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Abstract. The results and methods of determining the secular accelerations of the Moon's orbital 
motion and the Earth's rotation from astronomical observations are critically reviewed. In particular, 
the effect on these results is considered should Spencer Jones' value for the secular acceleration of the 
Moon be revised. General relationships are deduced between these accelerations, the rate of dissi- 
pation of energy in the Earth and the fractional change in the rate of rotation of the Earth. It is shown 
that the theory of tidal torques alone does not completely account for any of the wide range of 
results for the retardation of the Earth deduced from astronomical observations. 

1. Introduction 

It is very appropriate that we should discuss this classical subject at this time and place, 
since it was on these very islands some 2000 years ago, during the flowering of a great 

civilization, that some of the crucial observations were recorded on which virtually 

the whole subject rests. My intention in contributing to this wide-ranging subject, 
already well covered in three books: The Earth (Jeffreys, 1952, 3rd Edition); The 

Rotation o f  the Earth (Munk and MacDonald, 1960); and The Earth-Moon Sys tem 

(Eds. Marsden and Cameron, 1966) is not to attempt to set out particularly original 

ideas, but rather to review the results and methods of deduction already made from 

observations. In particular, I will show the implications which follow from the 
possible revision of Spencer Jones' determination of the current value for the secular 

acceleration of the Moon. Too much reliance can be placed on Spencer Jones' deter- 
mination, and I have already attempted (Morrison, 1971) to demonstrate how the 

standard error of his solution should at least be doubled. The recent renewal of interest 
in the subject stems partly from the fact that it may soon be possible to derive a reliable 
value for the current secular acceleration of the Moon from the analysis of some 

30000 lunar occultations made since 1955.5, when the atomic-time scale was intro- 

duced, thus enabling us to remove accurately the effect of irregular fluctuations in the 
Earth's rotation from the observations. Before the advent of atomic clocks, two 

methods had principally been used for separating the Moon's  secular acceleration 
from the Earth's variable rate of rotation: 

(1) using ancient (circa A.D. 0) records of total solar eclipses and other astronomical 
phenomena; 
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(2) using modern (1700-1940) telescopic observations of the positions of the Moon 
and Sun and timings of the transits of Mercury across the Sun's disc. 

I will first discuss the methods and deductions made from the ancient data, confining 
myself to the total solar eclipses which probably constitute the most accurate and 
reliable data. However, before doing so, I define some basic quantities and concepts. 

The independent variable in the gravitational theories of the Sun, Moon and planets 
is Ephemeris Time (ET). It is regarded as a uniform, dynamical time scale, independent 
of the rotation of the Earth and is denoted by t; the unit is generally the Julian century 
of 36 525 ephemeris days (cy). Derivatives (dotted) are usually formed with respect to t 
unless otherwise stated. 

The observations discussed in this paper were necessarily referred to the non-uni- 
form time scale, Universal Time (UT), denoted by T. The cumulative difference be- 
tween ET and UT since A.D. 0 is several hours. 

The 'secular acceleration of the Moon'  with respect to t is denoted by h; it has the 
value of twice the coefficient of t 2 in the expression for the mean longitude in the lunar 
theory after the removal of the secular part due to gravitational theory; in other words, 
it is regarded as arising from tidal torques operating in the Earth-Moon system. The 
'secular accelerations of the Sun and Moon'  with respect to T are here denoted by 2E 
and 2L, respectively (although Fotheringham and others referred to E and L as the 
secular accelerations). They have the value of twice the coefficient of T 2 in the expres- 
sions for the mean longitudes when expressed in Universal Time. 

2. Ancient Solar Eclipses 

At far distant epochs (say - 20 cy) the differences (F and F')  in the Moon's and Sun's 
mean longitudes between those deduced from observations (in UT) and those cal- 
culated from modern theories (in ET) can be almost wholly attributed to the effect of 
the secular accelerations 2L and 2L'; the errors arising from linear terms are much 
smaller. Thus: 

2L = 2F/(interval from 1900 in cy) 2 

2E = 2F'/(interval from 1900 in cy) 2 . (1) 

The observed occurrence of an identifiable total solar eclipse at a known site pro- 
vides the difference in position on the Earth's surface between the observation site and 
the calculated path of totality. This leads to a linear relationship between L and 12; 

E = aL + b.  (2) 

