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l. Introduction 

Let f(x) and g(x) be integrable real symmetric functions on [ - ~ , ~ ]  that are 
bounded on subintervals that exclude the origin. Let X~,X2, ... be a mean 
zero stationary Gaussian sequence with spectral density f(x), and let 
�9 . . , - a s ,  %,  al . . . .  be the Fourier coefficients of g(x). We prove that the dis- 
tribution of the normalized quadratic form 

t 
converges to a normal distribution if there exist constants •< 1 and f l< 1 with 
~ + f l < l / 2  such that for each 6>0 ,  f(x)=O(lxl -~-~) and g(x)=O(Ixl -~-~) as 
x--,0. 

Of particular interest are the cases where f(x)~x-~L~(x) and 
g(x)~x-~L2(x) as x ~ 0  with L 1 and L 2 slowly varying. The exponents c~ and fl 
are allowed to be positive, zero or negative. The sequence {Xj} is said to 
exhibit a long-range dependence when e > 0 .  When ~<0 ,  the covariances r k 

+co  

=EXjXj+ k satisfy ~ rk=O. 
k - - - -o :?  

Suppose f (x)~x-~Ll(x) and g(x)~x-PL2(x) as x--*0. Rosenblatt  (1961) 
showed that in the special case 1/2<c~<1 and ai_j=~i j ,  the quadratic form 

N N 

~, ~, ai_jXiXj, adequately normalized, converges to a non-normal distribu- 
i = i  j ~ l  

tion. The assumption a~_~--fi~ implies g(x) constant and thus fl=O. Our result 
shows that the normalized quadratic form Z N converges to a normal distribu- 
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tion when i/2<c~< 1 and fi< 1/2-~.<0.  If c~< 1/2, it is even possible to choose 
f l>0  as long as f i<min (1 /2 - e ,  1). 

These results are used in the study of the asymptotic behavior of maxi- 
mum likelihood type estimators related to the sequence {X j} (Fox and Taqqu 
1986). Examples of sequences {Xj} satisfying f ( x ) ~ x - ~ L l ( x )  that are of special 
interest include fractional Gaussian noise and fractional ARMA. 

A sequence {Xj} is fractional Gaussian noise (Mandelbrot and Van Ness 
1968) if its covariance satisfies 

r(k)= EXjXj+k=a---~ - _ {llkl 112H 2[kl2H+(Ik]+l) 2~} 

for 0 < H <  1. In that case (Sinai 1976) 

0 . 2  + o o  

f ( x ) - - + ~  (1 -cosx)  y, Ix+2k~zl -*-2~, 
5 (1--c~ k=-o~ 

so that e = 2 H - l e ( - 1 , 1 ) .  
A sequence {Xj} is fractional A R M A  (Hoskings 1981) if its spectral density 

is Iq~(e~X)l: 
f (x) = [e ' x -  11 -e 

where (p and 7 j are polynomials having no zeroes on the unit circle and d < 1. 
In that case c~=d. Heuristically, fractional ARMA is the sequence, which, when 
differenced d/2 times, yields an autoregressive-moving average (ARMA) se- 
quence with spectral density ](p(eiX)12/[ t[t(eiX)12. 

Our main results are in Sect. 2. Sections 3 through 7 are devoted to the 
proof of Theorem 1. That proof uses "power counting" arguments in the sense 
of mathematical physics. In Sect. 3 we introduce the power counting set-up 
and state an extension of a power counting theorem of Lowenstein and 
Zimmerman (1975). Preliminary lemmas are proven in Sect. 4 and, together 
with the results of Sect. 5, they are used to establish Propositions 6.1 and 6.2 of 
Sect. 6. These propositions describe the asymptotic behavior of certain multiple 
integrals. Section 7 contains the proof of Theorem 1. Theorem 4 is proven in 
Sect. 8. 

2. Main Results 

Let f (x )  and g(x) be integrable real symmetric functions on l--rt, n], not 
necessarily non-negative. Define the Fourier coefficients 

and 

r.= i ei"~f (x) dx 
- )z 

a,= i ei"~g(x) dx' 
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Let R N and A N be the N x N  matrices with entries (RN)j ,k=rj_k and (AN)j, k 
= a j_ k, 0 <j ,  k < N -  1. Let  Tr M denote  the trace of a matrix M. 

We say that  f satisfies the regularity condition if the discontinuities of  f 
have Lebesgue measure  0 and f is bounded  on the interval [~, ~J for all d > 0. 

Theorem 1. Suppose that f and g each satisfy the regularity condition. Suppose in 
addition that there exist c~ < 1 and fi < 1 such that for each (3 > 0 

l f (x) l=O(lxl  -~-~) as x ~ O  
and 

Ig(x)l = O(Ixl-~-'~) as x--,O. 
7hen 

a) I f  p(o{+fi)<l, 

Tr(RNAN)P i 
lira = (2~) 2v-~ [f(x)g(x)]Pdx. 

N~oo g -Tr 

b) I f  p (~+f i )>l ,  

Tr(RNAN)P = o(N p(~+~)+~) for every e > O. 

The theorem is proven in Sect. 7. The p roof  of  Part  a) amounts  to showing 
that  

lira ~ Q(y)d#u(y) = ~ Q(y)d#(y) 
N~ov [_~,~]2v [_~,~12v 

where 

Q(y) = f ( y l )  g(y2) f(y3) g(y4). . ,  b(Y2p- 1) g(Y2p), 
l N - 1  N - - 1  

d#u(Y)=(2~)2p-x i ~ ... ~ ei(J'-J2)Yle i(j2-j~)y~ 
j l = O  j2p  = 0  

. . . e i ( J 2 p  1 - J 2 p ) y 2 p  - 1 e i ( J 2 p - j D y 2 v d y  1 . .  "dY2p, 

and where # is Lebesgue measure concentra ted  on the diagonal  of  [ - ; z ,  G]zp.  

In t roduce  now a s ta t ionary Gaussian sequence Xj, j__> 1 with mean  0 and 
spectral density f ( x )  > O, so that  

EX;X;+~--r~= i e~V(x)dx 

Let x N denote  the r a n d o m  vector  (Xl, X2, ... , XN). Put #N= EXNANX~. 

Theorem 2. Suppose that f and g each satisfy the regularity condition. Suppose in 
addition that there exist a < 1 and fl < 1 such that a + fi < 1/2 and such that for 
each 6 > 0 

f(x)=O(Ixl -~-~) as x~O 

g(x)=O(Ix[ -~-~) as x-~o. 
Then 

x'NANXN -- ~N 
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tends in distribution to a normal random variable with mean 0 and variance 

167t3 i [f(x)g(x)] 2dx" 
--TO 

Proof. Since the sequence Xj is Gaussian, the pth cumulant of x'nANxn is equal 
to 2P-I(p-I)!Tr(RNAN) p. (See, for example, Grenander and Szego 1958, 
p. 218). Thus the pth cumulant of 

t 

xt~ANXN--#N 

is given by 

0 Tr(RNAN) v 
@(N) = 2 p- l (p_  1)! Np/2 

An application of Theorem 1 yields 

{~ lim cp(N) = 
16re 3 [f(x)g(x)]Zdx 

This implies the conclusion of Theorem 2. [] 

if p = l  

if p~2. 

if p # 2  

if p=2. 

The following is an immediate consequence of Theorem 2. 

Theorem 3. Suppose that f and g each satisfy the regularity condition. Suppose in 
addition that there exist ~ < 1 and fl < 1 such that e+  fl < 1/2, 

and 

f ( x ) ~ l x [ - ~ L l ( x )  as x--*O 

g(x)~lx l -~Lz(x)  as x---*O, 

where L 1 and L 2 are slowly varying at O. Then the conclusion of Theorem 2 
holds. 

The next theorem, which is used in Fox and Taqqu (1986), is proven in 
N 

Sect. 8. Define )~N=(1/N) ~, Xj and the random vector Yct~=(X 1 - X N  . . . .  , XN 
- -  X N ) "  j= 1 

Theorem 4. I f  the conditions of Theorem 2 are satisfied, then 

Y(N ANYcN -- E { Yc'N ANYCN} 

tends in distribution to a normal random vector with mean 0 and variance 

1677 i Ef(x)g(x)32dx. 
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3. Power Counting Theorems 

Power counting methods can be used to verify the convergence of multiple 
integrals whose integrands are products of powers of affine functionals. Let 
bl, . . . ,b m and 01,...,0 m be real constants and let MI(x),...,Mm(X) be m linear 
functionals on IR". Put Lj(x)=Mj(x)+Oj, j = l  .... ,m. Define the function P: 
IR"~IR w {oo} by 

P(x) =]Li (x)[ b~ IL2(x)[b2... I L,,(x)[ b~. 

