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Asymptotic Location and Recurrence Properties 
of Maxima of a Sequence of Random Variables 

Defined on a Markov Chain* 

SIDNEY I. R E S N I C K * *  

1. Introduction 

Let {X,, n => 1} be a sequence of  r a n d o m  variables defined on a finite Markov  
chain (M. C.) and condit ionally independent  given the chain. Set 

M,  = max {X 1 . . . . .  X,}. 

In [4] we investigated limit laws for {M,}. Here we ask where the max imum M, 
was achieved. We are interested in the state of  the M.C. when the max imum was 
achieved. Also how often the max imum occurs in a particular state. These 
questions are concerned with the degree of  int imacy between the max imum term 
and the underlying M. C. 

Let {J,, X , ,  n > 0} be a two-dimensional  stochastic process such that  

X o = - O o  a.s., 

P [Jo = k] = Pk, k = 1, ..., m; ~ Pk = 1, 
k = l  

and 
P{J ,=J ,  X,<=xlXo, Jo, Xl ,  Yl . . . . .  Xn-1, J,-1 =i}  

= P { J , = j , X , < x l J , _ l = i }  

= p,j Hi (x) = Qij (x) 

for i, j - -  1 . . . . .  m. The distributions Hi(x), i = 1, ..., m are nondegenerate  and honest  
( H i ( + o o ) = l ) .  The transit ion matrix P =  {pij} i, j =  l . . . . .  m is assumed to be 
stochastic, irreducible and aperiodic. The s tat ionary probabilities associated with 
e are (re 1 . . . .  , rc~,); P ' ~ I I  w h e r e / / ~ = u  i. 

Immedia te  consequences:  

(i) The marginal  sequence {J , ,n>O} is an irreducible, aperiodic, m-state 
M.C.  with P{J ,=J l J , -1  =i}  =Plj. 

(ii) P { X , < x l J , _ l = i } = H i ( x ) .  n 

(iii) P { X  1 <-_x 1 . . . . .  X . <  x . l J o ,  "-[1 . . . .  , J n - 1 }  : ~ I  P {Xi <=xilJi-1}. 
i = l  

* This research was supported by the National Science Foundation Graduate Traineeship 
Program at Purdue University and by National Science Foundation Contract GP-7631. It is part of 
a Ph.D. thesis submitted to Purdue University. 

** Now with The Technion - Israel Institute of Technology, Faculty of Industrial and Manage- 
ment Engineering, Haifa, Israel. 
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The random variables {X,} are defined on the M.C: and conditionally in- 
dependent given the chain in precisely the sense given by (ii) and (iii). 

Remark. There is no loss of generality in allowing the distribution of X, to 
depend on J,-1 only, rather than J, and J , _ i - P y k e  [2, p. 1751]. The case where 
the distribution of X, depends on the pair (J,_ l, J,) can be reduced to this case. 

Let M,=max{X1,  . . . ,X,} and Q(x)={p i jHi (x )} .  The distribution of M, is 
obtained from: 

(1.1) P {J~= j, Mn<=xlJo=i} =Q~j(x), 

where Q"(x) = {Q~j(x)} is the nth power of the Q-matrix. (Here we are not concerned 
with matrix-convolution powers.) (1.1) was proven in [4]. 

In [4] we studied the semi-Markov matrix Q (x). In particular we proved: 

(1.2) p (x), the Perron-Frobenius eigenvalue of the non-negative matrix Q (x), is 
a distribution function. 

(1.3) If Q(xo) is irreducible then for any x > x  o, Q( ' )  is (right, left) continuous at 
x iff p( ' )  is (right, left) continuous at x. 

(1.4) Let r(x)=(rl(x  ) . . . .  ,rm(X)) and l (x)=(l l (x)  . . . . .  1,,(x)) be the right and left 
eigenvectors of Q (x) corresponding to p (x), normalized so that 

Then' 

l~(x) = ~ l~(x) r~(x)= 1. 
i = l  i = 1  

lim r(x)=(1 .. . .  ,1), 
x--+ oo 

lim l(x) = (rq . . . . .  re,,). 

(1.5) If Q(xo) is irreducible, then for any x > x  o, Q( ' )  (right, left) continuous at 
x implies r ( ' )  and i(.) are (right, left) continuous at x. 

For matrices A =  {aij} and B =  {bij } with real entries, we write A > B  (A>B) 
if ai j>bi j  (aij>bij) for each i, j. For a matrix C =  {cij } with complex entries, ICI 
denotes the matrix {Icifl}- 

Form the matrix M(x)={r i (x ) I j (x )  } and set B ( x ) = Q ( x ) - p ( x ) M ( x ) .  Then 
B n (x)= Q" (x ) -  p" (x) M(x) [4-(2.12), (2.14)]. Below, we suppress the power n and 
write o(1)=B"(x). We strengthen Theorem (2.16) in [4]" 

(1.6) Theorem. Let  Q(x)=  {pijHi(x)}, M(x), B(x) be as above. There exists a real 
number K such that lim B" (x)= lim Q " ( x ) - p " ( x ) M  (x)= 0 uniJbrmly in x > K at a 

geometric rate. There exist constants c > 0 and 0 < 2 < 1 such that jor x > K, 

and 
Q"(x)= p"(x) M(x)+o(1) ,  

Io(1)1 ~c~t"E, 

Jbr n = 1, 2, ..., where E is the m x m matrix with Eij = 1. 
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Proqf F r o m  [4 - (2 .16 ) ]  we have  that  there exists a real n u m b e r  K and a 
posit ive integer N such that  for x > K,  

IBN(x)I ~ (c~-4- 0 E < m - 1  E. 

Since E " = m  " - 1 E  we have 

IB"N(x)I ~ (c~ + e)" E" = (c~ + s)" rn"- 1 E 

< {(c~+s) m}"- I  E.  
Therefore:  

. < . [ ~ 2  iB 

We choose K large enough to insure that  when x > K ,  IB(x)"-[#IN I ___<g. This 
gives: 

I r 
< {(~ + s) m) [~-]-1 E} r 

___m[(c~+e) m ] [ U ] -  1 E. 

Set y = (e + s) m so that  0 < y < 1. Then 

n _ ( n  n n 

mT[~]-X=(m/7)TN y N [~])=<(m/72)?~" 

1 

Setting c=rrt/7 2 and 2 = 7  N gives: [B" (x ) l<c2"E .  