Ideally, the locus of intersection of such lines for eclipses of similar epoch establishes 
the values of L' and L. In practice, however, many eclipse records are vague and am- 
biguous in interpretation, so that Fotheringham (1920) plotted two lines for each 
eclipse on the (L, L') plane, defining the extreme limiting values of a and b consistent 
with the records. I have reproduced his famous diagram in Figure 1 with his absissa 
reduced by 6':l/cy 2 which removes the purely gravitational part of the Moon's secular 
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Fotheringham's diagram for ancient solar eclipses with Spencer Jones' result from modern 
telescopic observations, 

acceleration in longitude arising from planetary perturbations. The shaded area in 
Figure 1 defines the area of maximum likelihood for the values of 1./and L. 

The 'secular acceleration of the Sun L" ,  as Fotheringham referred to it, is inter- 
preted as the retardation of the Earth's rate of rotation with respect to the uniform 
time scale of ephemeris time. The secular acceleration of the Moon, t~, with respect to 
ephemeris time is therefore given by 

½h = L -- n l n ' . E  ("/cy 2) (nln'  = 13.37) (3) 

where n and n' are the mean motions of the Moon and Sun. For use later, we express 
2L' ("/cy 2) in terms of the fractional change of the rate of rotation of the Earth, co, 
measured in "/cy. The mean motion of the Sun is approximately 0'.'130 x 107 per year, 
therefore 

2E = - 0.130 x 109 (oh/co) ("/cyZ). (4) 

And using Equation (3), we find 

2L = h - 1.74 x 109 (oh/co) ("/cy2). (5) 

Fotheringham did not deduce particular values of L and L'  from total solar eclipses 
alone, but the two points in Figure 1 correspond to (4.1, 1.1) and (4.9, 1.6), giving 
½h ("/cy 2) equal to - 10.5 and - 16.5 respectively. De Sitter (1927) in a rediscussion of 
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Fotheringham's work deduced (5.22___0.30, 1.80+0.16), giving ½h-- 18.8_+2.1(p.e.). 
Stephenson (1971) has recently undertaken a similar study to Fotheringham's by add- 
ing discussions of oriental material, and he finds the solution (5.07 + 0.25, 1.61 -+ 0.17), 
giving ½h--- - 16.5 __ 2.3 (p.e.). Using a statistical analysis, rather than Fotheringham's 
diagrammatical approach, Newton (1970) found (3.16-t-1.3, 1.80_+0.22)* for large 
solar eclipses before A.D. 500, corresponding to ½h = - 20.9_+ 2.6 (s.e.). His result is 
quite incompatible with Fotheringham's area of maximum likelihood. 

3. Modern Telescopic Observations 

The secular change in the rate of the Earth's rotation cannot be derived from observa- 
tions over the past 200 years because the effect due to tidal friction is masked by re- 
latively short and erratic changes in the rate of rotation due to other causes; but the 
secular acceleration of the Moon can be derived by combining observations of the 
Moon with those of the Sun and Mercury in a method used by de Sitter (1927) and 
Spencer Jones (1939). 

As with ancient observations, we take F' (T) and F(T) to be the differences between 
the observed and calculated (gravitational) longitudes of the Sun and Moon. Follow- 
ing Murray (1957) we can express F(T) as follows: 

F ( T )  = a + bT + ½(h + s) T z + B (T) .  (6) 

The coefficient of T 2 consists o1 two parts: h, the true acceleration with respect to the 
uniform time scale of ephemeris time; and s, an estimate of that part of the secular ac- 
celeration due to the change in the Earth's rotation. The observed fluctuations in the 
Moon's longitude due to the non-uniform rotation of the Earth are absorbed in B(T). 
Note that it is not possible to separate s uniquely from a similar term contained in 
B(T), but this is not necessary in deriving h. For the Sun observations we have 

F ' ( T )  = a' + b ' r  + ½(n'/n)sT z + (n'/n) B ( T )  (7) 

neglecting ~', which is very small. Differentiating (6) and (7) twice with respect to T, 
and assuming that fi and s are constant, we obtain 

F ( T )  = h + s +/~ (T) ,  (8) 
and 

(n/n') F' (T) = s + B (T) .  (9) 

Subtracting: 
~ ' ( r )  - (n/n')  F ' ( T )  = h.  (10) 

Therefore, t~ is derived by fitting a parabola through the differences of the observed 
discrepancies in the longitudes of the Moon and Sun (or Mercury), the latter reduced 
to the orbit of the Moon. 

