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The Martin Potential Kernel 
for Improperly Essential Chains* 

ALLAN F. ABRAHAMSE 

0. Introduction 

The Martin potential kernel K(x,  y) for a Markov chain 3;-,, n= 0, 1,... with 
discrete state space was defined in [3]. The importance of this function is due to 
the fact that lim K(x,  X,)  exists a.s., and the limiting random variable has close 
connections with the a-field of invariant sets of the chain. 

Similar theories are known for more general Markov processes but usually 
it is assumed that transition densities are defined. 

In the present paper, we develop a theory of the Martin potential kernal for 
improperly essential Markov chains, with no assumption that transition densities 
exist. We prove the appropriate limit theorem, using a method of Hunt  [5]. We 
identify this limit in a way which helps to explain the intimate connection between 
the Martin potential kernel and the invariant field. 

1. Inessential Sets 

We begin by introducing notations and definitions from the general theory of 
Markov chains. Let (X, ~)  be a measurable space. Let f2 denote the space of 
countable sequences (x 0, x 1 . . . .  ) of elements of X, and let ~ denote the a-field of 
subsets of ~ induced by the usual product topology. For  each nonnegative integer 
n, define 3;, mapping O into X by letting Xn(x o, x I . . . .  ) = x , .  Let the "shift" func- 
tion 0 mapping Q into itself be defined by O(xo, Xa, . . . )= (x 1, x2, ...). 

Let p be a real valued function on X • ~ ,  such that for each x e X ,  p(x, ") is a 
probability measure on ~ ,  and for each A ~ ,  p(., A) is a measurable function 
on X. 

Let Ao, Az, ..., A, be elements of~' .  A subset A of~2 of the form 

A = {c~ ~ OlXo (o~)~ A o . . . . .  X,(co)eA,}  

is called a cylinder, which we usually express in an abbreviated form: 

A = {Xo6A 0 . . . .  , X , ~ A , } .  

By definition, A ~  Let/~ be a probability measure on ~.  We define a probability 
measure P~ on ~ by defining it on the cylinder A given above by the expression 

Pu(A)= 5 ... 5 g(dxo)p(Xo, dxl) . . .p(x ,_a,  dx,). 
An AO 
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(The integral is read from inside out.) In the case where M{x})= I for some point 
xeX ,  we will write Px instead of P,. 

With respect to the probability space (g2, ~ P~), the sequence {X,; n>0}  is a 
temporally homogeneous Markov chain, with P~ (X o e A) = p (A) for A e N, and for 
each nonnegative integer n, P,(X,+teAIX,)=p(X,,  A) almost surely with respect 
to the measure P,. We note without proof the following expression regarding the 
shift function 0: for A e Y ,  Pu(O-"A[X 1 .. . . .  X,)=Px,(A ) P;a.s. If A e ~ ,  we define 

{X,+A i .o.}= (~ U {Xn+A} 
m > O  n>_m 

where "i. o." means "infinitely often". A set A e N  is inessential if 

Px(XneA i .o . )=0 

for all x e X ;  otherwise, A is essential. An essential set which is the union of a 
countable collection of inessential sets is said to be improperly essential. 

We define a set AeB to be strongly transient if for some M <  ~ ,  

~, P~(X, e A ) < M  
n=O 

for all x~A. This phrase was used in [-6] to describe sets A e N  such that 

~ Px(X, eA)< oo for all x~X.  

Our slightly strengthened version has the advantage that ifA is a strongly transient 
set, then for any probability measure # on ~ ,  ~ P~(X, eA) < oo. 

We define a time to be a measurable function ~: ~2 ~ {0, 1, ..., oo } satisfying 

~ 0 = ~ - 1  0 < ~ < ~  

= ~ "c=O, o(3. 

If A e ~ ,  then let 
~A (CO) = sup {nlX,(co)EA} 

when the sets on the right are not all empty, and ~A(CO) = oO when they are. z A is a 
time, called the exit time J?om A. Not every time is an exit time. 

If z is a time, define Xr ~2 --, X by setting Xr = X,(co) if ~ (co) = n. Xr is 
undefined if r(co)= oo. Xr is measurable, because for AeN,  

{X, e A } =  0 {X,~A}c~{r=n}. 
n=0 

Lemma 1. Let ~ be a time, n a nonnegative integer, and select A ~ .  

a) 0 - "{~<  oo}= { n < z <  oo}. 

b) X~O=X~ifO<z< oo. 
c) O-I{Xr162 
d) j' Pu(X.edy)Py('r=O)=Pu(XCeA, "c=n). 