Define T={L~ . . . . .  L,,} and let W c T .  Let span{W} denote the set of linear 
combinations of elements of W and s(W) denote those linear combinations 
which coincide with elements of T. Thus 

s(W) = T ~  span{W}. 

For each W c T we define the quantity 

d(P, W ) = I W [ +  ~ b3, 
{j: Lj~s(W)} 

where ]W] denotes the cardinality of W. We refer to d(P, W) as the dimension 
of P with respect to W. We say that W= {Li~ . . . . .  Li~} is strongly independent if 
Mi~, .... Mi~ are linearly independent. Let S be the set of those Lj in T that 
have exponents bj <0. Finally, for each t > 0, let 

Ut=[-t , t]"= {x~,,": [xi[ <=t , i = l , . . . , n } .  

The next theorem extends a basic result of Lowenstein and Zimmermann 
(1975). It is proved at the end of Sect. 4. 

Theorem 3.1. Suppose that d(P, W)> 0 for every strongly independent set W~S .  
Then S P(x)dx<oo for all t>0 .  

u, 

To illustrate the application of the theorem, let n = 3  and define P(x): 
IR3~IRw {oo} by 

P(x) = Ix 1 + x 2 -t" 21 b~ Ix1 + x2 + x3 - 1 [b2 Ix3 - 31 b3, 

where bi, b2, b 3 <0. Define L~(x) =x~ + x 2 +2, L2(x ) = x l  + x  2 + x 3 - 1 and L3(x ) 
= x  3 - 3 .  Then S =  T =  {L1,L2, L3}. The strongly independent subsets of S are 
{LI}, {Lz}, {L3}, {L1,L2}, {La,L3} and {L2,L3}. We have d(P,{Lj})=l+bj, j 
= 1, 2, 3. The other three dimensions are all equal to 2 + b ~ + bz + b3 because for 
example s({L1,L2} )=  {L1,L2,L3}. Therefore S P(x)dx will be finite provided 
that b l + b 2 + b 3 > - 2  and b l , b z , b 3 > - l ,  vt 

Remark. Suppose the condition of Theorem 3.1 is satisfied. Then in fact 
d(P, W ) > 0  for every W c  T. To see this, suppose first that W c  T contains only 
one element not in S, say L. Then W=Wow{L},  where WoeS and 
d(P, W0)>0. If d(P, W)<O then s(W) must contain some element of S which is 
not in W0, say L'. Then WI=Wow{L' } satisfies WI~S and d(P, W1) 
=d(P, W)<0,  since S(WO=S(W2) and ]WII= [W2J. This contradicts the assump- 
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tion. Hence any subset of T which differs from a subset of S by one element 
has positive dimension. The same method can be used inductively to show that 
all subsets of T have positive dimension. 

4. Preliminary Lemmas 

Retain the notation introduced in Sect. 3. Fix a permutation a=(a 1 .. . . .  %) of 
{1 . . . . .  m} and let 

' - {xE Ut: [L~,(x)l < IL~2(x)[ < .. < ILe,,(x)l}. 
{1 ..... m} and let 

G - -  

We use the greedy algorithm to construct a basis B~ for T. The greedy 
algorithm proceeds as follows. We put L,,IeB,~. We put L,,2eB,, if Le2 is not in 
the span of {L~,}. On the jth step we put L,,jsB, if L,j  is not in the span of 
{L~I, .... L,j_~}. It is well known that in this way we obtain a basis B e 
= {L~, . . . .  , L~.} for T, where r is the rank of T. We then have 

IL~,]<=IL~2[<=...<IL~rl, x6E  t. (4.1) 

The functions L~,,...,L~r are linearly independent but not necessarily strongly 
independent. 

We use B~ to construct the partition of T given by 

and 
Tk=s{L** .. . . .  L,~}/s{C~,, . . . ,L  . . . .  }, k = 2  . . . .  ,r. 

Lemma 4.1. For each permutation a there is a constant C, (independent of x and 
t) such that if Le T k then 

a) IL[~C,~IL~I, x e E  t, 

and 

b) }g~l<lgl, xe  G .  

Proof. a) If L ~ T  k then L = a ~ L ~ + . . . + a k L ~  for some constants al , . . . ,G .  
Therefore 

ILl<=lalllL~l+.,.+lakllL~[, xEIR". 

Relation (4.1) implies that for x~Et~ the right hand side is less than ( la t [+ . . .  
+ ]GL)IL~L. 

b) Suppose that L~T  k. We must have either L = L ~  or else L was rejected 
by the greedy algorithm. In proving b) we can thus assume that L was rejected 
by the greedy algorithm. Since L e T  k it follows that L~s{L,~,...,L~_~}. There- 
fore it must be that L was considered by the greedy algorithm after L~. But the 
greedy algorithm considers candidates in order of increasing absolute value on 
Et~. Thus we must have IL~[<ILL, xEE~. This completes the proof of Lem- 
ma 4.1. []  

The next lemma provides a majorant for P(x) involving only elements of 
B e . 
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Lemma 4.2. For each permutation a there is a constant C~ (independent of  x and 
t) such that 

P (x )<  Cl lLql  m. . . IL*S",  xeEt~, 
where 

A 1 =-d(P, {L~I})- 1, 
and 

A k = d(P, {L~, . . . . .  L~}) - d(P, {L,, ,  .... L,k ~ }) - 1, 

Proof  We have 

where 

F~(x) = 

P(x)= ~ ~(x), 
k = l  

k~-- - -2~ . . . ~ r .  

H ILjla'=( [ I  ILjlbJ)( 1~ ILjlbO �9 
{J: Ld~ Tk} {j: LjE Tk \ S} {j: Lj~ Tkc~S} 

Fix k < r  and consider the two products on the right hand side. In the first 
product all of the exponents are non-negative because the L]s do not belong 
to S. Therefore Lemma 4.1a implies that the first product is majorized on U, 
by 

~ I  bj bj G [Lt~[ 
U:LjeTk\S} 

In the second product all of the exponents are negative. Thus Lemma 4.1b 
implies that the second product is majorized on E~ by 

1-1 ILeal ~- 
{j: Lse Tt~nS} 

Combining these facts we conclude that there is a constant C z such that 

Fk(x)<C L Ip, xeU~, k<r ,  2 rk ~ 
where 

Pk = ~, bj. 
{j:LjeT~,} 

Lemma 4.2 will follow fi'om this inequality if we show that ~lk=pk, k 
--= 1,... ,r. We have 

Thus 

If k => 2 then 

d(P,{C~l})--l+ ~ h~.=l+ Y~ bj=l+p~. 
{d': Ljes(L~I) } {jz Lj~TI } 

A I = d ( P , { L ~ I } ) - I = p l .  

d(P, (L . . . . . . .  L~k}) = k + ~ bj 
{J: Lj~s(Lr t . . . . .  Lzk)}  

=l+((k-1)+ E b)+ 2 b~ 
{j:Ljss(Ltt . . . . .  L r k  _ 1 ) {j:Lj~Tk} 

= 1 +d(P{L,~,  . . . ,C  . . . .  })+P~- 



220 R. Fox and M.S. Taqqu  

Thus  
A k = d(P, {L~,, .... L ~ } ) -  d(P, (L~, . . . ,  L~ ~})-  1 = Pk. 

This completes  the p roo f  of  L e m m a  4.2. [ ]  

L e m m a  4.3. Let (Pl, ~o2, ..., q~, be given real numbers. 7hen for all t > 0  

j IXllO~lXz(~ lW"dxldxz . . .dx ,<~,  
Ix~l ~ Ix21 -<_...-< Ix, I ~t 

k 

if dk=k + ~ (pj>O for k = l  . . . .  ,n. 
j = l  

Proof. I t  clearly suffices to consider the case t = 1. We proceed  by induct ion on 
n. The  l e m m a  is obviously  t rue  for n =  1. N o w  suppose  tha t  the l e m m a  holds 
for n - 1  and that  we are given cpl, . . . ,  % satisfying the hypotheses  of  the 
lemma.  Choose  5 > 0  such that  d , - 6 > 0  and ( p , - 6 + -  1. (If c p , # -  1 we can 
take 6 = 0). Then  the above  integral  (with t = 1) is less than  

Ix~l ~ Ix21 <-... ~ Ix~l ~ 1 

= ~ I X I I r  ~~ 
Ixll <[xz] <... < i x . -  11 IX.-ll <_-Ix.I < 1 

After evaluat ing the integral  over  x, ,  we obta in  

2 
0 , - - 6 + 1  { J Ixl[~176 

I~11=< Ix2l=<... <__ix,- tl =< 1 

- -  f IXa lq~l""lXn- 21e"- 21 xn-1 ~~ +~~ l dxl...dxn} . 
Ixxl <=lxzl <-_...<_lx,-ll <= l 

[x~VL..Ix,_ iV" lix,  V"-~dx~. . .dx ,  

tx, lq'"-Odx, dxa. . .dx,_l  

The induct ion hypothesis  implies that  the first integral  in the braces  is finite. 
To  apply  the induct ion hypothesis  to the second integral, note that  

(n-1)+cpl  +.. .  +%_2 +(cp,_l + c p , - 6 +  l)=n+q)t  +.. .  +cp , -6=d, -cS>O.  