* By substitution of his values -- 41.8 ± 4.3"/cy ~ and -- 27.7 ± 3.4 × 10-9/cy for ~ and o5/o~ in Equa- 
tions (4) and (5). 
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Spencer  Jones pu t  

½ + 5) = o 

and 

½(n'/n) s = c' in Equa t ions  (6) and  (7).* 

Thus,  recall ing Equa t ion  (3), we have 

½h = o - (n ln ' )  c' = L - (n ln ' )  e .  (11) 

N o t e  tha t  this is not  an identi ty.  In  practice,  the value o f  fi was der ived by  Spencer  

Jones by  adop t ing  c = 5.22"/cy 2 (de Sit ter 's  value for  L;  bu t  c ¢ L ) ,  and  using occul ta-  

t ion observat ions  to give F(T) in  Equa t ion  (6). Values of  B(T) were then derived f rom 

this equa t ion  after fi t t ing the da ta  to de termine  the a rb i t r a ry  constants  a and  b. The  

values of  B(T) were then subst i tu ted in Equa t ion  (7), and  a', b' and c' de te rmined  by 

least squares fit to F' (T) - (n ' /n )  B(T). He found  c ' =  1.23 +_0.04(p.e.)"/cy 2 giving 

½h = L - 13.37E = - 11.22 _ 0.44 (p . e . ) " / cy  2 (12) 

f rom Equa t ion  (11). The values of  L, L ' ,  c and c',  together  with ½h are gathered in 

Table  I. 

TABLE I 

Values of L, L' and ½~i deduced from ancient eclipses 

Author L L' ½r~ ("/cy 2) 

l l 4.2 1.1 --10.5 
Fotheringham 2 4.9 1.6 -- 16.5 
de Sitter 5.22 1.80 -- 18.8 
Newton 3.16 1.80 -- 20.9 
Stephenson 5.07 1.61 -- 16.5 

C e r ½/~ 

Spencer Jones 5.22 1.23 -- 11.22 

4. Combining Results from the Ancient and Modern Observations 

The ancient  observa t ions  afford us values of  bo th  the orb i ta l  accelera t ion of  the Moon ,  

r~, and  the ro ta t ion  of  the Ear th ,  6); the mode rn  observat ions  only give us a value for  

the former .  Both  the ancient  and  mode rn  results for  h have weaknesses.  The quest ion is 

whether  a s t ronger  solut ion can be found  by  combin ing  these results. F r o m  Tab le  I 

one can see the d ispar i ty  of  the results  for  ~i der ived f rom ancient  observat ions  and  one 

is t empted  to take  Spencer  Jones '  mode rn  value with its small  p robab le  e r ror  and  com- 

bine it wi th  the ancient  da t a  to find o5. Dicke  (1966) and Curo t t  (1966) have a dop t e d  

this procedure .  

* In fact, his notation was slightly different; he substituted 5.22 for ½(r~ + s) and used c where I have 
used c'. I use the present notation for consistency where a prime denotes the 'Sun'. 
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5. Dicke's Solution for L' 

Dicke, assuming that the secular acceleration of the Moon has been constant for the 
last 2000 years, combined Spencer Jones' value for ½fi with Fotheringham's results 
from the analysis of five ancient solar eclipses. Instead of using the limiting lines as 
shown in Figure 1, Dicke calculated single 'mean' lines for four of Fotheringham's 
bands and two possible lines for the eclipse of Archilochus corresponding to whether 
the eclipse was seen at one or other of two islands. From relation (12) he found 13.37L' 
- 11.22 and substituted this for L in his equations of the 'mean' lines, which have the 
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Diagram showing Dicke's 'mean' eclipse lines and their intersection with Spencer Jones' line. 
(For dashed line, see text.) 

form of Equation (2), and solved for values of L' .  I have shown his procedure dia- 
grammatically in Figure 2: the points of intersection of Spencer Jones' line with the 
eclipse lines give Dicke's values of L' shown in Table II. 