Let  I, be the state in which M,  is achieved;  i. e. I, = j ifffor some k = 0, 1, . . . ,  n - 1, 
Jk = J  and Xk+ 1 = M,.  In order  to insure that  I ,  is well defined, we must  preclude the 
possibil i ty of  ties so we assume th roughou t  this pape r  that  H i ( - )  . . . . .  Hm(. ) are 
continuous.  

Coro l la ry  (2.19) gives necessary and sufficient condi t ions for the existence of 
lira P [ I , = j ]  and a p rocedure  for calculating its numerical  value. Existence of 

n ~ o o  

such limits is not  a class proper ty .  We refer to these limits as the asympto t ic  loca- 
tion probabili t ies.  H o w  often is the m a x i m u m  achieved on state j ?  State j is 
max imum- t r ans i en t  or max imum-recu r r en t  according  as P([I  n = j]  i. o . )=  0 or  1. 
A state mus t  be one or the other  and  T h e o r e m  (3.8) gives criteria for each case. 

Conventions. We shall frequently need inverse functions. Fo r  a cont inuous  
distr ibution function F(x) we define 

F -  l(y) = inf {xlF(x) = y}. 

For  F( . )  a dis t r ibut ion function set Xo=inf{ylF(y)= 1}. If  F ( y ) <  1 for all y 
then x o = oe. If  two distr ibution functions are involved in a discussion we write 
Xo v, Xo G. I f  no distinction by  superscripts  is made,  it is to be unders tood  that  

F G 
X 0 - -  X 0 = X 0 �9 

15 Z. Wahrseheinliehkeitstheorie verw. Geb., Bd. 18 
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Two distribution functions F(-) and G(') are tail equivalent iff x~=x~o=Xo 
and 1 - F ( x ) ~ l - G ( x )  as x ~ x  o-  ; i.e. iff 

1 -F(x) 
lim - 1. 

~ o -  1 -  C(x) 

We often speak of two distribution functions whose tails have a ratio approach- 
ing ~ where 0 < ~ < ~ .  

In [5] we proved that p (x), I-I.~'(x) and ~ ~i Hi(x) are all tail equivalent. 
i = l  i = 1  

2. Asymptotic Location of the Maximum 

We calculate the distribution of I.: 

n - - 1  

P{I.=j[Jo=i } = ~ P{Jk=J, Xk+ 1 =M.lJo=i}. 
k = O  

To utilize the conditional independence of the random variables {X.} we intro- 
duce as auxiliary variables Jx, ..., Jk-1, Jk+a, " ' ,  J.-x and compensate for this 
introduction by summing these variables from 1 to m. Hence the desired proba- 
bility equals" 

n - 1  

E Z P{Xk+a> max {Xl} Jo=i, J~=j~, l_<ct_<n-1, ct~k, Jk=j} 
k = O  Jt ..... j k - t ,  Jk+l...J~ 1 l ~ k Z  1 

�9 P{J~=j~, l<-a<-n-1, ~-k ,  Jk=J]Jo=i} 

= ~, Z ~ H,(x)Hj,(x),..., Hjk_l(x ) Hjk+I(x)... 
k = O  Ja ..... Jk-a, Jk+a ..... Jn t --o0 

... Hj,_,(x) dHj(x) . Pijl PJ, J2"'" PJ~-1JPJJ~+,"" PJ,-23,-1" 

As usual, Q~ 5ij and with matrix notation we have: 
n - 1  oo m m 

(Z1) p[i=j]jo=i]  = ~ ~ k Q i j ( X )  E Pja 2 Q n a l k - l ( x )  d H j ( x ) .  
k = O  - - ~  a = l  / = 1  

We wish to study the limiting behavior of expression (2.1). 
First a remark. Consider a sequence of independent random variables 

{y,, n ~  1} such that P[yE,~X]=Fl(x), P[y2,+l<=x]=FE(X), n~  1. The proba- 
bility that the maximum of the first 2n random variables comes from F2(. ) is 

~F~(x) dF~(x). The study of the limiting behavior of (2.1) reduces to a study of 

the limiting behavior of this integral. This will be made precise in the Comparison 
Theorem (2.7). 

We begin a study of lira ~F~(x)dF~(x) by considering the case where 
n - ~ o o  _ oo 

- ~  <Xo ~' < x ~ : ~  ~ .  Set x t =Xo F1, x2 =Xo ~2. Then: 

Xl X2 

F;(x) dF;(x)= ~ F;(x)dF~(x)+ ~ dF~(x). 
-oo -co  x 1 
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But  

and 

SO 

x1  

F~ (x) dF~ (X) 5~ F~ (x1)  --> 0 

X2 

dF2(x)= 1 --F~ (Xl)--> 1 
X l  

F~" (x) dF~ (x) ~ 1. 
- - e l 3  

a s  f/---> oo  

a s  n ---+ oo  

The interesting cases are when either Fx(x)< 1, F2(x)< 1 for all x, or XoVl= 
X F2 < 00 .  

The following lemma is useful and the method of proof will be used repeatedly. 

(2.2) Lemma. F a (.), F 2 ('), H (. ) are continuous distribution fimctions and X~ < Xg 1. 
Then 

lira S F~(x) dF~(x)= lira S F~(x) H(x) dF~(x) 

where "l im" is understood in the sense that the limit of one side exists iff the limit 
of the other side exists in which case the limits are equal. 

Proof For any e, choose M so large that for x > M, I1 -H(x) l  < e. Then: 

0=<lim~ _ FC (x) de;  (x)-   VC(x)mx)dV;(x) 

< lim ~ F~(x)]l-H(x)]  dF~(x) 
n ~ o o  

- c o  

oo 

= lira ~ F~(x)I1-H(x)] dF~(x) 
n ~ o O  M 

oo 

< lira e ~ F~ (x) dF~ (x) <= e. 
n ~ o o  M 

Since e is arbitrary, the proof is complete. 

For the following theorem we suppose for simplicity that Fl(x ) < 1, F 2 (x)< 1 
F2 for all x. Only minor changes are necessary when xo~'= x o < oo. 

