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Abstract. The thermal history and current state of the lunar interior are investigated using constraints 
imposed by recent geological and physical data. Theoretical temperature models are computed taking 
into account different initial conditions, heat sources, differentiation and simulated convection. To 
account for the early formation of the lunar highlands, the time duration of magmatism and present- 
day temperatures estimated from lunar electrical conductivity profiles, it is necessary to restrict initial 
temperatures and abundances of radioactivie elements. Successful models require that the outer half 
of the Moon initially heated to melting temperatures, probably due to rapid accretion. Differentiation 
of radioactive heat sources toward the lunar surface occurred during the first 1.6 billion years. 
Temperatures in the outer 500 km are currently low, while the deep interior (radius less than 700 to 
1000 km) is warmer than 1000°C, and is of primordial material. In some models there is a partially 
melted core. The calculated surface heat flux is between 25 and 30 erg/cm 2 s. 

1. Introduction 

The temperature of  the interior of  a planetary body  is one of  the most  impor tant  

parameters for determining the physical condit ion and chemical composi t ion f rom 

geological and physical observations. In the absence of  ways o f  reliably measuring 

internal temperatures directly, it is necessary to rely on theoretical calculations o f  the 

thermal evolution o f  the whole body. Further,  such computa t ions  often provide tests 

for theories of  planetary formation.  The calculated thermal history o f  a planet depends 

strongly on the assumed initial conditions, input parameters and geological constraints. 

As these constraints change, new calculations must  be carried out. In  this paper we 
compute  thermal-evolution models for the M o o n  taking into account  new data f rom 

Apol lo  11-15 Missions that  are pertinent to this problem. 
The thermal history o f  the M o o n  is not  a new subject. M a n y  investigators have 

computed  temperature evolution models. (An incomplete list could include: Urey, 

1952; MacDonald ,  1959; Levin, 1962; Anderson and Phinney, 1967; Fricker et al., 

1967; McConnel l  et al., 1967; Hanks  and Anderson,  1969; Reynolds et al., 1971 ; and 
Wood,  1971). Even since the most  recent o f  these papers have been completed, new 
data o f  considerable importance to the thermal constraints have become available. 

Most  notable among these are the lunar heat-flow measurements (Langseth et al., 

1971), electrical conductivity of  the M o o n  and its thermal implication (Sonett et al., 

1971 ; and others), additional rock ages, and data on lunar seismicity and tectonism 
(Latham et al., 1971). Those new data further constrain the lunar thermal models, and 
warrant  a new set of  calculations. 
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The available data impose some definite boundary conditions and what might 
appear at times to be conflicting requirements on the past and present-day temperature 
models of the lunar interior. The existence of anorthosite rock sample from the 
Apollo 15 frontal site gives support to the idea that anorthosite is a major constituent 
of the lunar highlands (Wood et  aI., 1970), which are relatively older than the mare 
basins. The age of the Apollo 15 anorthosite (rock No. 15 415) is determined to be 4.1 
b.y. (billion years), indeed older than any other lunar rock dated (Husain et  al., 1972). 
Plagioclase-rich highlands require extensive differentiation (i.e., high temperatures 
and melting) at the very early history of the Moon. The ages of lunar basalts (3.2 to 
3.9 b.y.) require that over an extended period of time the temperatures in the lunar 
interior have been near the melting curve of these rocks. 

The data which point to present conditions, however, imply a relatively cold Moon. 
Electrical conductivity estimates seem to suggest temperatures less than 1000°C 
everywhere in the lunar interior (Sonett et  al., 1971 ; Dyal and Parkin, 1971). The high 
viscosity, in excess of 1025 to 1027 poise (Baldwin, 1971), required to support the lunar 
mascons and other features is in accord with low temperatures at least within the 
outer few hundred kilometers of the Moon. The lunar seismic energy release is lower 
by about six orders of magnitude than in the Earth (Latham et  al., 1971) suggesting 
again the absence of thermally induced tectonic activity of any significance. These 
observations are contradicted by a high value of surface heat flow, about 33 ergs/cm 2 s 
(Langseth et  al., 197l). The above results will be the main constraints in our choice of 
acceptable thermal models. 

In the computations we use a finite-difference scheme to solve the conservation-of- 
energy equation for a spherically symmetrical Moon. We allow for melting and 
differentiation, and allow for convection of molten material with the approximate 
scheme of Reynolds et  al. (1966). Separately we consider the effect of convection by 
solid-state creep on our final temperature estimates. 

In the paper, we first discuss the initial conditions, physical parameters, and heat 
sources which are most important inputs in any thermal calculation. The computational 
technique is described next in Section 3. Different temperature models are discussed 
in Section 4. These are followed by the conclusions in Section 5. 