From the consistency of the values that he deduced for U, Dicke placed much reli- 
ance on his adopted mean value of l'.'17/cy 2 and went on to conjecture about the pos- 
sible change in the gravitational constant, G, over the past 2000 years. However, the 
consistency of the deduced values of L', using Dicke's method, does not guarantee that 
they are the best values, because Spencer Jones' line is nearly horizontal in Figure 2 
and, therefore, its intersection with the eclipse lines inevitably leads to fairlyc onsis- 
tent values of L' (though not of L). 
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TABLE II 
Values of L' ("/cy 2) from Figure 2 for different values 

values of t~ 

Eclipse ½h = -- 11.22 ½ti = -- 15.0 
(Dicke) 

Plutarch 1.150 1.464 
Phlegon 1.165 1.481 
Hipparchus 1.163 1.494 
Axchilochus 1 1.143 1.435 
Archilochus 2 1.258 1.549 
Babylon 1.120 1.407 

Mean 1.1666 1.472 
standard error 0.0195 0.020l 

Bearing in mind that a standard error of about  + 3"44/cy a, rather than the quoted 
probable error of _+0'244/cy 2, might be attached to Spencer Jones' value for ½r~, it is 
reasonable to consider a value of, say, - 15"/cy 2, which is nearer to the 'ancient'  deter- 
mination. I have shown the line 

L - 13.37E = -  15.0 

dashed in Figure 2. Its intersections with the eclipse lines give the values of L'  (actually 
calculated rather than read from Figure2) listed under ½ h = - 1 5 . 0  in Table II. 

The standard errors of the mean values of L' in Table I I  are not significantly different. 
Curott  (1966) employed a basically similar procedure to Dicke. He adopted Spencer 

Jones' value of -11"22/cy  2 and recomputed the longitudinal displacements on the 
Earth between the observed and calculated paths of totality for 32 ancient eclipses. 
Whereas Dicke found a mean value of l'.'17/cy 2 for L', Curott, in his wider and more 
thorough investigation, found 1': 1/cy 2 *, with a greater margin of uncertainty. But this 
method is essentially pre-conditioned to arrive at values of  L' near 1'21/cy 2. 

This may be the best (and only?) procedure for combining the ancient and modern 
results provided we have a secure value for ½~ from the latter. Failing this, we are com- 
pelled to 'keep an open mind'  on the question, but we can still arrive at some general 
conclusions about the tidal interaction in the Ear th-Moon system without adopting a 
specific value for ½h. 

6. The Lunar Tidal Acceleration and the Rate of Dissipation of Energy 

Without making the hypothesis that fi has been constant over the past 2000 years we 
can arrive at general expressions relating the rate of dissipation of tidal energy, - /~ ,  
and the fractional change in the rate of rotation of the Earth due to tidal coupling, 

((~)/(D)tidal , with ~. 

* By substitution of his result -- 17 × 10-9/cy for w/e~ in relation (4). 
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Firstly, we establish the relation between -E and h. Following Jeffreys (The  Earth,  

p. 218), let the masses of  the Earth and M o o n  be M and m, and let the mean distance 

between them be r. Let the principal moment  of  inertia of  the Earth about  its polar  
axis be C. Kepler 's  third law states nZr 3 = const. Differentiating with respect to time we 

obtain 
n~  = - ~ r ~ .  ( 1 3 )  

The angular momentum of  the orbital mot ion  of  the M o o n  and Earth  about  the 

centre of  mass of  the two together is 

MrnrZn mr2n  1 

M + m 1.012' taking m / M  81.5'  

and that of  the Earth 's  rotat ion about  its axis is Coo. By the principle of  the conserva- 

tion o f  angular momentum,  the couple - N  acting on the Ear th 's  rotat ion must  be 

ba!anced by one of  + N  tending to increase the orbital angular momen tum:  that  is 

d 
C dt ((A))tidal = - -  U (14) 

and 

m ._d (r2n)  = + N .  (15) 
1.012 dt 

Performing the differentiation of  (15) and substituting (13), we find 

m r  2 
- - - . ~  = + N .  (16 )  

3.037 

I f  N is expressed in ergs, m in g and r in cm, and h is in the cus tomary units of  "/cy 2, 
then we require the factor  

0 6 x  103 = 4 . 8 5  x 1.6 x 108. 10 -25 [rad. cy2/';s] 

on the L.H.S. of  (16). 
The rate at which the lunar couple does work is 

- -  E 1  . . . .  = + N (a) - n) .  (17) 

Substituting (16), we have 

- -  ~ . . . .  = -- (mr2/3 .037)  (a) -- n ) / t .  (18) 

Inserting the following values: m = 7 . 3 5  x 10 zs g; r = 3 . 8 4  x 10 t° cm; 09=7.29 x 10 -5 
rad s - 1  n = 0 . 2 7  x 10 -5 rad s -1 ;  and the factor  4.85 x 10 -aS, we find 

- / ~ l  . . . .  = - 1.22 x 1018/t ergs sec -1 . (19) 

Now there is also a solar torque, N' ,  acting on the oceanic tide, and, according to 
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which model we adopt (see Jeffreys, 8.02 and 8.03), we have N'/N= 1/5.1 or 1/3.4. 