A 
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Proof For any nonnegative integer k 

o - a { z = k } = { z O = k }  

={~=k+l} 
and from this, a) follows directly. 

Suppose 0 < k <  o% z(co')= k, and Xk(CO)=X k. Then X~(m)=Xk, z(0(co))=k-1,  
and Xk_ 1 (0 (CO))= X k. Hence X~(O (CO))= x k. This proves b), and c) follows directly 
from a) and b). Finally, we note 

y Pu(X, edy) Py(z = O)= E,(Px.(Z = 0); X,  eA) 
A 

= E . ( P . ( 0 - " { ~  = o} Ix . ) ;  X.eA) 
= E . ( P . ( ~  = n i X . l ;  X.~A) 
= P . ( { X . + A }  ~ {~ = n}) 

where E , ( ; A )  denotes expectation with respect to Pu, over the set Ae~,~ This 
completes the proof. 

Lemma 2. Let z be a time. Choose e > 0 and a nonnegative integer k. The set 

A={xlP~(~=k)>e}  
is strongly transient. 

Proof Define Uo(X)=Px(k<z< oe) and for j > 0 ,  let 

uj(x) = ~ Px(XjedY) Uo(y) 

= Ex(P~(O- J {k< z < oe } IXs)) 

=Px(k + j<~  < oQ). 

Hence, u o ( x ) -  u 1 (x) = P~ (z = k). For any n, 

Uo (x)_>- Uo (x) - u. (x) 
n- - i  

= Z ~ P~ (X~ ~ dy)(u o ( y ) -  u l(y)) 
j=o 
n--1 

> E f P~(X~dy)(uo(y)-~,(y)) 
j=o 

n--1 

>=e Z P~(XfiA). 
j=o 

Hence 

j = O  ~ 

and the proof is complete. 

Corollary. Let z be a time. The set 

A =  {xlP~(z< oe)>0} 

is the union of a countable collection of  strongly transient sets. 
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Proof For  each pair of integers n > 0, k > 0, let 

Ank is strongly transient, and A = ~ Ank. 

Theorem 1. An inessential set is the union of a countable collection of  strongly 
transient sets. 

Proof Let A be inessential, and let z be the exit time from A. Clearly Px (z < oe) = 1 
for x ~ A. Now define B = {x [ Px (z < oe) > 0}. A _c B and B is the union of a countable 
collection of strongly transient sets. Therefore, so is A. 

Corollary. An improperly essential set is the union of  a countable collection of 
strongly transient sets. 

2. The Invariant Field 

The invariant field ~ is the class of sets A ~  such that O - ~ A = A .  It is easy 
to verify that ~ is indeed a a-field. A characterization of N has been given in [1]. 
In this section we will derive a new one. 

IfZ~, Z 2 . . . .  is a sequence of random variables over (fL Y),  we let N(Z1, Z 2 . . . .  ) 
denote the smallest a-field with respect to which the sequence is measurable. We let 

. . . .  )= . . . .  ) 

n>O 

which we call the tail Ji'eld of the sequence Z1, Z2, .... We will show how under 
certain conditions, fr is the tail field of a sequence of random variables. 

A time sequence is a sequence of times Zl, z 2 . . . .  satisfying 

a) {"Ok< O0}~__{"Ck+l<OO} all k 

b) Zk<Vk+ 1 on {zk< oe}, all k 

c) 
k>l 

d) lim z k = o0 
k~c~ 

where each of these statements is taken almost surely with respect to P~ for each 
x a X .  

If X is improperly essential, there is a sequence A 1 _ A 2 _~..- of inessential sets 
in ~ such that U A j =  X. If rk is the exit time from Ak, then {~1, z2, .-. } is a time 
sequence. 

Theorem 2. X is improperly essential if and only if a time sequence exists. 

Proof Necessity is shown by the preceding example. Suppose a time sequence 
zl, rz, --. exists. Let 

Ak= {XlP~(Zk < Oe)>O}. 

By the corollary to Lemma 2, A k is the union of a countable collection of strongly 
transient sets. Since X = ~) Ak, the theorem follows. 