(2.3) Theorem. F 1 (.), F 2 (') are distribution functions such that F 1 (x) < 1, F 2 (x) < 1 
jbr all x. Then 

(2.4) 

Jot O < L < oo iJf 

(2.5) 

15" 

lira 1 - F 1 (x) _ L 
x~oo 1--Fz(x ) 

lim [ F~(x)dF~(x)=(l+L) -~. 
n ---~ oo 

- c o  
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Proof We make  a series of substitutions designed to bring the integral into a 
form where the Ka rama ta  Tauber ian  theorem is applicable. At  each stage we keep 

track of how the substi tutions affect lim 1 - F l(x) . If 
~o~ 1 - F 2 ( x  ) 

lim ~ F~(x)dF~(x)=(l+L) -1, 
n ~ o o  - - o o  

then setting y = F 2 (x), G (y) = F 1 (F2-1 (y)), we have 

1 

lim ~nG"(y)y"-idy=(l+L) -1. 
n ~ o o  0 

Also 

lim 1 - F l ( x ) - L  i ff  l i m  1 - G ( y )  
x~oo 1 - F 2 ( x  ) y~l 1 - y  

= L .  

Set H(y)=y G(y) and we get 

i H ' (y)  dy 1 
o Y n ( l + L )  

and 

as n--, oo 

lim 1 - F  l ( x ) _ L  iff lim y - H ( y ) - L .  
x - ~  1 - F 2 ( x  ) y~l 1 - y  

Putt ing y = e-  v gives 
1 

H"(e-V)dv" n(1 + L )  
0 

and setting K(v)= H(e-v) gives 

1 
yK"(v)dv,,~ n(1 + L )  
0 

Then K(0 )=  1, K(c~) =0 ,  and 

e- v_ K(v) e- v_ K(v) 
lim 1 - F  l(x) L iff lim - L  iff lim - L ,  
x-+o~ 1 - F 2 ( x  ) v-+o+ 1 - e  -v v-+o+ v 

1 - K ( v )  1 - e -  v e -  v _  K ( v )  
- ~- ~ I + L  as v ~ 0 + .  

V V V 

iff 

ao  

If log K(v)=  -S(v), then ~ e-"S(V)dv~ 
r so that o n(1 + L )  

1 
~e-""d~b(u) n(1 + L )  
0 

1 - F l ( x  ) u 
lim - L  iff q~(u) 
x--,~ l - -F2  (x) I + L  

Also 

�9 Substitute u=S(v) and set 

as u ~ 0 .  
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Observe that 

~o 1 oo 
y e - " " d ~ ( u ) ~  n ( l + L )  iff l imxSe-~"d~b(u)=( l+L)  -1. 

0 x ~  0 

This is shown by the inequalities: 

o o  o o  o o  

Ix] ~ e-@'l+X)"d~(u)<=x ~ e-X"d~(u)<([x] + 1) S e-[~JUd@(u) 
0 0 0 

and by multiplying and dividing on the right by [x] and on the left by [x] + 1. 

We have shown that: 

lim ~ F~(x)dF~(x)=(l+L) -1 
n---~ oo 

- - o o  

iff 

and also that" 

iff 

l imx ~ e- X" d~b(u)=(l + L) -1, 
X ~ o O  0 

lim 1 - F 1 (x) = L 
~ o  1-F2(x  ) 

U 
(u) ~ as u ~ 0, 

I + L  

and the desired result follows by the Karamata Tauberian Theorem [1, p.422]. 

(2.6) Corollary. F 1 (.), F z (.), G (.) are continuous distribution Junctions and F 1 (') 
and G (') are tail equivalent. Then 

lira ; F~(x) dF~(x)= lira ~o G"(x) dF;(x). 
n---~ oo  n---~ ct3 

- o ~  - 0 9  

(2.7) Theorem. Comparison Theorem. We have: 

lim P [I, =J[Jo = i] = lim P [I, =j ]  

n - - 1  o 0  m m 

=lira  Z ~ Q~j(x)Zp~,/_,Vt3"-k-l(x)dHi( x ) z ~  
n ~ o o  k = 0  - c ~  ~ = 1  I = 1  

= lim ~ [ l - I / / ~ ( x ) ] "  dH]J". 
n ~ o o  - o r  k @ j  

As before, the equalities are to be understood in the sense that the limit of 
any of the quantities exists iff the limit of all the quantities exists and then all the 
limits are equal. 

Proof. If there exists x o such that Hj(xo)= 1 and p(Xo)<l (iff there exists 
j '  4=j such that H~, (Xo)< 1) then each of the above limits equals 0 and the theorem 
holds. Otherwise we proceed in stages as follows: 
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(1) Suppose that: 

(2.8) 
n ~ c o - o o  i * j  

By Theorem (2.3), this is true iff 

iff 

lim ~o (H H~'(x))" dH']J"(x)=I. 

iff 

lim 
x - * c o  

1 - 1-[ H.~' (x) 
i . j  1-1  

1 - H ? ( x )  l 

1 - f i  H~ ~(x) 1 
lim i= 1 

l x~co 1 -  H;J(x) 

1 -p (x )  _ n i 
(2.9) x~colim 1 -Hj (x )  l ' 

(2.10) 

iff 

where we have used the tail equivalence of l |  H'7' (x) and p (x). Hence (2.8) holds iff 
(2.9) holds, i= 1 

(2) The Tauberian argument used in the proof of Theorem (2.3) can be modified 
to prove that: 

l imn ~ p'- l (x)dHj(x)= 1 
n - - + c o  _ co 7 Z j  

lim 1 - H i ( x ) -  I 
x ~  c o  1 - p (x) rc i 

So (2.8) iff (2.10). 

(3) Since we have eliminated the possibility that there exists an x o such that 
Hi(xo) = 1, p (Xo)< 1, for any e > 0 there exists m such that Hi(m ) < 1, p (m)< 1 
and for x > M :  