Therefore, 
- 0 . 2 4 ~  _ 1/5.1 

- -  / ~ s o l a r  = 0.36J x 10XSh ergs sec 1 1/3.4 (20) 

The rate of dissipation of tidal energy deduced from the requirement that angular 
momentum be conserved in the Ear th-Moon system is then (after rounding off) 

/ ~ t i d a l  = - -  1.45"~ _ 1/5.1 1.57J x 10~sh ergs sec 1 (21) 
- 1/3.4 

I give the results in Table III for - Etia~ 1 using the various values of ½1i given in Table I. 
These results are also presented in Figure 3, together with the lines defined by Equa- 
tion (21). 

T A B L E  III 

- - /~  derived f rom values of  ½n in Table I 

Au tho r  ½fi "/cy ~ - - /~  
N '  N - -  1/5.1 N'/N= 1/3.4 
1019 erg S -1 

l l --  10.5 3.04 3.30 
Fo the r i ngham 2 --  16.5 4.78 5.18 

de Sitter --  18.8 5.45 5.90 
Newton  --  20.9 6.06 6.56 
Stephenson - -  16.5 4.78 5.18 
Spencer Jones  --  11.22 3.25 3.52 

i i i i I i i i i 

(b) 

i 

JONES 

1/3.4 

1/s.1 

(2) 

Fig. 3. 

, i , , 
110 11 1~2 1~3 14 15 16 1T 18 19 20 21 

- __1 fi , , /cy2 
2 

Rates  of  energy dissipation in the seas and  oceans:  (a) deduced f rom as t ronomical  observa- 
t ions (linear funct ion o f  t~) and (b) est imated f rom tidal fluxes. 
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Estimates of the value o f  - - - E t i d a l  have been made independently of the astronomical 
method given above by studying the flux and bottom friction of the tides in the seas 
and oceans. The reader is referred to Chapter 11, Section 7 et seq. of The Rotation of  
the Earth for a discussion of Jeffreys, Heiskanen, Munk and MacDonald's estimates 
shown (dashed) in Figure 3. Recently Pekeris and Accad (1969) have solved Laplace's 
tidal equations numerically for 1 o and 2 ° grids covering the oceans with, and without, 
a simplified model of tidal friction proportional to a linear velocity law. They found 
that their theoretical amplitudes for the M 2 tide only agreed with observations after 
adopting their friction model, and the rate of dissipation of energy which resulted was 
around 6 x 1019 ergs s-~. Although the values of ½/t and - E  shown in Table III and 
Figure 3 cover a considerable range, it is probably remarkable that the values deduced 
from the astronomical data and those from the tides agree to well within a factor of 
ten. Again, if we could reconcile Spencer Jones' modern value of ½fi with a value 
somewhere near -15" /cy  2, then the astronomical data would give a reasonably con- 
sistent pointer for a value of - / ~  around 4.5 x 1019 ergs s-  *. 

7. The Tidal Deceleration of the Earth's Spin Versus the Observed Deceleration 

Following from the requirements of the conservation of angular momentum and 
Kepler's third law, we arrived at relation (14). Differentiating we have 

((D/O))I  . . . .  = -- N / C o .  (22) 

We take C=0.334 ma 2, where a is the radius of the Earth, and substitute the L.H.S. 
of (16) for N in (22); then 

((J)/('0)l . . . .  = + 0.986 (re~M) (r/a) 2 •/oo. (23) 

Taking m / M =  1/81.5, r/a=60.3 and o)=47'.'5 x 109/cy, we obtain 

((J)/(-O)l . . . .  : + 0.93 x 10-9/~ /cy. (24) 

If we take the solar torque, N', according to the ratios given before 

+ o.18) 1/5.1 
(Cb/CO)so~ar---- + 0.27J X 10-9~ /cy. 1/3.4 (25) 

There is also an acceleration due to the solar torque of -0 .30  x 1023 ergs acting on the 
Earth's atmosphere giving 