Thus  the second integral  is finite, which completes  the p roof  of Lem-  
m a  4.3. [ ]  

L e m m a  4.4. Let a be a permutation of {1 .... ,m} and let I be the largest index 
such that {L~I,.. . ,L~} is strongly independent. I f  

d(P,{L~ . . . . .  L~})>O,  k = l  . . . . .  I, 
then 

j P(x) dx < oo. 
Eb 

Proof According to L e m m a  4.2 it suffices to show 

5 IL~,?'..'lLd~rdx< oo, 
E~ 

where A 1 . . . . .  A r are as defined in L e m m a  4.2. 
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Case 1. I=r .  Let C 3 =max{[Lj(x)[ :  xeU~, 1 <j<m}.  The last integral is majo-  
rized by 

Co, ~ [y~lm...lY, la~dy~...dy,, 
lyll <lyzl <...<]y~l <C3 

where C 4 is a constant  obta ined by integrating over n - r  extraneous variables. 
No te  that  A ~ . . . .  , A~ satisfy 

k 
k+ ~ A,=d(P,{L~,, .... L ~ } ) > 0 ,  k = l , . . . , r .  

i=1  

Hence L e m m a  4.4 implies the conclusion in this case. 

Case 2. I<r .  In this case there are constants  a t, . . . ,a~ so that  

Then 
M,~ + ~ = a 1M~, + ... + a IMp. 

L~+I = M~, +, + 0~x +, 

= a 1M~I +. . .  + a tM~ + 0 . . . .  

= a t L~I +. . .  + arL~ + w, 

where w=O,~+ -a~O~l. . . -a~O,.  Since L,,+~ is not  a linear combina t ion  of  
L~, .... L,,,  if follows that  w 4= 0. Thus we can choose a constant  2 so that  

IL . . . .  1--< 2 whenever 1L~IN...<=]L~IIN2. 

Since ]L~x] < IL . . . .  l<  ... < IL~I for xeEt,,, there is a constant  C s depending on 2 
and w so that  

A1 IL~ll ...IL~S~<CsLL~II'Jl...IL~,I "~ if x~E t, IL~,l<;t 

and also a constant  C 6 depending on 2 so that  

A1 ILeal . . .{L~f  ~ m ~C6[L~ I ...ILz,_~I A~-I if x~et~, tL~I>;.  

Since {L~I . . . . .  L~} and {L~I . . . . .  L~_~} are strongly independent,  the p roof  can 
be completed as in Case 1. [ ]  

Proof of Theorem 3.1. Suppose that  the condit ions of  Theorem 3.1 hold. Let 
be a permuta t ion  of  {1 . . . . .  m} and define I as in L e m m a  4.4. The remark 
following Theorem 3.1 implies that  d(P, {L~I , . . . , LJ )  > 0, k =  1,. . . ,  I. Thus we 
can use L e m m a  4.4 to conclude that  ~ P(x)dx<oo.  Theorem 3.1 follows be- 

E~ 
cause U t is the union over er of  the sets E~. [ ]  

5. Counting Powers 

This section is devoted to "coun t ing  powers"  in the function p~: R Z P ~ R  given 
by 

pr/(X) ~_ IX 2 At_,.. Ai_Xzpllq-- 1 IX2[q-  l i x  3 it/- 1 , , .  [X2plrl- 1 [Xll-O~ ix  1 _~_ x 2  [ - f l  i x  I At . X2 ..~ x3i-o: 

�9 ] X l + X 2 + X 3 + X 4 l - f l . . . ] x l + . . . + X 2 p _ l ] - ~ l x l + . . . + X 2 p l  -l~, 
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where c~< 1, 13< 1 and 0 < t / <  1. The results are stated in Propositions 5.1 and 
5.2. Introduce the set of linear functionals on IR 2p 

T = { x  2 + . . . + x 2 p , x  z ,x  3 . . . . .  Xzp, Xl,X l + x z . . . . .  x l +. . .  + x2p }. 

For each W c T  we define the set s{W} and the quantity d(P,, W) as in Sect. 3 
and we say that W is an independent set if it is strongly independent. (Here W 
does not involve additive constants.) 

Proposition 5.1. Let c~<l, f l < l  and let ~ satisfy 0 < t / < t  and n>(a+fi)/2. I f  W 
T is an independent set such that [ W I = 2 p - 1  and W c { x  2+ . . .  

+ X2p, x 2, x3, . . . ,  Xzp}, then d(P~, W) = 2p~l - 1. 

Proof. It is clear that if W satisfies the conditions of Proposition 5.t then s{W} 
= {x 2 + . - .  + x2 p, x2, x a . . . .  , x2 p}- Therefore 

d ( P , , W ) = ( 2 p - 1 ) + 2 p ( ~ - I ) = 2 p r l - 1 .  [] 

Proposition 5.2. Let :~ < 1, /3 < 1 and let t 1 satisfy 0 < rl < 1 and n > (c~ +/3)/2. I f  W 
c T  is an independent set such that either IWI@2p-1  or Wdv{x2+. . .  
+ xzp, x2 ,x  3, ...,x2p }, then d(P,, W)>0.  

The rest of this section is devoted to the proof  of Proposit ion 5.2. 
In proving that proposition we can restrict ourselves to considering sets W 

~ T  which do not contain x2+. . .+x2p.  To see this, assume that x 2 + . . .  
+XzpSW. Suppose first that the set s { W } \ s { W \ x 2 + . . . + x 2 p  } contains some 
functional L other than x 2 + . . .  +x2p. Then we consider the set W' which is W 
with x 2 + ... + x 2 ,  replaced by L, that is W ' =  Ww {L}\{x 2 + ... +x2p }. Clearly, 
xz+. . .+x2pCW' .  Furthermore,  W' has the same span and cardinality as W. 
Therefore d(P,, W ' )=  d(P,, W). On the other hand, suppose that there is no such 
L. In this case we put W ' = W \ { x 2 + . . . + x 2 p  }. We have I W ' f = t W t - 1  and 
s{W'} = s { W } \ { x  2 +.. .  +x2e  }. Hence 

d(P,, W') = d(P~, W ) -  1 - ( t / -  1) = d(P~, W ) - t / <  d(P,, W). 

Thus in either case there is a set W' which does not contain Xz+ . . .+xzp and 
satisfies d(P~, W')<d(P~, W). Hence we can assume that W does not contain x 2 
-~ ...-4- X2p. 

In proving Proposit ion 5.2 we can also restrict ourselves to sets W c T 
which satisfy {xk, x l+. . .+x~}dgW,  k = 2  . . . . .  2p. For suppose that T does not 
satisfy this restriction. Let j be the largest k for which {x~, x~ + . . .  +x~} c W. Let 
W ' =  W u  {x 1 + . . .  + x j_ t } \ {x l  + . . . +  x j}. Since the sets {x j, x 1 + . . .  + x j_ ~} and 
{xj, x l + . . . + x j }  have the same span and cardinality, it follows that d(P~, W') 
=d(P,~,W). It  is clear that the largest value of k for which {x~ ,x l+ . . .+xk}  

W' is at most  j - 1 .  After repeating this process at most  j - 2  more times we 
obtain a set W" satisfying d(P,,W")=d(P~,W) and {Xk, X~+. . .+Xk}r  k 
= 2 .. . .  ,2p. Thus we can restrict ourselves to sets W which do not contain both 
x k and x l + . . . + x  k. 

We will assume from now on that W e T  satisfies both of the above 
restrictions. To describe the sets W which we will be considering, it is helpful 
to think of the elements of T \ { x ;  +.. .  +x2p } arranged in columns as follows: 
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X2 

X 1 X1-}-X 2 X 1 X3 + x2 + x3 "'" x l  § x2v 
... -}- x2p 

In the rest of this section we consider sets W which contain at most one 
element from each column. For  any set T ' c  T we say that T'  contains the k th 

column if x k e T '  or x~ + ... +XkST ' .  
The proof  of Proposit ion 5.2 involves three lemmas. 

Lemma  5.3. Suppose that W does not contain the k th column. Then s { W }  does 
not contain the k th column. 

Proof. We prove that neither x k nor x 1 + ... + x  k is in s {W} .  We distinguish two 
cases. 

Case I. There is no j > k  such that x~ + ... +xj~W. In this case the conclusion 
of the lemma is clear since no element of W contains the summand x k. 