Theorem 3. Let Zl, z 2 . . . .  be a time sequence. Then 

f q = ~ ( X , , , X , 2  . . . .  )Px-a.s., x e X .  
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Proof Let Aef#, and let A =  {xIP~(A)>�89 Let 

{X,+Ault.}= U ~ {X,,sA} 
n>O m > n  

where "ult." stands for "ultimately." It is shown in [1] that the sets A, {X, eA i. o.} 
and {X, eA ult.} are P~ equivalent for every xsX. Clearly, 

{X, eA ult.} _c {X, eA ult.} __ {X, eA i.o.} 

hence A = {X~eA ult.}. This shows that N _c 2~ (X~,, X~:, ...). 

To show the converse, suppose that A is a cylinder of 2 ( X ~  ...). This means 
there are sets Co, C1, ..., C, in 2 ,  and for somej>k ,  

A = {X,e Co} ~... ~ {X>~ C,}. 
From Lemma 1, 

O-1A = [{X~j~ Co} n {~ > 0}] n - . .  n [ { X > ~  C,} n {z j+, > 0}]. 

Since ri<=zi+ 1 on {zi< c~}, we have 

(1) O-1A=A(3 {O<'rj< oo}. 

From this it follows that for an arbitrary set A e2(X~k, ...), (1) holds for everyj < k. 
Hence, if A �9 200 (X~,, X,2, ...), taking the union of both sides of (1) over the index j, 
we obtain 

O - ' A = A ~ ( U  {O<~j< oo}). 
j>o 

Our assumptions on the sequence "q, ~2 .... imply that U {o < ~j < oo } = ~, hence 
AeN. This completes the proof, i>--~ 

3. The Martin Potential Kernel 

We assume that X is improperly essential. Let ff be a fixed probability measure 
on X. For each xeX, A~2, define 

g(x, A)= s Px(X, eA), 
n=O 

g(A)= ~ P~(X, eA). 
n = 0  

It follows from the corollary to Theorem 1 that g and g(x,.) are a-finite measures 
on X. For each xeX, we can write 

(2) g(x, dy)= K(x, y) g(dy) + s(x, dy) where K(x, ")is 2-measurable, and s(x, ") 
and g are mutually singular on 2 .  We call K the Martin potential kernel. 

K can be defined in such a way that it is jointly measurable, if we assume that 
2 is countably generated. A standard argument can be found in [2, p. 616]. 
However, we do not need joint measurability in this paper. 
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Suppose temporarily that there is a measure m on N, such that for each integer n 
there exists a function p" on X x X and a function p~ in X, such that 

P~ (Xn ~ dy) = p" (x, y) m (dy), 

P~ (X,  c d y) = P"u (Y) m (dy). 

It is not hard to verify that the function K defined above satisfies 

K ( y )  Z P " (  x, = x, Pu 
n =  t l = 0  

for g-a. e. x and y in X, which is the usual definition of the Martin potential kernel. 

We return to our general setting. For  x a X ,  the measures s(x, ") defined in 
(2) and g are singular. Let A x a ~  be such that s(x, Ax)=0 and g(A~)=0. Clearly, 
Pu(X,~Ax)= 1 for all n, hence for any time z, P u ( X ~ A x ) =  1. 

Lemma 3. Let  Ao, A 1 . . . . .  A ,  be measurable subsets of  A~. Let  z be a time, and 
let A be the set 

A =  {X~_.~Ao . . . .  ,X~EA.,  n< ~ < ~ } .  
Then 

Eu[K(x ,  X ,_ , ) ;  A] =Px(A). 

Proof  Let u(x)=Px(z=0).  For  any nonnegative integer m, a proof like that of 
Lemma ld) shows that 

p" (x, dxo) p (Xo, dxO ... p (x,_ 1, dx,)  u (x,) 

=P~(X~_,edx  o . . . .  , X ~ d x , ,  z = n + m )  

where p" is the usual mth iterate of p. Summing on m, we obtain 

g (x, dxo) p (Xo, dXl). . ,  p (x,_ 1, dx,)  u (x,) = P~ (X~_, ~ dx o . . . . .  X~ ~ dx , ,  z > n). 

The required relation now follows by integating both sides over A o X . . .  X A , .  

If Y '  is a sub-o- field of ~,, let P~' and P,' denote the restrictions, respectively, 
of P~ and P, to ~ ' .  We know there exists an S ' -measurable  function f, and a 
measure Q which is singular with respect to P~' over ~ ' ,  such that 

P2(d~o) =f(co) Pu'(do) + Q (do)). 