Ink--/k(x)l <~, 

I i - r k ( x ) l < e ,  

(2.11) 

iff 

k=  1, ..., m. This and the fact that n ~ p'- l(x)dHj(x) is bounded imply by the 
- c o  

method of proof of Lemma (2.2) that (2.10) holds iff 

lim n ~ p'-  l(x) lj(x ) dHi(x) = l 
n--*  c o  - - o 3  

iff 

limn ~ p'- l(x)  ri(x ) lj(x) dHj(x)= l 
- - C O  

; ,) limn p'-l(x)ri(x)lj(x) pj~r~(x dHj(x)=l. 
n --+ ~ _ c o  r ~ l 
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Recalling that M~j(x)= r~(x) lj(x) and ~, Ik(X ) = 1, we have that the above holds iff 
k = l  

iff 

(2.12) 

since 

limn ~p'-l(x)Mq(x)~, ~pj.M=k(x)dHj(x)=l 
n~co  - 0 o  k = l  a = l  

lim "}-'7 ~P'-l(x)Mij(x)~ ~Pj.M~k(x)dHj(x)=l 
n~co  / = v  - c o  k = l  ~t=l  

2v ~ p'-l(x) Mo(x)~ ~pj=M=k(x) dHj(x)-+O, n--+oo. 
- - m  k = l  a = l  

Since Mo(x ), M=k(X) are bounded functions, there exists a constant K such that 

n - v  M m 

E S pn-I(x) MiJ(X)E ~pj~M~k(x)dHi(x)<mKnp"-'(M)Hj(M)~O 
l = v  - - m  k=l ~ = 1  

as n-~oe for any M such that p(M)< 1. Hence (2.16) holds iff 

n - v  co m m 

(2.13) lim ~ ~pn-l(x)Mij(x)~ ~'~ pj~M~k(x)dHj(x)=O 
n + c o  / = v  M k = l  ~ = 1  

for any M such that p (M) < 1. 

(4) For any M such that p(M)< 1: 

n - 1  M 

(2.14) lim Y' I 
n ~ c o  k = 0  - c o  

m m 

Q,~j(x) 2 pj~2 Q~"7 k- ~(x) dSj(x)= O. 
a = l  / = 1  

Proof (2.14) is bounded by: 

n - 1  m n - 1  

~Q~j(M)2pj~Q.:k-I(M)Hj(M)= ~ ~" Q,i(M)k Qj,.-k(M)< ~Q'~,(M)-+O 
k = 0  / = 1  a = l  / = 1  k = 0  / = 1  

as n --+ oo since p (M) < 1. 

(5) For any fixed integer v 

v - 1  co m m 

( 2 . 1 5 )  l i m  2 ~ Q / k / ( x )  2 Pja2 Q~-[k-'(x) dHj(x) =0" 
n ~ m  k = 0  M a = l  l = 1  

Proof. 
v-- 1 m m m 

k = O  M a = l  / = 1  

v - 1  co m m 

--< Z I Q~j(x) Z pj~ E Q:7 ~(x) dE(x) 
k = O  M •=1 l = 1  

i ;i  -,( <= p pj, Q~7"(x)d x)--+O 
k = O  ~ = 1  M / = 1  

a s  / ' / -+0(7)  

by the Lebesgue Dominated Convergence Theorem. 
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A similar proof shows that 

n - 1  m In m 
k n -  

( 2 . 1 6 )  l i m  2 ~ Qij (x) 2 P jot 2 Qal k- I ( X  ) dHj (x) = O. 
n ~ o o  k = n - v + l  M a = l  / = 1  

(6) Given any e > 0 ,  there exists a positive integer v o such that for v > v  o and 
n sufficiently large: 

n ~ v  M~ In In 
Q~i~ (X) 2 P jet 2 on;  k- 1(X)  dn j ( x )  

k = v  (2.17) cz=l  I = 1  

- ~ ~Pn-'(x) M,j(x) pj~M,z(x) dHj(x ) <e 
k=v M 1=1 ~t=l  

uniformly in M. 

The difference in (2.17) is less than 

x ) -  p~(x) M,j(x) Z P j, Y~ Q"J ~- 1(x) ant(x) 
k = v  M a = l  l = l  

. . . .  ~, m dHj(x)  . + k~ ~ pk(x)MiJ(x) 2PJ'[Q:tk-a--P~;k-'M=t(X)] 
v " ~ = 1  / = 1  

Using Theorem (1.6) we have that for n > 2 v, the first term is less than 

n- -v  

c m ~  2 k = c m 2  v 

k = v  

and the second is less than 

l__2n-2v+l 

1-4  

n - v  

II Mi~(x)ll cm ~ 2 "-k-1 = IlMi~(x)ll c n 2 ~-1 
k = v  

l__2n-2v+t 

1-4  

where [1Mi~(x)[ I is the supremum of this continuous function with limit at + 
over any convenient interval [T, ~ ] ,  T <  M. 

Thus the difference in (2.17) is less than 

2~ + IIMij(x)ll 2 "-1 
c m  

1-2  

which may be made less than e by choosing v > v o . 

(7) If (2.13) holds then by (6) 

n-- v co In In 
k l - z <  lim ~ ~ Q,j(x) F, pj~O~Tk-l(x) dH~(x) 

n ~  k = v  M a = l  / = 1  

< lim < l + ~ .  
n ~ o o  
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Taking into account (4) and (5) we must have 

n - 1  ~ m m 

l - e < l i m  2 ~ Q ~ j ( x ) Z P j , ~ Q ~ ; k - ~ ( x ) d H j ( x )  
n ~ m  k = O  - -c~  ~ = 1  l = l  

< lim < l + e  
n ~ o o  

which requires that 
n - 1  m 

(2.18) lim 2 ~ Q ~ ( x ) ~ p j ,  ZQ"~k- l (x )dH~(x)=l .  
n ~ a o  k = O  - ~  ~ t = l  1 = 1  

Similarly (2.18) implies (2.13). Since (2.13) is equivalent to (2.8) we have completed 
the proof of the Comparison Theorem. 

Studying ! i m p  [I n = j ]  is thus equivalent to studying these probabilities in the 

alternating case as described after (2.1). In fact we can lump all the states k=~j 
into a single class, adjust the distribution functions to take into account sojourn 
times and study the two-state alternating scheme with distribution functions 
H~J (x) and I~ H~ ~' (x). 

k~:j 
The Comparison Theorem (2.6) and Theorem (2.3) combine immediately to 

give criteria for existence of asymptotic location probabilities. 

(2.19) Corollary. For O<li< 1, 

lim P [I n = i] = l, 
n ~ o o  

or equivalently iff : 

rk  X 1 -  [ I  H; ( )  
lira k* i _ 1 -- 1 i 
x . ~  1-U~'(x)  l i 

lira 1 - H i ( x ) -  li 
x~ ~ 1 - p (x) ni 

Remark. In the above, p(x) may be replaced by any tail equivalent distribution 

m l ~  ~k  function such as ~ nkHk(X ) or H~ (x). 
k = l  k = l  

The results obtained in proving the Comparison Theorem (2.7) afford us the 
following interpretation of Corollary (2.19): 

A ^ 
(2.20) Corollary. Given a process {J,, X , ,  n >_ O} defined as in the introduction with 
n {Jn= j, Xn<_xl,]n_ l =i}=Qij(x)=i~jHi(x ). Then: 

l i m P { I n = j I J o = i } = l  
n ~ o o  

JimP{ o=j'l:o=i} =l. 