Case II. There exists j >  k such that x~ + . . .  + x F W- 

Suppose that j is the smallest index with this property. Then the only 
elements of W which contain the summand x k are among {x~ + ... +x~, x~ + ... 
+xj+~ . . . .  , x l + . . . + X 2 p  }. Since x~q~W these are also the only elements of W 
which contain the summand xj. Thus in any linear combination of the ele- 
ments of W the summands x k and xj appear  with the same coefficient. Hence 
neither x k nor x ~ + . . . + x  k can be linear combinations of elements of W. This 
completes the proof  of Lemma  5.3. []  

We now partition W into blocks of contiguous columns. Any two blocks 
are separated by at least one column not in W. Formally, we will say that a set 
B c  Wis  a block o f  columns, if there exist l~<r  B such that 

1) W contains neither column I B -  1 nor column ~ +  1. 

2) B contains column l B through r B and no other columns. 

With this definition we obtain a partition W-- U B~, where each Bj is a 
j = l  

block of columns. We will assume that B~ is to the left of B j+ ~ for each j. 
Define the function Q,(x)--P,(x).  px 2 + ... +x2p] 1-". It is clear that 

d(P n, W ) =  ~ d(Qn' W), if x 2 + ... +x2~(~s{W} 
( n - l + d ( Q , , W )  if x2-~...-~-X2pSS{W }. 

Furthermore Lemma 5.3 implies that d(Q,, W ) =  ~ d(Q,, B j). Thus we have 
j = l  

~--1 d(Q~, B~) if x z +. . .  + x2p~s(W)  

= . ( 5 . t )  

I n - l +  Z d(Q, ,Bj)  if x 2 + . . . + x 2 p E s ( W ) .  
j = l  

The next lemma is useful in determining the quantities d(Q,, B j). A block of 
columns will be called nonsimple if it contains x~ + ... +Xk for some k >  1. 

Lemma  5.4. Let  B be a nonsimple block o f  columns. Put l = l  B and r = r B. Let  m 
be the smallest k satisfying x~ + ... + Xk~B. 



224 R. Fox and M.S, Taqqu 

1) I f  l<=j<m, then xj~s(B) and x 1 + ... + x~$s(B). 
2) Xm~S(B ) and x 1 +.. .  + XmES(B ). 
3) I f  m < j < r ,  then xj~s(B) and x 1 + ... + xfis(B). 

Proof. 1) Let l < j  < m. Since j < m we have {xl, x~+ 1,... ,  x j} c B. Suppose that x 1 
+.. .+xj~s(B).  The identity x l + . . . + x  1 l = ( x t + . . . + x ) - x z - x ~ + l - . . . - x ~  
implies that xl  + ... +x t_  les(B). This contradicts Lemma 5.3. We conclude that 
x 1 +.. .  + xj~s(B). 

2) The definition of m implies that x l + . . . + x m e B .  Suppose that xmes(B). 
We have 

x~ +. . .+x~ i=(x~ + . . . + x m ) - x t - x ~ + l - . . . - x , ~ ,  

again contradicting Lemma 5.3. 

3) This is proven by induction. It is clear that if x~ + ... +xf is (B)  and B 
contains column j + 1, then {x j+ ~, x~ + . . .  + xs+ 1} c s(B). To start the induction 
off, note that x l + . . .  +x,,es(B) and B contains column m + l .  This completes 
the proof of Lemma 5.4. []  

If B is a simple block of columns, then B c  {x 2, x3, ...,x2p } and therefore 

d(Q,, B)--IB[ + iBI ( r / -  13 = [Bit/>0. (5.2) 

To determine d(Q,, B) for a nonsimple block, we need to take into account the 
parities of the integers m and r introduced in the statement of Lemma 5.4. This 
is done in the next lemma. First define 

and 

71= (m-1)tl + (r - m) [tl - ~ ]  

72 = ( m _ l ) t l + ( r _ m +  l) [t 1 (c~ ~_~fl)]. 

Note that under the conditions of Proposition 5.2 we have 71 > 0  and 72 >0. 

Lemma 5.5. Suppose that the conditions of Proposition 5.2 hold. Let B be a 
nonsimple block of columns. 

1) I f  m and r are both odd, then 

d ( Q , , B ) = ( 1 - e ) +  71> l-c~>O. 

2) I f  m and r are both even, then 

d(Qn, B)=(1 - fl) + 7x > 1 - f l > O .  

3) I f  m and r have different parities, then 

d (Q, ,B)=(1-7)+72  > 1 - t />0. 

Proof. Note that d(Q,, B) is equal to the cardinality of B plus the sum of the 
powers of all the elements of s(B)\{x 2 +.. .  + x2p }. The cardinality of B contrib- 
utes ( r -  l) + 1 to d(O,, B). 
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According to Lemma  5.4, the set s (B) \{x2+. . .+Xep } is equal to WlwW2, 
where 

wi={~,,~,+1 .... ,xm_ l ,x . .+ ~,x,.+ ~ . . . . .  ~ }  
and 

W2 = {xl + . . .  +x, , ,  x I + . . .  +xm+ i . . . . .  x I + . . .  +x~}. 

(When m = 1 we let W t = {x2, ..., x~}.) 
Counting the powers associated with W 1 we obtain a contribution (r-1)(~/ 

- 1)= - ( r - 1 ) + ( m - l ) t l + ( r - m ) t  1. 
Counting the powers associated with W 2 we obtain a contribution 

_ ~_(L~_)  (~+/~) 

(r-m) 
2 (~ +/~) 

( r - r e + l )  (~+/~) 
2 

if m,r  are both odd 

if m,r are both even 

if m, r have different parities. 

Summing the appropriate  contributions and using the inequalities ~ < 1, f l<  1, 
71>0  and Vz>0 we obtain the results of Lemma 5.5. [] 

Proof of Proposition 5.2. Suppose that the conditions of Proposit ion 5.2 hold 
and that the independent subset W of T also satisfies the restrictions described 
above. (Namely, W does not contain x 2 + . . .  + x2p and {x k, x~ +.. .  + Xk} ~: W,, k 
= 2  . . . . .  2p.) Relation (5.1), relation (5.2) and Lemma  5.5 imply that d(P,, W ) > 0  
if xz+ ... + x2pCs(W ). To complete the proof, assume that x 2 + ... + XzpSs(W ). 
This implies that rB~ p (where B, is the rightmost block of W), because the 
summand x2p appears only in the 2p th column. 

First we will show that B, is nonsimple, that is, it contains X l+  . . .+x  k for 
some k > l .  Put l=lBn. Put l - - l ,  then XleB . and so B~ is nonsimple. I f / = 2  and 
B~ is simple, then W = B ~ = { x  2 . . . .  ,X2p}, contradicting the assumptions of the 
proposition. If / > 2  and B~ is simple, then no element of W contains the 
summand X~_l, contradicting the assumption that x 2 + ... +x2p~s(W). Thus B~ 
must be nonsimple. 

Next we will show that lBl=l .  Since B, is nonsimple, Lemma  5.4 shows 
that x t + . . . + X a p ~ s ( W  ). Since we have assumed that Xa+. . .+XapSs(W ), it 
follows that x l ~s (W ). Thus we must have lB1 = 1 in order to avoid contradict- 
ing Lemma 5.3. 

To complete the proof, we distinguish two cases, according to whether W 
consists of a single block or more than one block. 

Case I. n = l .  In this case we have only one block B 1 satisfying IB =rob -----1 
and r B =  2p. Lemma 5.5 implies that d(Qn, Bx)= 1-~l + 72. According to (5.1), 

d(P n, W ) = d ( Q , , B 1 ) + t l -  l=)~2>O. 

Case II. n > l .  We again have IB =rnB =1.  Thus either Part  1 or Part  3 of 
Lemma 5.5 applies. Hence d(Q,, B1)_> 1 - a or d(Q,, B1) > 1 - 7. 
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Since r B = 2  p and B, is nonsingular, either Part 2 or Part 3 of Lemma 5.5 
applies to B,. Thus d(Qn, B,) > 1 - fi or d(Q,, B,) > 1 - rl. 

The proof can now be completed as follows. According to (5.2) and Lem- 
ma 5.5, we have d(Q, ,B j )>O, j=I ,  ...,n. Thus by (5.1), 

d(P~, W) = t l - 1 + ~ d(Q,, B3) 
j = l  

>= n - 1 + d (Q. ,  n~) + d (O. ,  U.). 

If d(Q,,U~)>=l-~, then d(Pn, W)>_d(Qn,B~)>O. Similarly, d(Pn, W)>0  if 
d(Q,, B~)>= 1- t l .  Therefore we can assume that d(Qn, B1)>= 1 -  e and d(Qn, B.)>_= 1 
-f t .  Then d(P,, W ) > t / - 1  + ( 1 - e ) + ( 1 - f l ) = l - t / + 2 [ t l - ( c ~ + f l ) / 2 ] >  1-1 />0 .  
This completes the proof of Proposition 5.2. [] 

6. Applications of Power Counting 

In this section, we establish Propositions 6.1 and 6.2, which will be used in the 
proof of Theorem 1. 