We adopt the following notation for f 

f dP~ 

Corollary. I f  T is a time, then 
dP~ 

K(x,  X~) = - -  P-a. s. 
dP~ I.~(x,) " 

Now suppose z~, z2, ... is a time sequence. In Theorem 3, we will show that 
lira K(x,  X:~) exists, using a method of proof devised by Hunt [5]. In Theorem 4, 

k ~ o o  

we identify the limit, using a new technique based on the preceding corollary. 
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Let -c be a time. For k = 0, 1, 2 . . . .  , define 

Zk=K(x,X~_k) O<-k<-z 

= 0  ~<k.  

Let ~fk denote the P.-completion of the c-field generated by sets of the form 

(3) {X,_;sAo, ..., X,~A;} 

for j G k, A i_  A x. Then ~o --- ~1 ---"" and Z k is ~k-measurable. 

Lemma 4. { Z  k, ~k}  is  a super-martingale, that is, 

E, (Zk] %_ t) < Zk- 1 P,-a. s. 

Proof. Let A be a cylinder of ~k- 1 of the form (3). Then 

E.(E.(Zkl~k- O; A)= E.(Zk; A) 

=E.(Zg; {k6z}c~A) 

=E.(K(x, X~_k); {k<z} c~A) 

=Px({k<z}c~A). 

The last expression comes from Lemma 3. 

Now we have 
P~({k =< z} c~ A) <= P~({k- 1 <__ z} r~ A) 

= E . ( Z k _  l ; { k -  1 <'c} ~ A) 

=E~(Zk_l; A). 

From this inequality the lemma follows. 

Let a, b be real numbers, with a < b, and let 7,, b (r) denote the number of up- 
crossings of the interval (a, b) by Z k. If follows from a result in [4] that 

1 

Theorem 4. lim K(x, X,) exists a.s. 
n - - ,  oo  

Proof. Let z1,~2, ... be a time sequence. Then ~a,b(TJk) is a non-decreasing 
sequence and 

is the total number of down-crossings of the interval (a, b) by K(x, Xn). The 
previous lemma implies 

> 1 
E ( ? , b ) - - - -  limP~(Zk<~ 1 

- -  b - a  k~oo b - a  

hence Gb is a.s. finite. This proves the theorem. 

We turn now to identifying this limit. We begin with a generalization of the 
corollary to Lemma 3. 



which proves the lemma. 

Theorem 5. 

The Martin Potentiar Kernel for Improperly Essential Chains 

Lemma 5. Let Zl, z2, ... be a time sequence. Then 

dP~ 
K(x, X~k) s. 

Proof Let A = {X . . . .  eA t . . . .  , X~k+~A,~ }. 

Now Lemma 1 implies that 

0 - "  EA ~ { z k - -  0 } l  = A c~ {z  k + 1 > n, z k + 2 > n, . . . ,  ~k + m > n} c~ {~k = n} 

but since Zk<Zk+j on {z~< ~},  this reduces to 

0 - "  [ A  c~ {~k = 0 } ]  - -  A c~ ( z  k = n } .  

From this we obtain the expression 

P,(A c~ {z~=n}[X,--- y)---Py(A c~ {Zk =0}). 

Hence, we obtain 

/((x, y) P,({x,~ dy} n {~ = n} n A) = K(x, y). P~ (A ~ {z~ = n}lXo = y) 

= K(x, y). P~(X, edy). (Py(A c~ {Zk----- 0}) ). 
Summing on n, we obtain 

/((x, y) P~({x, ~ dy} n A)= K(x, y) g (dy) P~(A ~ {r = 0}) 

=g(x,  dy) P~(A ~ { ~ =  0}). 

The last expression holds over A x. Now, similarly to above, we see that 

Summing on n yields 

g(x, dy) Py(A c~ {z k =0})=  P.(A ~ {X~ ~dy}). 

Hence, for any set A o _q A,, let 

A = {X~eAo,  X~+eA1 , . . .  , X~k..~A,~ } 

and it follows that 

Eu(K(x, X,~); A)= ~ K(x, y) P~({X, ~dy} c~ A) 
Ao 

= ~ ~ ( {X~edy}~A)=P~(A)  
Ao 

dP~l 
lira K(x, X , ) = - -  P.-a s 

dP~ u "" 

225 
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Proof. The limit exists, so it is sufficient to show that for a time sequence 
"El, Z'2~ . . .  _dPx 

lim K(x, Xek ) - dP. 

From the previous 1emma, we must show 

lira dPx dP~ 
dP, ~(xw x . . . .  ,...)-alP, P,-a .s .  

But this follows from Theorem 2 and familiar martingale arguments, e.g., those 
in [7, Complement IV.5.3]. 
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