Remark. The two systems governed by the S.M.M.'s Q(x)={pijHi(x)} and 
Q (x)= {~j Hi(x)} have the same properites as far as the existence and numerical 
value of ! i m P [ l , = j ]  is concerned. Likewise with respect to the existence of 
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limiting extreme value distributions [4-(3.12)].  The limiting behavior of the 
sequence {M,} is determined by the quantity of probability contained in the tails 
of the distributions H d.), i = 1, ..., m and also by the relative amounts of time the 
Markov chain spends in each state after the chain has reached equilibrium. 

Proof. If we evaluate (2.1) using the matrix 0 ( x ) =  {Tt~ Hi(x)}, we obtain: 

[ m ~ n - 2  

P { 7 . = j [ . 7 o = i } = n j ( n - 1  ) ~ H, (x ){  E ~kHk(X)J dH,(x) 
-- ~ x k =  1 I 

(2.21) 
/ m \ n - 1  

The second term on the right hand side goes to zero and may be neglected. Then 

lira ; (1-[ U;~(x)) "dH7j"(x)=l 
n ~  _ co  k * j  

iff 
lim 1 - Hj (x) 1 (2.19) 
~ ~ 1 - p (x) ~r i 

iff 

lim 1 - H i (x) 1 
/ .  

x oo 

1 - ~ ~/-/k (X) 
7~j 

iff k=l 

lira n ~ rr k Hk(x ) dHj(x) = - -  
n--,~ - ~ ' k = l  7Zj 

(Theorem (2.7-2)) iff 

lim n rcj Hi(x ) 7~kHk(X ) 
n . - - , ~  - ~ k -  

dill (x) = 1 

(same proof as Lemma (2.2)). 
We have proved: 

iff 

lira P [1, = j lJ o = i] = I 
tl ~ oo 

lirn P[1.  = j l J  o = i ]=1 .  

We postpone a discussion of solidarity questions and proceed to investigate 
recurrence properties of the sequence {I,}. 

3. Recurrence Properties 

Let (O, ~, P) be the underlying probability space. Then: 

(3.1) Definition. State j is maximum-recurrent (max-rec) iff P {[I, = j ]  i. o.} = 1; 
i.e., for any integer N and for almost all co~f2, there exists some n(og)>N such 
that I,(~,)(o)) = j. 

(3.2) Definition. State j is maximum-transient (max-trans) if P {[I, = j ]  i.o.} =0 ;  
i.e. iff for almost all co there exists a positive integer N(co) such that for all n > N(co) 
I.(og)# j. 



L o c a t i o n  a n d  R e c u r r e n c e  o f  M a x i m a  2 0 9  

(3.3) Definition. (Cf. [3].) F o r  a sequence of  r a n d o m  variables {Xn, n> 1}, Xj is a 
record value of the sequence if it is strictly greater  than all preceding values, i.e., 
if Xj > m a x ( X  1 . . . .  , Xj_ 1). By convent ion  X 1 is a record value. 

Fo r  n > 1 define the events A~ by 

A~ = [X, is a record, J~_ 1 = J] .  

A~ is the event that  a record occurs at t ime n in state j. 

We have that  

(3.4) j is max- t rans  iff P{A~.i.o.}=O, 

(3.5) j is max- rec  iff P { A ~ i . o . } = l .  

To  calculate PA~, let {pt}, I =  1 . . . . .  m be some initial distr ibution.  Then 

PA~= P [ X , >  max {X 1 . . . . .  Xn_ 1}, J,_ l=j] 
m 

1=1 j l = l  ] n - z =  1 

�9 P [ X , > m a x { X ~ ,  . . . ,  :(,_1} I Jo = 1, J~=jz, ..., ~ _ 2 = j , _ 2 ,  J ,_ ~ = j ]  

�9 P [ L _ I = j ,  J ,_2=j ,_2 ,  ..., J~=j~lJo=l] 

/ = 1  j 1 = 1  j n - 2 =  1 - m  

In t roduc ing  mat r ix  no ta t ion  gives 

(3.6) PA~, = ~, Pt Qt~- ~(x) dHj(x). 
l = l  - m  

For  an i. i. d. sequence {X,,  n > 1 }, the events A, = I X ,  is a record I are independ-  
e n t -  Renyi  [3]. Al though  our  events A~ are not  independent  they exhibit some 
proper t ies  of  an independent  sequence, name ly  they satisfy a zero-one law. We 
will show tha t  the only values for P{A~i.o .}  are 0 or  1. Hence  a state must  be 
either max- t rans  or max-rec.  Before a formal  s ta tement  of  these results, we prove  
a l emma:  

(3.7) Lemma. 

,=1 - ~  1 - p ( x )  < ~ 1 7 6  

P A . -  oo ~f - - =  oo. 
,=1 -o~ 1 - p ( x )  

Proof F r o m  (3.6) we have  that  

m n 

n = l  / = 1  - c o  n = O  

For  any  M such that  p ( M ) <  1: 

/ = 1  --co n = O  1~1 n = O  
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Choose M such that M > K and p (M) > 2 where K and 2 are given in Theorem (1.6). 
Then there exists a positive constant kM so large that Qi')(M)<kMp"(M) for 
l<i , j<m,n>l.  

m kM ~, 
So the above is dominated by ~ Pl Hj(M) 1 -  p(M) < oe. Therefore PA~ 

l = l  n = l  

converges or diverges according as 

/ = 1  M n = 0  

converges or diverges. 
Now for x>M, Q"(x)=p"(x)M(x)+o(1) where Io(1)l<c2"E, o < 2 < 1  

(Theorem (1.6)). Hence: 

/ = 1  M n = 0  

??1 co m co 

= Ep,~ ~ P"(x)Mzj(x)dHM) + Ep, I ~ ~ 
Z = l  M n = 0  / = 1  M n = 0  

The last term is dominated by 

c2"(1-Hj(M))= c(1-Hj(M)) <oe. 