For each integer N > 1 define the function 

min ~ , N  -2n<_z<__-n 

hN(z): min ( ~ ,  N)  -n<_z<_n 

min (Lz_@n~, N ) n<_z<27c 

and the function fn: N 2 , ~ N  by 

fN(Y) = hN(Yl -- Y2,) hN(Y2 -- Y t)hN(Y3 -- Y2)-..hN(Y2,-- Y2,- t) 

" lYl [-~[Y2]-'lY31 -~...[y2p[-' 

where c~<l and f i< l .  Given t > 0  put Ut= [ - t , t ]  2p and V 
= { y ~ R  2p, lyl[_<_-~ly21}. 

The following results are useful in studying the behavior of ~ fn(y)dy as 
N~oo .  v= 

Proposition 6.1. Let  ~ < 1 and fi < 1. 

a) I f  ~+fi<O, then as N ~ o o ,  

fN(y)dy=O(N~) 
U~nV 

for every ~ > O. 
b) I f  ~+f l>0 ,  then as N--.oo, 

fN(y)dy=O(N p(~+g)+~) 
U~nV 

for every ~ > O. 
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Proposition 6.2. Let ~ < 1 and fi < 1. 

a) I f  p(~+/~) < 1, then 
fN(y)dy 

lim lira sup v~ -- O. 

b) I f  p(c~+fl)> l, then as N ~ o o  

S fu(y)dy=O(Nv(~+p)+~) 

for every e > O. 

In order to prove Propositions 6.1 and 6.2 we need to put the problem into 
the framework described in Sect. 4. Choose ~/satisfying 0 <~ < 1. If 1 / N <  Izl <=n 
then we have 

1 l 
hN(z) = 7~, < v~, N"izl" = N"lzl"-  ~. 

Izl Izl 

If Iz[ < 1/N then 

hu(z) = N~ N I - ~  < N~tz[,-  1. 
Thus 

hN(z)<N"lzl  ~-1, -n<_z<_7~, 0 < t / < l .  

This implies fly(Y) < f~,~(Y), where fN,,(Y) is defined as fv(Y) with h N replaced by 

g~lz+2nl  '7-' -2n_<z_< - n  

hN,,(z) = X"[zl ~-1 - n < _ z < r c  
N " [ z - 2 n ]  "-1 n<_z<2rc. 

To study ~ fN, , (y)dy we make the change of variable x l = y i ,  x k = y k - - y ~ _ l ,  
Ut 

k = 2 ... .  ,2p. Thus we define 

f/v(x)=hN(X2 + ... + x2p)hN(x2)...hlv(x2,) 

�9 r x ~ l - ~ l x l  + x21-~lxl + x  2 + x3I-~...IXx + . . .  +Xzpl -~ 

and f/v,~(x) in the same way, with h N replaced by hN, ~. Define the set U,' so that 
fN(X) dx  = I fN(y)dy  and let V '= {x: [Xx [<�89 +x21 }. 

U~ U~ 

Note that if 
Hence for xeU~ 

and 

yeU,~ and l y ~ - y k _ l [ > ~  2, then ]yk_ll>zc/2 and lykl>rc/2. 

[ x l + . . . + X k _ l ] >  ~ if Ixk+2n]__< ~, (6.1a) 

Ix1 + . . .  + x k _ l [ > ~  if [x~-2nl <~, (6.1 b) 

Ix1+.. .  +xk] >_ ~ if ]xk+ 2hi < -~=2, (6.2a) 

Ix1+...+x~l__>~ if ]xk-2n]<~.  (6.2b) 
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It is clear that if y~ U= c~ V then l Y2- Y , I ~  [Y2] ~ 3 7t/2. Thus 

3zt 
[x21<~-; x ~ U ~ g ' .  (6.3) 

In order to apply the lemmas of Sect. 4 introduce the functionals 

Ml(x  )=x  2 +.. .  + x2p 
M2(x)=x~ 

M 2 p ( x  ) = x2p 

M2p+ 1(x) = X 1 

M2p+2( X ) = X  t + x  2 

M4p(x ) = x  1 +. . .  + X2p. 

Choose {01 .. . .  ,02p}c  {-27r, O,27t } and put 02p+ x ~-O2p+ 2--~-...=O4p~O. Define 
L~(x)=Mj(x)+Oj, j = l , . . . , 4 p .  Let U/' be the subset of U/ on which f/v,,(x) 
= N2P"P, (x), where 

P,'(x)= ILil n 1 [L2l"- 1...[L2pl"- * 

"lL2p+ 11 ~lL2p+2l-a.-.lL4p[ -a. 

In the proofs of Propositions 6.1 and 6.2 we use the notation introduced in 
Sect. 3. For example T = {L 1 ... .  , L4p } and r is the rank of T. 

Fixing a permutation o-=(a, . . . . .  a4p) of {1, ..., 4p} we define 

E~= {xeUt": IL~(x)l < ...-< IL~,flx)l) 

and, as in Sect. 4 construct a basis {L~I . . . . .  L~r } for T satisfying 

IGII<IL~21<...<-IL d, x~Et,~. 

In proving Propositions 6.1 and 6.2 it suffices to show that the conclusions 
hold with U t replaced by Et(,, V replaced by V' and f2v(Y) replaced by f/v(x) or 
f}m(x)- 

Proof of Proposition 6.1. Fix r/ satisfying 0 < t/< 1 and r/> (c~ + fi)/2. Since f},,(x) 
=N2pnPn'(x), both parts of Proposition 6.1 will follow if we show 

P~'(x)dx < oo. (6.4) 
E,~ c~ V" 

To show (6.4) we distinguish two cases. 

Case I. {L~, , . . . ,L~p_~}~ {L 1 . . . .  ,Lzp  }. 

In this case we will show that in fact ~ P~'(x)dx< or. 
E~ 

Subcase 1.1.01 . . . . .  02p=0. 

In this case P~'(x)=P,(x), where P,(x) is as defined in Sect. 5. Thus Proposi- 
tion 5.2 and Lemma 4.4 imply j P~'(x)dx< oe. 

EF 
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Subcase 1.2. Oj ~ 0 for some j. 

Here some of the dimensions may be non-positive, but relations (6.1)-(6.3) 
will allow us to deal with that situation. If d(P,', {L~I, . . . ,L~})>0 ,  k = l ,  ..., 2p, 
then Lemma  4.4 implies that S P,'(x)dx<oo. Otherwise put W={L~I, .... L~}, 

E~ 
where k is the smallest index satisfying d(P,', {L~, . . . . .  L~})<0.  As in Sect. 5, 
s(W) consists of a collection of blocks of columns, plus possibly L 1. Let B be a 
block whose contribution to d(~', W) is non-positive. Then it is clear that 0j4 =0 
for some j satisfying IB<j<r B and that x t + ... +xmss(B ) for some m satisfying 
lB<__m<r B. (For d(P,', B) would be positive if there were no such j (Lemma 5.5) 
or if there were no such m (direct computation).) 

Let m be the smallest index with this property. We distinguish two cases, in 
both of which we will show that P~'(x) is at most  a constant times 
IL~II~.,.IL . . . .  I ~ -1 ,  with A i defined as in Lemma  4.2. 

Subcase 1.2.i. Some j satisfies m < j < r  B, Ljes(B) and 0 j40 .  

Let j be the smallest index with this property. Then it is clear that x t + . . .  
+xj_ tes (B  ). By Lemma  4.2, P~'(x) is at most  a constant times IL~Jm...IL,y ~. 
Since Lj and x l + . . . + x j _ l  are in s{L~,, . . . .  L:,} and IL,~I<...<IL~] on E~, 
Lemma 4.1 implies that there is a constant C such that if xeE~, 

CIx~ +... +x~_~l<lL~l 
and 

ClZjl < IZ~r. 

Thus if x~E~, and ILjf>z/2, L~ is bounded away from 0. If IZjl_-__rc/2, relation 
(6.1) implies that L~ is bounded away from 0, since L~=x2+2rc .  So L~ is 
bounded away from 0 on E~, which implies that L~+~, .... L~ are bounded 
away from 0 also. It  follows that Pn'(x) is at most a constant times 
IZ~ll~l...IZ~_~l ~-~ on E2. 

Subcase 1.2.ii. No j satisfies m < j < r  B, Ljes(B) and 0j.=t=0. 

Note that x,~6s(B), for otherwise we would have x~ +.. .+x,~_~s(B),  con- 
tracting our choice of m. Since Lm=xm+O,, it follows that either L,,6s(B) or 0 m 
#0.  If L,~q~s(B), then 

s(B)= {LtB, ..., L,,_ 1, xm+ 1, - '-, x,~, x 1 + . . .  + x ~ ,  x I + 

... +x,~+ 1 . . . . .  x I + ... + x,~}. 