2. Initial Conditions and Input Parameters 

The most important parameters for the thermal calculations are: (1) initial conditions, 
(2) heat sources - their temporal and spatial distribution, (3) thermal conductivity and 
its variations with temperature and pressure. In this section we discuss each item 
separately. 

A. IN IT IA L  CONDITIONS 

The initial temperatures of the Moon are dependent on the lunar origin, mode of 
formation and the conditions associated with early history of the solar system. More 
specifically, these include gravitational heating due to accretion, short-lived radio- 
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activity, tidal dissipation, solar-wind flux, and compressional heating. None of these, 
except possibly tidal forces, would contribute appreciably to heating the Moon after 
its formation. 

Most of these heat sources can be shown to have relatively small effects in the early 
history of the Moon. Heating by short-lived radioactivity is important only in the 
first 108 yr after nucleogenesis (Fish et al., 1960). Lunar-origin theories, except the 
capture hypothesis, favor the Moon forming after the accretion of the Earth. Further- 
more, the lack of Xe 129 due to the decay of 1129 on the Earth seems to necessitate at 
least 5 x 107 yr between nucleogenesis and the start of accretion (Anderson and 
Phinney, 1967). 

Heating by tidal dissipation is a function of the lunar orbit soon after the Moon's 
formation. Estimates of its effect have varied from none at all (Singer, 1970) to enough 
to cause extensive melting (O'Keefe, 1970) and do depend on the theory of origin. 
Heating by an electric current produced by a uni-polar generator driven by the solar 
wind (Sonett et al., 1968) would contribute to initial heating only if the Sun passed 
through a T-Tauri stage, characterized by mass loss and a high solar-wind flux. The 
adiabatic correction for compressional heating is easily calculated and would amount 
to only a few tens of degrees. 

The most promising initial heating source, which could provide sufficient energy 
for melting near the surface regions of the Moon, is gravitational energy of accretion. 
Suppose that at some time t during accretion the proto-Moon has radius r, and that 
during a time increment dt an outer shell of thickness dr is added to the lunar mass. 
Then the temperature T within that shell may be estimated by equating the additional 
gravitational potential energy to radiated energy plus heat, namely, 

aM (r) 
- -  dr -- 8a (T 4 - T 4) dt + 0Cp ( T -  Tb) dr ,  (1) 

?, 

where Q is the density of the accreting particles, G is the gravitational constant, 
M ( r )  is the mass of the body within radius r, o" is the Stefan-Boltzman constant, 
is the emissivity (here taken equal to 1), and Cp is the specific heat. Tb is the base 
temperature of the accreting particles, or the equilibrium temperature of the cloud 
of material within which the Moon formed; any effects of short-lived radioactivity are 
included. Numerous accretion rates, constant and varying, have been assumed in 
earlier papers (Ter Haar, 1948; Hanks and Anderson, 1969). A physically reasonable 
model, suggested by Hanks and Anderson (1969) and used in this paper (Figure la), 
is one in which the rate is slow in the beginning, increases as the accreted mass in- 
creases and then tapers off to zero as the material is depleted and the final planetary 
radius is achieved. The accretion rate is expressed by: 

dr /d t  = ct 2 sinTt. (2) 

The constants c and 7 are determined from the Moon's radius R and the duration 
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of  accret ion z: 

7C 

"c 

R73 
c -  

rc 2 - 4" 

(3) 

Using this model ,  one can show that  the near-surface temperatures  never exceed 

the melt ing curve for accret ion times greater  than about  1000 yr. This conclusion is 

also reached by Mizutan i  e t  al.  (1972) f rom a more  detailed analysis of  the accret ion 

Fig. la. 
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Figs. la-b. (a) Two proposed models for the increase in lunar radius r with time t during accretion 
(from Hanks and Anderson, 1969). z is the total accretion time. (b) Initial temperature profiles for 
a Moon accreting with a time-dependent radius growth and with base temperatures of 0 ° and 500 °C. 
Total accretion time is 100 yr. The solidus of dry basalt (Cohen et al., 1967) is assumed to be an upper 

limit for possible initial temperatures. 
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process. One can estimate the duration of accretion by matching this model to the 
temperatures required to cause melting to a specified depth. To differentiate an 
anorthosite crust about 10 km thick requires melting to a depth of about 500 km. 
This can be achieved if the total accretion time is about 100 yr. Total accretion time 
may be made arbitrarily long, however, by appropriately lowering the assumed emis- 
sivity of the lunar surface. The temperature profile resulting from Equations (1) 
through (3) for a 100-yr accretion time is given in Figure lb for two separate base 
temperatures; these profiles are adopted as starting temperatures in the calculations 
below. 