. = o  1 - 2  

oo 

So ~ PAJ, converges or diverges according as 
n = l  

m o9 

~, pt ~ ~ p"(x) M,j(x) dHj(x). 
/ = 1  M n = 0  

But we have: 
~o dH.(x~ m ~ 0o 

min i n f  [Mtj(x)[ ~ 5 J':',<~,,P,~ ~,P"(x)Mu(x)dHj(x) 
l<_l<_m T _ x _ o 9  M l - - p ( X )  / = 1  M n = O  

o~ dHj(x) 
< max sup IMtj(x)]_ [ 
=1_<l_<,. r<x_<oo M 1--p(x) 

where Tis  chosen less than M but large enough so that min rinflMlj(X)l>O.<~< 
l < l < - m  = = 

Hence 

PA j and ~ dHj(x) 
,=1 M 1 - p ( x )  

converge or diverge together and since 

dHj(x) < Hi(M) 
-~o 1 - p ( x ) =  1 - p ( M )  <~ 

this suffices to show the desired result. 
Let VlJ=inf{n>llX, is a record, J,_l=j}, i.e. V1 j is the index of the first 

non-trivial record in state j. 
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(3.8) Theorem. Recurrence Criteria. State j is max-trans iff 

(i) P{A{i.o.} = 0  iff 

(ii) ~ PA~ < oo iff 
n = l  

(iii) ~ dHs(x~)-) 
_~ 1 - p ( x )  < ~ 1 7 6  /ff 

(iv) P { Vls = ~ IX1 = Y, Jo =J} > 0 for some y. 

State] is max-rec iff 

(v) P{A~i .o .}=  1 /ff 

(vi) ~, PA L = oo iff 
n = l  

(vii) ~ dH,(x) 
-oo 1 - p ( x )  - ~ 1 7 6  /ff 

(viii) n { V~ s = oo [X 1 = y, Jo =J} = 0 Jbr all y. 

Remark. ~ PAJ, = Expected number  of records in state j. 
n = l  

Proof The equivalence of(ii) and (iii), and (vi) and (vii) follows from Lemma  (3.7). 
That  (ii) implies (i) is the statement of  the Borel-Cantelli  Lemma.  

We have that :  

P{ lim (A~) c} = P [The number  of records in state j is finite] 

= ~ P [The  last record in state j is at index n] 
n = l  

= ~ P [X.  is a record in s ta te] ;  there are no records in s ta te]  among 
"=~ X.+~, X.+2 . . . .  ] 

= ~ ~ P{TherearenorecordsinstatejamongX.+l,X.+2,. . . lX.  
n = l  - m  isarecordinj, X ,=y}  .dP[X,  isarecordinj, X,<y] .  

Now 

P[X, is a record in] ,  X,< y] = P[y> X,> max {Xa .... , X,_ I} , J,_ l=j] 

= F, p, Q~? l(x) d f I  s(x). 
l = l  - - m  

Therefore  setting 

P {There are no records in state j among 

32.+1, X,+2 . . . .  IX, is a record in],  X,=y}  

= P {V~=oO[Jo=j, Xl= y } 
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gives: 

(3.9) P{lim(A~)r : ~Pl ; P{VlJ=~ XI=Y} ~ Q,"j(y)dHj(y). 
n ~ o e  / = 1  - -oo  n = 0  

I f j  is max-trans,  then P {A~ i. o.} = 0 and P{ l im  (A~) c} = 1 so that  (3.9) requires 
n-- .  ct) 

that  we have for some y, P { V/=  oo ] X 1 = y, Jo =J} > 0 and (i) implies (iv). Assuming 
(iv) we note  that  P{V~J= oo lXx=y ,  Jo= j}  is non-decreasing in y and hence 
lira P { V /=  oo [ X1 = Y, Jo =J} exists and is strictly positive. Therefore  
y ~ o o  

m 

2Pt ~ P{VlJ=~176 XI=y} ~ Qt~(y)dHj(y)< oo 
/ = i  - - m  n = O  

implies that 

l = 1  - - o o  n = 0  

and this happens when and only when 

- oo 1 - p (x) < ~ by Lemma  (3.7). 

Thus by virtue of (3.9), (iv) implies (iii) and we have shown the equivalence of 
(i)-(iv). 

If state j is max-rec, P {A~ i. o.} = 1 and P[ l im(A~)  c] = 0  so that  f rom (3.9) we 
n ~ o o  have that:  

- o o  / = 1  n = 0  

ms 
Let y o = i n f { y  min Hk(Y)>O }. Then for Y>Yo, ~P~ Qz~(y)>0 so that  if 

'l<_k<_m / = 1  n = 0  

P { V/=  oolJ o = j, X 1 = Yo} > 0, then Hj(yo)= 1. But by the definition of Yo and the 
continui ty of the H's, there must  be a subscript l 0 such that  H~o(Yo)=0 so that  j 
could not  possibly be max-rec. Therefore  P { V1 j = oolJ o = j, X 1 = Yo} = 0. Suppose 
there exists Yl > Yo such that  for y > yl P { V~ j = oOlJo = j, X1 = y} > 0. Then Hj(y 0 = 1 
and if there were a subscript k, 1 <__k#j<m, such that  Hk(yl)< 1 then j could not  
be max-rec. Therefore  for all k, Hk(Yl)= 1. In part icular  if there exists an index ~, 
l_<c~_<m such that  H~(y)< 1 for all y, then P[V~=oOIJo= j, X l = y ]  = 0  for all y. 
Otherwise we observe that  P{V~J=oOIJo=j, Xa=y]}=O for all y such that  

rain Hk(Y)<l. For  other  values of y, the condit ional  probabil i ty  is not  well 
l<_k<_m 

defined and we can arbitrari ly assign it the value zero. Therefore  (v) implies (viii). 
Conversely if P { V /=  oolJ0 = j, X1 = y} = 0 for all y, then P {A~ i.o.} = 1 by (3.9) so 
that  (viii) implies (v). 

Suppose (viii) holds. Then by (3.9) P {lim (A~)C}.= 0 and j is not  max-trans.  
n ~ o o  

Thus (vii) holds. Suppose (vii) holds. We now show that  the assumption that  
P { V~ j = ~176 = Y, J0 = J} > 0 for some y leads to a contradict ion.  For  if this were 
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true, then 
lim P { Vii = ~ [ X  1 =y,  Jo= j}  > 0 
y ~ C O  

and by the chain of reasoning following (3.9), this implies the RHS of (3.9) is 
infinite which contradicts the equality in (3.9). Thus (vii) holds iff (viii) holds. This 
completes the proof of Theorem (3.8). 