We see that d(P~',B) would not change if Ll=Xt~  ..... L,~_ ~ =x, ,_  ~, but with 
this change it becomes the dimension of the block described in Lemma 5.4, 
which is positive by Lemma  5.5, contradicting our assumption. Hence Lmes(B ) 
and 0~:#0. But then relation (6.2) allows us to argue as in Subcase 1.2.i that 
IL~I3~...IL~_ ~l ~-~ provides a majorant  for P,'(x). 

To complete the proof  in Subcase 1.2 it suffices to show that 
IL,~I~I...IL~_~I ~ - ~  is integrable on E~. But this follows from Lemma 4.4, since 
d(P,',{L,~, .... L~j})>0, j = l , . . . , k - 1 .  This establishes that ~ ' ( x ) d x < o o  in 

Subcase 1.2. E~ 
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Case II. {L~ ..... L,~,_ ~} ~ {L 1 ..... L2p }. 

Subcase ILl. 01 = 02 +... + 02t,. 

In this case we have s{L~,,...,L~j~--{L~ . . . . .  .,L~}, k-- l ,  . , 2 p - 2 ,  and 
s{L~ ..... L ~ _  ~) = {L1,..., L2p }. 

Suppose first that 02:#0 , so that L2=x2+2n. Then (6.3) implies that 
lL2l>zc/2 on E2c~V', According to Lemma 4.2, P~'(x) is at most a constant 
times IL~lm...IL~l ~ .  Let j<2p be the integer satisfying L2~T j. Then Lem- 

ma 4.1 implies that [L~I>. . .>[Lj l>c-[L2[>~C for x~E;. Hence ~'(x)is  at 

most a constant times IL~ IJ~.,.[L~j_~[ ~j-~ for x~E~c~V'. Since j - l < 2 p - 2 ,  
d(P~', {L~, . . . ,L~})>0,  k=  1, . . . , j - 1 .  Therefore Lemma 4.4 implies that the in- 
tegral of this product over E ; ~  V' is finite, establishing (6.4) when 0e 4:0. 

Now suppose 02=0, so that L 2 = x  2. Define 

Lq = {L~ ..... L2p}\(L~, .... L~,_ ~}. 
Then 

= k =  . . . . .  2 p -  2 

and 

The next step is to use this to establish 

IL2v+ t{ ~ IL,~I, xcEto~ V'. (6.5) 

Since Lq~T2v_I, Lemma4.1b implies that JL~,_~I<ILq} for x~E~. Hence 
IL~I<IL~I<...<[L~p_,[<[Lq[ for xsE2. Therefore on E2 we have Lq= 
max{ILal, lLzl, ...,]Lzp[ }. In particular ]L2]<}Lq} on E~,. For x~V' we have 
IL2~+ t l = Ixtl _-<[Xz[ = qL21. These last two inequalities imply (6.5). 

Since 

relation (6.5) implies that P,'(x)< P_, . . . . . .  ix), x~E~c~ V, where 

P~"(x) = Ig~ I ~- a . . . Ig~_ ~J"- 11Lzp+ 11 -~+"- ~lLzp+ a[-~...IL~pl -~. 

Hence (6.4) will follow if we show 

I','(x)dx < oo. (6.6) 
E~ 

To show (6.6) we use Lemma 4.4. For k<2p~2  we have s{L~, .... L,~} 
--{L~ . . . . .  L~}, from which it follows that 

d(P~",{L,,,...,L~})=-k+k(tt-1)=ktl>O, k<=2p-2. 

Since s{L~ . . . . .  L~2~_ ~} = {L1 . . . . .  Lap } we have 

d(~", {L~, .... L ~ _  ~})= (2p -  1 ) + ( 2 p -  1)(t/- 1 ) = ( 2 p -  1)Tq > 0. 
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Finally, if 01 = . . .  = 02p = 0 ,  then 

d ( p " , { L ~ , , . . , L ~ } ) = 2 p + 2 p ( ~ l - 1 ) - p ~ - p ~ = 2 p [ r  1 ( c ~ ) ]  > 0. 

On the other hand, if some 0j4 =0 then {x l + . . . + x  m,L 1 . . . .  ,L2p} 
c s { L ~ ,  .... L ~ }  for some m and we can argue as in Subcase 1.2 that P," is at 
most a constant times IL~II"-I...fL~2~_~J ~-1. Either way, (6.6) follows from 
Lemma 4.4, completing the proof in Subcase II.1. 

Subcase II.2. 01 4=02 + ... +02p. 

In this case we will show that ~ P~'(x)dx< Go. We have 
Eg 

s{L~:, .... L~} = {L,:, .... L~}, k = l  . . . . .  2 p - 1 .  

Put Lq = {L1,. . . ,  C2p}\{L~,, .... L ~ _  ~}. 
Suppose first that L ~ 2 = L  q. Then s{L~ . . . . .  L~2,}={Lt . . . .  ,Lzp}, so that 

d{L~,,.. . ,  L~} = k(rl - 1) + k = kt/> 0, k = 1, ..., 2p. Hence Lemma 4.4 implies that 

Eg 
Now suppose that L~2 4:L q so L~ = x t + . . . + x , ~  for some 1 <m<_2p. Since 

. 2 1 9  ! 

O~ 4= 0 for some j, we can argue as m Subcase 1.2 that P, is at most a constant 
times IL~II"-~...IL~/9_~I "-1. Since d(P~',{L~I,...,L~})>O, k = l , . . . , 2 p - 1 ,  this 
product is integrable over E~, completing the proof of Proposition 6.1. [] 

Proof of  Proposition 6.2. Let a be a permutation of {1 . . . . .  4p}. 

Case I. {L~, .... L~/9_~} r {L 1, . . . ,L2p }. 

As in Case I of the proof of Proposition 6.1, we show that ~ P~'(x)dx<oe if 
Eg 

r/> (~ +/3)/2. Since f/v,,(x) = NZP"P~'(x), both parts of Proposition 6.2 follow by 
choosing t/appropriately. 

Case II. {L~ .. . .  , L~:/9_ 1} c {L 1 .. . .  , L2p }. 

Subcase 11.1.01 =02 + ... +02p. 

Proof of  Part a in Subcase II.I. We saw in the proof of Proposition 6.1 that 

Ig,~l<_lL~l<__...<lg~/9_l[<__lgql, x ~ U ,  (6.7) 
where 

Lq = {L~ ... .  , L2p}\{L~I, .... L~,_ ~}. 

Since hN(z ) < N, we have 

f~(x)<=gZPlg2p+ll-~lLzp+2l-a...IL~,p[ -#, x~]R 2v. 

If 0 ~ = . . . = 0 2 p = 0  then T2t~={g2p+l . . . . .  L4p } and Lemma 4.1 implies that 
[L2p+~I-~IL2p+2I-P...ILgpl -~ is at most a constant times IL~/91 -pt~+a) for 
x~E~. On the other hand if some 0 j+0  the fact that L~/9=x~+. . ,+x , ,  for 
some m allows us to argue as in Subcase 1.2.i that L~,  is bounded away 
from 0 on E~, which implies that [L2p+l[-"... IL4p[-~ is bounded on E~. Thus 
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this p roduc t  is at mos t  a constant  times M(L~), where 

M(z) = max([ z l-  P(~+ a), 1). 

Hence there is a constant  C so that  

Define the sets 

and 

GN,2v_ l= Et~n {lg~2p_ ~] 

Because of  (6.7) it is clear that  

fly(x)< CN2pM(L~2~,), x~E~. 

, t 1 

{ 1 }  
GN,j-E~c~ Ig~jl< <IL,+~I  , j = l , . . . , 2 p - 2  

(6.8) 

E~ = G~, o w GN, 1 U " ' ~ G N  2 p - 1 "  

Thus it suffices to show that  the conclusion of  Par t  a holds with U t replaced by 
Gin j, j = 0 . . . . .  2 p -  1. Define also the sets 

where At= ~ {Lk(x): x~E~}. Note  that  the measure of  A t tends to 0 as t ~ 0 .  
k = l  

In  view of  (6.7) we have GN, jcKN, j. To prove Part  a we distinguish two 
subcases according to whether j = 2 p -  1 or not. 

Subcase II.l.i. j =  2 p - 1 .  F r o m  (6.8) we conclude that  ~ f}(x)dx is at most  
a constant  times G,,, ~ -  

N 2p j M(L~, )  < N 2p j M(L~), 
G ' N ,  2 p  - 1 K N ,  2 p  - 1 

where on K N 2, 1, we have [L~kI<_I/N for k=l,...,2p-1 and L~2 eA t . We see, 
on  making  t 'he-appropr ia te  change of variable, that  the right ~hand side is 
majorized by 

V 1IN -12p- 1 

Therefore 
1 

lira sup - -  j f~(x) dx 
N N GN, 2,- 1 

is at mos t  a constant  times j M(z)dz, which implies the conclusion of Par t  a. 
At 
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Subcase lI.l.ii, j < 2 p - 1 .  For x~Gn, j we have 

hN(L~) = N, k = 1 .... ,j, 

hN(g,~)=lg~l -~, k = j + l  . . . . .  2 p - l ,  
and, by (6.7) 

hN(Lo)= ILq1-1 < IL~2p_ 21-1. 