((.O/(.O)atmos" : -~- 1.6 X 10 -9 /cy. (26) 

Adding (24), (25) and (26), we find the total fractional change per century in the rate of 
rotation of the Earth due to tidal torques is 

((jj/fO)t ida I -[- 1.11~ 9.t/ 1/5.1 (27) = + 1.20J x 10- + 1.6 x 10 - 9  1/3.4 
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We substitute (11) for h in (27) and find 

- 0.296"~ + 0.022~ 1/5.1 
(&/('O)tidal = 0.320J x E + 0.024J x L + 0.016 x 10 -7 /cy 1/3.4 

(28) 

I f  we take the values 4.2 and 5.2 ("/cy z) for L, we have the fractional change in the 

Earth's  spin per century due to tidal torques as a linear function of L', the apparent 
acceleration of the Sun seen by an observer on Earth. Equation (4) expresses the units 
connecting L' and (&/~o) which is the observed fractional change of spin: 

(&/co) = - 0.154L' x 10-7/cy. (29) 

I show relations (28) and (29) in Figure 4: the difference 

(&/o) _ (&/o))ti,la, + 0.1421, - 0.022"~ = + 0.166J x E 0.024J x L - 0.016 x 10-7/cy 1/5.1 
- 1/3.4 

(30) 
expresses the amount  of the fractional increase in the Earth's spin due to non-tidal 
effects. For  example, Dicke took }h=- -11 .22  and found L ' =  1.17, implying from 

Equation (12) that L = 4.42. Substituting in (30) 

(&loD,,a:, + 5.2} 115.1 (&loD - -  = x 10- 9Icy (31) 
+ 7.2 1/3.4 

0 .40  ~ - . . . . . . . .  

0.35 

0.30 

0.25 

X 

"N3 0.20 
I 

0.15 

0 3 0  ~ _  

0 . 0 5  

0.9 

a) 

(b) 

0.8 1.0 l.t 1.2 t.3 1.4 1.5 L6 1.7 1.8 1.9 

L' " / cy  ~ 

Fig. 4. Fractional decrease per century in the Earth's rate of rotation: (a) (d~/Og)tidal, deduced from 
conservation of angular momentum in the Earth-Moon system, and (b) (rs/co), the observed change. 

(For Dieke's point and equations of lines - see text.) 
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Attributing two-thirds to the 1/3.4 couple, we find a fractional increase of  6.6 parts in 
l09 per century, which is close to Dicke's  result of  6.8 parts which includes a small 

correction for  a change in sea level since the time of  the eclipses circa A.D. 0. I have 

shown Dicke's ' two-thirds '  value for (&/co)tlda~ in Figure 4. 
Now if we again conjecture that ½~ = , 2 - 15 .0 /cy  , rather than Spencer Jones '  value 

of  -11 .22 ,  then L'  lies between 1.4 and 1.5 (from relation (11) with L = 4  and 5) and 

therefore, f rom Figure 4, the fractional increase is at least 7 parts, and probably  11 
parts in 10 9 per century. Newton 's  values for L and L'  in Table i give an average 
fractional increase since A.D. 0 o f  at least 17 parts in 109/cy. 

8. Concluding Remarks 

There are two immediate consequences of  revising Spencer Jones'  value of  ½h f rom 
-11' . '22/cy / to a value nearer the ancient eclipse results, say, -15 ' :0 /cy2 :  

(1) the rate of  dissipation o f  energy in the Earth is increased (Figure 3); and 
(2) the fractional change in the Earth 's  spin rate is increased (Figure 4). 

I f  tidal torques are the only significant forces operating on the rotat ion of  the Earth, 

then we expect to 'observe'  L '  below 0':9/cy 2 (see Figure 4) : we do not. Therefore, some 
force producing an acceleration is at work,  or our value of  L' is unreliable. Many  

authors have searched exhaustively for geophysical forces to produce the required 
accelerations. The trend of  recent investigations using current observations is to find 
½h greater (negatively) than -11'~22/cy z, giving L '  greater than l ' : l /cy 2 (from Equa- 

tion (3) with L =  3.5) which strengthens the case for forces producing accelerations. 
I now look forward with keen anticipation to see what value of  ½/~ emerges f rom the 

analysis of  some 30000 occultation observations now under way at the Royal  Green- 

wich Observatory. 
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