4. Connections between Recurrence Properties 
and Asymptotic Location Probabilities; Solidarity Results 

We now investigate the connections between recurrence properties and 
asymptotic location probabilities and give solidarity results. For  the construction 
of counterexamples recall the following: 

(4.1) I fpi j=~j ,  l<=i, j<-m, then p(x)= ~rhHi (x  ). It is often convenient to take 
m i = 1  

Pi~ = m- 1 so that p (x) = m- 1 ~ Hi (x). 
i = 1  

(4.2) For  two arbitrary distributions the ratio of the tails need not have a limit 
as x --, x o - .  As an example, let F(x) be any continuous, strictly increasing distribu- 
tion function. Pick x* such that F(x*)< 1 and set x, to be the (unique) solution 
of the equation 1 - F ( x ) = 2 - " ( 1 - f ( x * ) ) ,  Define G(x) as follows: G(x)=F(x) for 
x<x*,  1 - G ( x 2 , _ O = l - G ( x 2 , ) =  1-F(x2 , ) .  For  other values of x, define G(-) 
by linear interpolation. 

Then lira 1 - F ( x z " )  1 and lira 1 - F ( x z n + l ) - 2  which shows 1 - F ( x )  
,-~co 1 - G ( x 2 , )  .~co 1 - G ( x z n + l  ) 1 , G ( x )  

does not have a limit as x ~ oo. 

We give our results as a sequence of propositions. 

(4.3) Proposition. I f  lim P [-I, = j] = lj > 0 then j is max-rec. 
n--+ co  

Proof. Observe t h a t - 0 0  l _ H j ( x ) - O O .  Now ! i m n [ I n = j ] = l j > O  iff 

lim 1 - H;J (x) 1 - p ( x )  = l~ (Corollary (2.19)) iff lira 1 -H~(x) = lj >0. 
. . . . . .  1 - p (x) ~j 

co co 

Therefore the integrals ~ dHj(x) and ~ dHj(x) _ co 1 - p ( x )  _ co 1 -H j ( x )  converge or diverge to- 

gether and j is max-rec. (Theorem (3.8).) 

(4.4) Proposition. I f  lim P [I, = j ]  =0,  then j can be either max-rec o1" max-trans. 
n ~  co  

An asymptotic location probability of zero gives no inJbrmation about the recurrence 
properties of  the state. 

Proof Take a 2 x 2 stochastic matrix with entries _ 1 P~j- 5, i, j = 1, 2. Take any 
two distribution functions Hi(x), H2(x ) such that there exists x o with Hl(xo)= 1 

but H2(X)< 1 for all x. Then p(x)=�89189 ) and 1 - H l ( X  ) ~ 0 as x ~ .  
1 -p(x)  

Also ~ dill(x) < dH 1 (x) 
_ 1 - p ( x )  = _  1 - p ( x )  =<(1-p(x~  < ~176 

Therefore: lim P[I ,=  1] =0  and 1 is max-trans. 
n--+ oo 
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We now give an example where the asymptotic location probability is zero but 
the state is max-rec. 

Consider again the stochastic matrix Pu-g,- ~ i, j =  1, 2. It suffices to find two 
distribution functions HI(.) and H2(') such that 

1 - H I ( x ) - 0  and ~ dill(x) 
lmxio9 1 - H 2 (x) _ | 1 - H 2 (X) 

:Z). 

This is sufficient since lira 1 - H  1 (x) _-0 implies 
~- o9 1 - H 2 (X) 

1 - -  H l ( x )  1 - H 1 (x )  * 0 a s  x ~ oo .  

1--p(x) �89189 
Also 

1 - H 2 (x )  _ t - H 2 (x )  1 
72 as x --, oo 

1 -p (x )  �89189 l ( 1 - H l ( x ) )  1 - H z ( x ) q - 2  

o9 dH l(x) ~ dH l(x) 
so that oo~ 1 - H 2 ( x  ) and ~ 1 will converge or diverge together. 

- -  - - o 9  

It is sufficient to find a continuous function f(z) on (0, 1] with the following 
properties: 

i) f (1 )=  1. 

ii) zfimo+Zf(z)=O. 
iii) f ( ' )  is decreasing on (0, 1]. 

iv) !imof(Z)= oo. 

1 

v) Sf(z) dz= 
0 

Given such a function f ( . ) ,  select any continuous distribution function HI (') 
1 

such that H l ( x ) < l  for all x and set - f (1-Hl(x)) .  Then H2(x)= 
1 1 - H 2 (x )  

1 f ( l_Hl(x) ) .  We have that H 2 ( - o o ) = 0 ,  H2(00)=1, and H2(. ) is non- 

decreasing so that H z (.) is a distribution function. Furthermore 

1 - H 1 (x )  _ l ira  (1 - H 1 (x ) )  f ( 1  - H1  ( x ) ) =  0  im-l_u2(x) x o9 
and 

dH~(x) _ ~ 1 
1 -Hz(x ) f(l -Ha(x)) dU~(x)= ~f(z) dz= oo. 

- o 9  - a o  0 

T o  construct the required function we define f as follows: 

f(1) = 1, 

f (x )=  1, �89 

(') J' ~-.~ = ( n - 2 ) !  n > 2 .  
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For  other  values of x in (0, 1] define f ( . )  by linear interpolation,  f ( . )  has the 

required properties.  F o r  any xE(0, 1] there exists n such that  x e  -(n+ 1)I ' n !  
so that  

xf (x)< - - - - - , 0  as x ~ 0 .  
n[ n 

i 
Also lim f(x) = oo and ~ f (x )  dx = Go. This follows by a direct summat ion  of  the 

x ~ 0  * 0 
areas of the rectangles and triangles under  the curve: 

1 { (  1 1 ) (,,/_2),_1_1 ( 1 
~o j'(x) d x = ~  , n!  (n+  1)! n !  

1 1 n- -2  

= ~ ,  ( n + l ) ( n - 1 )  ~ -7  ~, ( n §  

1 ) - ( n - 2 ) ! ) }  (n+l)! ((.-1)! 

- - O ( D .  