These facts in combination with (6.8) yield 

f~,(x)<= CNJIL~+~I-1...IL~2p_2I-I[L~p_~I-2M(L~2,,), x~Gs, j. 

According to (6.7), ILeal <IL~._I[, k=j+ 1 . . . . .  2 p - 1 ,  and thus f~(x) is at most 

17 L 
k k = j +  1 

for xeGN, j. Integrating this expression over KN, j we have at most a constant 
times 

/ 1/N \ j (  {I+ 1 ~ 2 p - l - j  

\ - -  1/N ! ~ = w ,  weAt At 

The first integral in brackets is 2N -~. The second is O(N1/(2p-I-J)). So the 
whole expression is O(N)~ M(z)dz. This concludes the proof of Part a in 
Subcase ILl. A~ 

Proof of Part b in Subcase ILl.  Fix e>0.  Under the conditions of Part b we 
can choose r/ satisfying 0 < t i < 1  , t l>(e+/?)/2 and l<2pr /<p(e+ /3 )+e .  Thus it 
suffices to show that ~ ~'(x)dx< oo under these conditions. 

Eg 
First suppose that 0~=02 . . . . .  Ozp=O. Then Propositions 5.1 and 5.2 

imply that d(P~',W)>min(2pq-l,O) for every strongly independent W c T .  
Since 2pt/> 1, Theorem 3.1 implies the desired conclusion in this case. 

On the other hand if some Oj#O, then some dimensions may be negative. 
However, since 2pt/> 1, d(P,', W)>0  whenever W c {L~, ...,L2p }. Hence if k is 
the smallest index satisfying d(P,',{Lr .... L~})<0, then we must have x l + . . .  
+x~es{L~, . . . . .  L~} for some m, and thus we can argue as Subcase 1.2 of the 
proof of Proposition 6.1 that ~' is at most a constant times [L~IIA~...]L~_~[~-I, 
so that Lemma 4.4 can be used to complete the proof of Part b in Subcase II.1. 

Subcase 11.2. 01 +02 + ... +02p. 

As in Subcase II.2 of the proof of Proposition 6.1, we have 

Pn'(x)dx<oo if r/> (e+ fl)/2. 
E~ 

Since f~.n(x)=N2pnlan~(x), both parts of Proposition 6.2 follow by choosing rl 
appropriately. [] 
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7. Proof  of  Theorem 1 

The proof requires a lemma in addition to Propositions 6.1 and 6.2. We use 
the notation introduced in Sect. 2 prior to the statement of Theorem 1. Fix 
p > 1 and note that 

N--1 N - 1  

Tr(RNAN) p= Z "'" ~ rJl-./2a./2-jJj3-j4...a./2p-j, 
j l  = 0 J2p  = 0 

= E . . . .  ~ e i ( j ~ - J 2 ) y l e i ( j 2 - j 3 ) y 2 . . . e i ( j 2 P - J l ) y 2 P  

j l = O  J2p=O ~'" --Tz 

�9 f(YOg(Y2)f(Y3)...g(Y2p)dY~ ...dy2p) 

= j PN(y)Q(y)dy, (7.1) 
U~ 

where 

and 

N - 1  N 1 

PN(Y) = Z "'" Z ei(J'-Y~)'~ei(Y2-Y~)'=..-ei(Y=~-Y'>Y~P, 
j l = 0  J 2 p = O  

Q(Y) = f (Yl) g(Y2) f (Y3)'"g(Yzp), 

u , =  [ - ~ , t ]  =~ . 

To state the lemma, introduce the diagonal 

D =  {ys U~: y l = y 2 =  ""=Y2p}" 
Let # be the measure on U~ which is concentrated on D and satisfies 
#{y: a < y l = y  z . . . . .  y 2 p < b } = b - a  for all -~z<a<<_b<<_~. Thus/~ is Lebesgue 
measure on D, normalized so that #(D)= 27r. 

Lemma 7.1. Define the measure #N on U~ by 

1 
u~,(E)=(2~)2p_IN !P,,(y)dy, EcU~. 

Then #N converges weakly to # as N ~ o o .  

Proof. Since U, is compact, it suffices to show that the Fourier coefficients of 
#N converge to those of #. Fixing integers nl ,n  2 . . . . .  nzv , the corresponding 
Fourier coefficient of # is 

j ei("lYl+'"+"=PY2P)d#(Y) = i e~("'+'"+"~')~dx 
U~ -- n 

2p 

0 if ~ n./+0 
. / = i  
2p 

2~ if ~ nj=O. 
j = l  
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The corresponding Fourier coefficient of #N is 

C N = CN(nl,  n2 . . . .  , nzp) 

= ~ eit"lr'+'"+"2PY~pld#N(y) 
v= 

(2/r)2p-1N 2 "'" ~ eit"l+J*-a~l'*dYl 
j l  = 0 J2p = 0 7t 

" i e i [nz+JE- j3]Y2dY2 "" ~ ~ i [n2P+ J2v - J ' lY zpd"  ~ 
-r~ " L  ~" Y2pJ" 

(7.2) 

Fix Jl . . . . .  J2p. In order for the expression in braces to be nonzero we must 
have 

nl = - ( i l  -J2) 

n~= -(J2-J31 
: (7.3) 

r l 2 p -  1 = - -  ( /2p--  1 - - J2p )  

n i p =  -- (J2p--J,)" 

But then nl+...+n2p=O. Thus if nl+...+nep=l=O each of the summands in 
(7.2) is equal to 0. Therefore CN--0 if n, + ... +n2p+0.  

Suppose n~+...+nep=O. Then each summand in (7.2) equals 0 or (2re) 2p. 
When the summand equals (2~z) 2p, the indices J>...,J2p satisfy (7.3), which 
implies 

J2 =J,  +(nl)  

J3 =Jl  + (nl + n2) (7.4) 

Define 
J2p=Jl  +(h i  q-... q-n2p-  1). 

M=max{nl+. . .+nk: k = l  . . . .  , 2 p -  1}, M+ = max(M,0), 

m=min{n l+ . . .+nk ' k=l  . . . . .  2p- - l} ,  and m + = m a x ( - m , 0 ) .  

Fix Jl satisfying O < j l < N - 1  and determine J2 . . . .  ,J2p according to (7.4). In 
order for the inequalities 0 <Jk < N - l ,  k = 2 . . . .  ,2p to be satisfied we must have 
Jl < N - 1 - M  and j l  >m. Thus the sum in (7.2) is equal to 

N - 1 - M  + 
(2~)2" = ( U -  M + - m+)(2~) 2p. 

j l=m + 
Therefore 

2~c(N-M+-m +) 
CN-- N ' 

which tends to 2~ as N ~ o o .  This completes the proof of Lemma 7.1. 

Proof of Theorem 1. We must evaluate the asymptotic behavior of 

PN(Y) Q(y) d y �9 
u= 

[] 
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In t roduce  the sets 

Wk={y@~2P: [Yk[ ~ } ,  k=l ..... 2 p - i ,  

and 
W = W ~ w W 2 ~ . . . w W ~  v. 

We shall divide the doma in  of in tegra t ion U~ into three parts  as follows. Let  

F~, = u & i w u  ~}, 

F,=q\W, 
and 

G=U,~c~W. 

