{1}{2}})$$

Next we consider

$$(E|G_N|)^2 \leq 4E\bar{X}_N^2 E\left\{\int_{-\pi}^{\pi} g(x) \sum_{j=1}^N \sum_{k=1}^N X_j e^{i(j-k)x} dx\right\}^2.$$

The second expectation above is equal to

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g(x) g(y) f(z) \sum_{k_1=0}^{N-1} \dots \sum_{k_4=0}^{N-1} \\ \cdot e^{i(k_1-k_2)x} e^{i(k_3-k_4)y} e^{i(k_1-k_3)z} dx dy dz,$$

which is at most a constant times

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |x|^{-\beta-\delta} |y|^{-\beta-\delta} |z|^{-\alpha-\delta} h_N(x+z) h_N(-x) h_N(y-z) h_N(-y) dx dy dz.$$

Put $\eta_1 = \beta + 2\delta$ and $\eta_2 = (1 + \alpha)/2$. We have $h_N(-x) \leq N^{\eta_1} h_{N,\eta_1}(-x)$,

$$h_N(-y) \le N^{\eta_1} h_{N,\eta_1}(-y), \quad h_N(x+z) \le N^{\eta_2} h_{N,\eta_2}(x+z)$$

and $h_N(y-z) \leq N^{\eta_2} h_{N,\eta_2}(y-z)$.

In order for |x+z| to exceed $3\pi/2$ we must have $|x| \ge \pi/2$ and $|z| \ge \pi/2$, in which case the integrand is majorized by $N^{2\eta_1+2\eta_2}$ times

$$|y|^{-\beta-\delta+\eta_1-1}|x+z+\theta_1|^{\eta_2-1}|y-z+\theta_2|^{\eta_2-1},$$

where $\{\theta_1, \theta_2\} \subset \{-2\pi, 0, 2\pi\}$. This product is clearly integrable for any choice of θ_1 and θ_2 .

In order for |y-z| to exceed $3\pi/2$ we must have $|y| \ge \pi/2$ and $|z| \ge \pi/2$ in which case the integrand is majorized by $N^{2\eta_1+2\eta_2}$ times

$$|x|^{-\beta-\delta+\eta_1-1}|x+z+\theta_3|^{\eta_2-1}|y-z+\theta_4|^{\eta_2-1}$$

for some θ_3 , $\theta_4 \subset \{-2\pi, 0, 2\pi\}$. This product is also integrable.

If neither of the above cases holds, then the integrand is majorized by $N^{2\eta_1+2\eta_2}$ times

$$|x|^{-\beta-\delta+\eta_1-1}|y|^{-\beta-\delta+\eta_1-1}|z|^{-\alpha-\delta}|x+z|^{\eta_2-1}|y-z|^{\eta_2-1}.$$

Using Theorem 3.1, it is easily checked that this product is integrable. Thus we conclude that

$$(E|G_N|)^2 \leq 4E\bar{X}_N^2 O(N^{2\eta_1+2\eta_2}) = O(N^{2\alpha+2\beta+4\delta}).$$

Since $\alpha + \beta < 1/2$, we see that $E|G_N| = o(N^{\frac{1}{2}})$, completing the proof of Lemma 8.1.

References

- 1. Fox, R., Taqqu, M.S.: Large-sample properties of parameter estimates for strongly dependent stationary time series. Ann. Stat. 14, 517-532 (1986)
- 2. Grenander, U., Szegö, G.: Toeplitz forms and their applications. University of California Press, Berkeley: University of California Press (1958)
- 3. Hoskings, J.R.M.: Fractional differencing. Biometrika 68, 165-176 (1981)
- 4. Lowenstein, J.H., Zimmermann, W.: The power counting theorem for Feynman integrals with massless propagators. Commun. Math. Phys. 44, 73-86 (1975)
- 5. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Review 10, 422-437 (1968)
- Rosenblatt, M.: Independence and dependence. Proc. 4th Berkeley Symp. Math. Stat. Probab., pp. 431-443. Berkeley: University of California Press: Berkeley (1961)
- 7. Sinai, Ya.G.: Self-similar probability distributions. Theory Probab. Appl. 21, 64-80 (1976)
- 8. Walker, A.N.: Asymptotic properties of least squares estimators of parameters of the spectrum of a stationary nondeterministic time series. J. Aust. Math. Soc. 4, 363-384 (1964)

Received November 18, 1983; in revised form March 17, 1986