(4.5) Proposition. IJ state j is max-trans, then the asymptotic location probability 
exists and lim P [I ,  = j]  = 0. 

n ~ O  

Proof If state j is max-trans then P([I,=j] i . o . )=0  or equivalently 
lira P ( ~ [I k = j]) = 0. Therefore  

P [I,  = j ]  _-< P( [_) [Ik=i])~O as n ~ o o .  
k>n 

(4.6) Proposition. Suppose j is max-rec. This gives no information about the 
existence of 2im P [I, = j]. 

Proof We construct  an example where j is max-rec yet lira P [I,  = j]  does not  
n ~ o o  

exist. In (4.2) we showed how to construct  two distribution functions H I (.), H a (.), 

such that  lim 1 - H l ( x  ) does not  exist. If necessary the method  of construct ion 
x~ ~ 1 - H 2 (x) 

can be slightly modified to insure 1 -Hi (x )>=  1 -  H E (x) for all large x. Let  the 
stochastic matr ix  P be defined by _ 1 Pg~-3, i, j =  1, 2 so that  p(x)=�89 
Then lira P [1, = 1] does not  exist since 

n ~ o o  ( 1(1 
1-o(x) lim +T 1-Hl(xt 

does not  exist. But 1 is max-rec since for any M such that p ( M ) <  1' 

o0 d /i(x) aHl(xl ___> dHlIx/ 
M 1--p(x)  M �89189 M 1- -Hi (x)  oo. 

Proposi t ion  (4.3) showed how to construct  an example where j was max-rec 
and l imP[I,=j]=lj>O and Proposi t ion(4.4)  showed how to construct  an 

n ~ o o  

example where j was max-rec and lim P [I,  = j ]  = 0. 
n ~ o o  

16 Z. Wahrscheinlichkeitstheorie verw. Geb.. Bd. 18 
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(4.7) Proposition. Maximum-transience is not a class property. In Jact, it is 
impossible for all states to be max-trans. 

k_ IX, is a record, J,_ i = k] Proof Suppose all states are max-trans. Setting A , -  

gives ~ pAk, = P IX ,  is a record]. Therefore 
k = l  

P [X, is a record] = PA = PA < oo 
n = l  n = l  k = l  k = l  n = l  

by Theorem (3.8, ii). Hence by the Borel-Cantelli Lemma: P {[XI is a record] i.o.} 
= 0. It is impossible for there to be only a finite number of records a.s. as the 
following dissection argument shows. Pick an arbitrary state j and let z o be the 
time of the first visit to state j and let %, n > 1 be the waiting times between visits 

to j .  {%,n> l }  is an i.i.d, sequence. Set S ,=  ~ Zg and z0=max{X1 . . . . .  Xzo+l},  
k = 0  

Z1 =max  {Xso+2, ..., Xs,+l} ,  ..., )( ,=max {Xs,_l+2, ..., Xs,+l }. The sequence 
{Z., n>  1} is i.i.d, and )/, is a record value of the sequence {Z,, n>0} iff at least 
one of the random variables Xs,  _I+ 2 . . . .  , Xs,  + ~ is a record value of the sequence 
{X,, n>  1}. But the events {D/k is a record value of the sequence (Z,, n>  1)]} for 

oo 

k > 1 are independent and have probabilities k- ~ [3]. Hence ~ P D(k is a record 
k = l  

value of the sequence (Z,, n > 1)] = oo and by the Borel Zero-One Law: 

P{[Zk is a record value of the sequence 0(,, n>  1)] i.o.} = 1. 

With probability 1, the sequence {Z,, n>  1} has infinitely many records and this 
is true for the sequence 0{,, n>  0} since Zo is exceeded a. s. This completes the proof. 

(4.8) Proposition. Maximum-recurrence is not a class property. State j max-rec 
does not necessitate all states being max-rec. 

Proof Pick two distribution functions H~('), H2(') such that H~(xo)= 1 for 
Xo < oo and H2 (x) < 1 for all x. Let Pu = �89 i, j = 1, 2. Then p (x) = �89 (x) + �89 2 (x) 
and 

dHl(x ) 1 
_ ~ 1 - p ( x )  < = 1 - p ( X o )  < o o .  

Therefore state 1 is max-trans and by Proposition (4.7), state 2 is max-rec. 

(4.9) Proposition. Existence of asymptotic location probabilities is not a class 
property. The existence of ! i m P  [I, =j]  does not imply ! i m p  [I, = k] exists Jbr k +j. 

However if all the asymptotic location probabilities exist, then they Jbrm a prob- 
ability distribution: 

~ l i m P [ I , = j ] = l .  
j = l  n ~ o o  

Proof The last statement is proved by integrating by parts: 

(I] 2 [ (I] 
- - ~  k:~j  ~ t ~ j - - o o  k # ~  



Location and Recurrence of Maxima 217 

Hence:  ~ ~ (I-[ H~,k(x)) " dH:'n(x) = 1. 
~r -oo k#~ 

It  is easy to show tha t  lim P [ I ,  = 3] = 0 does not  imply  that  o ther  states need 

have  asympto t i c  location probabil i t ies:  Take  H 3 (.) for which there exists x o < oo 
and H3(xo)=  1. As in (4.2) construct  two distr ibution functions Hi(-) ,  H2( .  ) such 

1 - H l(x) does not  exist. Set Pij = �89 that  H i ( x ) <  1, H 2 ( x ) <  1 for all x and l i rn  1 - H 2 ( x  ) 

l<i, j<3 and we have tha t  l i m P [ I , = 3 ] = 0  but  neither l i m P [ I , = l ]  nor  
lim P [ I  n = 2] exist. " . . . . .  

n ~ o o  

One can also construct  an example  where the asympto t ic  location probabi l i ty  
exists for one state and  is positive, but  does not  exist for any  other  state. Again 

1 - -  H 1 ( x )  
take two dis t r ibut ion functions Hi( . ) ,  H2( .  ) such that  lim does not  

x-~ ~ 1 - H 2 (x) 
exist. Set 1-H3(x)=�89 l-H2(x)), _1 Pij-5, l~i,j<=3. Then 1 - p ( x ) =  
1 - H 3 (x )  so 

l i ra  1 - H  3 ( x ) _ l  but  lira 1 - H  I(x) and lira 1 - H  2(x) 
x ~  1 - p ( x )  x ~  1 - p ( x )  x ~  1 - p ( x )  

do not  exist. This suffices for the desired conclusion. 
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