For  each 0 < t < rt, the sets Et, F, and G are disjoint and satisfy U~ = E t w F t w G. 
Accord ing  to (7.1), Par t  a of the t heo rem will be p roven  if we show tha t  p(~ 

+ fl) < 1 implies 

JPNQ 
l im r - = ( 2 n )  2p-1 J [f(z)g(z)]Pdz, 

and 

IP~Q 
l im l im sup r = 0 
t~o N~o~ N ' 

0 < t < l ,  (7.5) 

(7.6) 

JPNQ 
l im G = 0. (7.7) 

N~oo N 

To prove  (7.6) it is enough to show that  when p(a + fi) < 1 

S IP, QL 
lira l im sup v~ = O. (7.8) 
t ~ o  N ~  N 

2v 
Since G =  U [WkC~ U J ,  re lat ion (7.7) will hold, if p ( ~ + f l ) <  1 implies 

k ~ l  

l im v~nw~ 0, k = l  . . . . .  2p. (7.9) 
N~o N 

F r o m  the definitions of  PN and Q it is clear that  

IPNQ]----- S IPNQ[ "" ~ IPNQI 
U~ c~ W I U~ c~ W 3 U~ r~ W 2 p 1 

and 

S ]PNQ[ = I [PNQ[ ... ~ [PNQI. 
U~ c~ W2 U~c~ W4 c~c~ W2p 
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Because of the symmetry between e and/?  in the hypotheses of the theorem, it 
is clear that if we prove that p(c~ + fi) < 1 implies 

ff IPuOI 
lim v~ ~ w, = 0, 

N--+ co N 
(7 .1o)  

we will have also established 

lim v~w~ O. 
N~co N 

Thus (7.9) will follow from (7.10). 
In conclusion, Part a of the theorem will be proven if we show that p(~ 

+f l )<  1 implies (7.5), (7.8) and (7.10). 
To prove Part b, we must show that for p(e +/~) > 1 

IPNQI=o(NP(~+Z)+~) for every s>0 .  (7.11) 
U= 

We start with relation (7.5) and show that it holds in fact for all real values 
of e and ft. We begin by showing that Q is bounded on E t. Let yEE t. Since E t 
is in the complement of Ut, there is some k such that lYkl > t. Since E~ is also in 
the complement of Wj, j = 1 .. . .  ,2p, we have [yj[ > lyj+ ~/21, j = 1 .. . .  , 2 p -  1 and 
yzp>yl/2. Thus we have 

_ _ _  . .  > l y 2 ~ l  l y ~ l  ly~I  _ t 
lyk+ll > >]Y43t> �9 ~-~2~> 22p_k+!>...>~n-T~ 22p_l. 

Therefore lyjl>t/2 2p-l, j = l  . . . .  ,2p, for yeE t. Hence Q is bounded on E t. 
Since Etr~D={y: yl . . . . .  Y2p, t<13qI<n}, relation (7.5) follows from Lem- 
ma 7.1. 

Before proving (7.8), (7.10) and (7.11) we need to obtain majorants for PN 
and Q. We have 

where 

N - 1  N-1  
pN(y)=(~lei(yl-y2p)j1)(~ i<,2-y~)j~) ( ~ ei(y2,,-y2.-~lj~_~) 

\ J l  = 0 \j2 = 0 e / "'" \ j a p  = 0 

= h } ( y l  - y ~ ) h } ( y ~  - Y 0 - - . h } ( y ~ -  y~_ O, 

N - 1  

h~v(z)= ~ e i~j. 
j = o  

Since h}(z)=(1--eiNX)/(1--e ix) for z:#0, II--eiNZl<2 and Ii-eiZl=>lzl/2 for 
fzt=<Tc, we obtain h*(z)<4dz[ -1 for [z[<n. For n<_z<_2n this implies h*(z) 
=h*(z -2n)N4[z -2n]  -1. For -27c<_z<<_-n we have h~(z)=h~(z+2n)< 
4lz+2n1-1. Since Ih*(z)l<N, these inequalities imply that Jh*(z)J<4hN(Z), 
-2n<z<_2rc, where hu(z ) is as defined at the beginning of Sect. 6. 

Thus IPn(y)l is at most 42e times 

h N ( y  l - -  Y 2  p) h N ( Y  2 - -  Y I ) ' " h N ( Y 2 p - - Y 2 p -  1)" 
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For fixed 6>0 let %=c~+6 and fio=fl+5. It is clear that under the 
hypotheses of the theorem, Q(y) is at most a constant times 

Q'(y) = [y~ [-~'~176176 -ao. 

Thus, the proof of the theorem can be completed by showing that (7.8), (7.10) 
and (7.11) hold with the integrand PNQ replaced by fN(Y), defined as in Sect. 6. 
We can now apply Propositions 6.1 and 6.2. Assume first that p(~+fi)>l .  
Choose 6>0. Then p(%+flo)>l .  Therefore Part b of Proposition 6.2 implies 
that 

f (y)d y = O(N p(a~ #~ ~) = O(N p(c~+ #)+ 2 p3+ e). 
tr= 

Since 6 can be made arbitrarily small, (7.11) follows. 
Now suppose p(e+f l )<l .  To prove (7.8), choose 5 > 0  such that 

p(%+fi0)< 1. Then (7.8) follows from Part a of Proposition 6.2. To prove (7.10) 
we consider two cases. If c~+fl<0 choose 6>0 such that %+flo<0.  Then (7.10) 
is a consequence of Part a of Proposition 6.1. If e+f l>0 ,  choose 6 such that 
p(%+flo)<l  and use Part b of Proposition 6.1. This completes the proof 
of Theorem 1. [] 

8. Proof  of  Theorem 4 

Lemma 8.1. I f  the conditions of Theorem 2 are satisfied, then 

lim 1 EIx~ANxN_~ANyqvI=O. 
N ~ c o  

Proof. The beginning of the proof follows Walker (1964). Note 

N N 

xNANxN_~c,NAs2N= ~, ~, -2 - - ' a j_  k(XN -- X j  XN -- Xk XN) 
j = l  k = l  

N N 

--X~r i g ( x ) 2  2 ei(J-k)xdx 
--r~ j = l  k = l  

N N 

-2XN i g(x) • Z X f  O-k)xdx 
- -~  j = l  k = l  

==FN-G N. 

We consider E[FNI first. We have 

~2 1 N N 1 = =~1 _~ I 
E ~ v = ~  j=l ~" k=,Z r,-k=~-5 -5= f(x),= k= e~O-k)~dx 

1 i - ~  f(x)h*(x)h*(-x)dx,  
- g  
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which is at most a constant times 

7r /r 

N ~  ~ [ x l ' ~ - a h N ( x ) h N ( - - x ) d x ~ N  2n-2 j Ixl ~ - ~ + z ' - 2 d x ,  

N - 1  

where 6 >0, 0 < t / <  1, h*(x)= ~ e ixj and hu(x)<_hN,,,(x) as at the beginning of 
j=l 

Sect. 6. Choose ~ so that e + 2 6 < 1  and put t /=(1+c~+26)/2.  Then the last 
integral is finite, so EJ{~ = O ( N  ~- ' + 2~). 

A similar argument shows that 

Hence 

N N 

i g ( x ) Z  Z ei( ' i-k)Xdx=O(Nr 
- r e  j = l  k = l  

EIFNI=o(N~) .  
Next we consider 

- 2  " - ( E I G s l ) 2 < _ 4 E X  E (x) e '(s k)Xdx �9 

The second expectation above is equal to 

N - 1  N - 1  

- ~ z  - r r  - g  k l = 0  k4=O 

�9 ei(kL - k2)x ei(k3 -- k4)y el(it - ka)z dx  d y d z, 

which is at most a constant times 

i i i ]xI-~-~IYl B - O l z [ - ~ - a h s ( x + z ) h u ( - x ) h N ( Y - z ) h N ( - y ) d x d y d z "  

Put ql = /3+25  and ~2=(1 +~)/2. We have h u ( - x ) < N n l h N , , l ( - x ) ,  

v) < N , l  h . hN(-_.  = N.,,(--Y),  h u ( x + z ) < N " 2 h N , , 2 (  x + z  ) 

< N,2  h . and hN(y - z) = N.,2tY - z). 
In order for Ix+zl to exceed 3n/2 we must have Ixl>n/2 and ]zl>n/2, in 

which case the integrand is majorized by N 2"1+ Z "2 times 

l y l _ ~ _ o + e ~ _ l l x + z + O l l e 2 _ l l y _ z + O 2 ] e a  1, 

where {0a, 02} c { - 2 n ,  0, 2n}. This product is clearly integrable for any choice 
of 01 and 02 . 

In order for ly-zl to exceed 3n/2 we must have lyl>_-n/2 and Izl>~/2 in 
which case the integrand is majorized by N2"~+2 "2 times 

A [q2-11y-z-l-O41n2 i IXi-~-O+'~ - IJX+Z+~3~ 

for some 0a, 04~ {-  2n, 0, 2~}. This product is also integrable. 
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If ne i the r  of the  ab o v e  cases holds ,  t h e n  the  i n t e g r a n d  is m a j o r i z e d  by  
N 2n*+ 2 n2 t imes  

Ixl-/~ a+n*- l ly l - /~ -a+q*-*[z l  ~-a[x_l_ zln=- l l y _  zln= -1 

U s i n g  T h e o r e m  3.1, it is easi ly  checked  tha t  this p r o d u c t  is in tegrab le .  T h u s  we 

c o n c l u d e  t ha t  
<" A i~' J( 2 O( AT 2r/1 + 2 r~2",t _ _  O(i~d2o:+ 2,3+ 4cs$ (/~ lGNt)2 __ - . . . .  Sv ,~ ,  , - -  v ,~ ,  ,. 

Since e+/3<1/2, we see that EIGN[=o(N~), completing the proof of 
Lemma 8.1. [] 
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