B. HEAT SOURCES 

The most important heat source in the thermal history calculations is the heat 
generated by the long half-life radioactive isotopes U 238, U 235, Th 232, and K 4°. 
Although the abundances of these isotopes have been measured in the returned lunar 
samples (see Hays, 1971), determining the original concentration and distribution 
inside the Moon is difficult because of the complexities introduced by differentiation 
and magmatic enrichment. To determine initial abundances we must resort to indirect 
evidence. 

In Figure 2, total K and U abundances are plotted for Apollo samples and some 
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Fig. 2. Potassium and uranium concentrations in selected meteorites and lunar and terrestrial rocks, 
modified from Hays (1971). Points for eucrites, howardites, and Apollo 15 rock are from, respectively, 

Mason and Melson (1970), Duke and Silver (1967), and LSPET (1971). 
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terrestrial basalts and meteorites. It is clear that for all lunar rocks (including basalts 
breccias, and soils) the K/U ratio is about 2000, although absolute abundances vary. 
This compares with K/U= 10000 for the Earth and 80000 for the chondrites. The low 
K/U ratio presumably results from a depletion of volatile elements in the Moon 
(LSPET, 1969). It is clear that neither terrestrial nor chondritic abundances should 
be used for lunar calculations, as was done in some earlier studies. Chondrites could 
also be rejected on the basis of Rb abundances as a model for the primitive lunar 
material (Papanastassiou and Wasserburg, 1971). The Th/U ratio for lunar rocks is 
about 3.6 to 4.0, consistent with terrestrial and chondritic values. 

To determine the absolute abundances we turn to achondrites and consider 
especially howardites and eucrites. The arguments for achondritic source material 
has been made directly and indirectly by a number of investigators (Duke and Silver, 
1967; Hohenberg et al., 1967). Howardites, which may be more typical than eucrites 
of average achondritic material, have a U abundance of 2.3 x 10 -8 g/g (Duke and 
Silver, 1967) while for eucrites, which are enriched in refractory elements, the value 
is about 9.9 x 10 .8 g/g. Our calculations show that a eucritic Moon would be almost 
completely molten at the present. Such a source material may be rejected on these 
grounds. 

In this paper we assume howardite abundances (2.3 x 10 .8 g/g) for U, and use 
K/U=2000 and Th/U=4. A few models have been calculated with higher and lower 
absolute U abundances and these are discussed in Section 4. 

C. T H E R M A L  C O N D U C T I V I T Y  

The effective thermal conductivity (including lattice conduction and radiative heat 
transfer) for some lunar terrestrial materials as well as theoretical estimates (Mac- 
Donald, 1963; Schatz, 1971) are shown in Figure 3. Clearly, lunar basalts cannot be 
used since they do not represent the bulk lunar composition (LSPET, 1969; Ringwood 
and Essene, 1970). In this study we adopt the curve given by Schatz (1971), which is 
based on laboratory measurements on single crystals and polycrystalline aggregates 
of olivine. At low temperatures, the conductivity is primarily due to lattice conduction 
and it decreases with increasing temperatures. At higher temperatures, the radiative 
term, roughly linear with temperature, is dominant. Previous studies of thermal 
evolution of the Moon have generally used MacDonald's formulation and assumed 
incorrectly that the opacity is constant with temperature; this gives the radiative 
contribution a cubic dependence on temperature. The pressure effects are probably 
small at lunar pressures and are neglected. In the calculations an analytic expression 
has been used for the curve marked 'S '  and conductivity is adjusted at each step for 
appropriate temperature. 

D.  O T H E R  PARAMETERS 

The melting curve, surface temperature, specific heat, heat of fusion, and density 
must be specified for calculations. Most petrological studies indicate that the lunar 
basalts were not crystallized in the presence of water. Experimental work (Ringwood 
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Fig. 3. Thermal conductivity of sdected materials. Sources of measured data (solid lines) are 
Cremers (1971) for Apollo 11 fines, sample density 1.64 g/cm3; Horai et al. (1970) for Apollo 11 
basalt; Murase and McBirney (1970) for synthetic Apollo 11 basalt; Schatz (1971) for sintered, 
polycrystalline forsterite and for single-crystal olivine (Fo86 Fat4) and enstatite. Theoretical (dashed) 
curves include those of MacDonald (1963), for two different values of the mean extinction coefficient 
or opacity e, and one proposed by Schatz (1971) for polycrystalline olivine of approximate composition 

Fo90 Fal0. Schatz's (1971) curve, labeled S above, was adopted in this paper. 

TABLE I 

Parameters used in all thermal models 

Radius 
Density 
Heat of fusion 
Specific heat 
Surface temperature 
K/ U ratio 
Th/U ratio 

1740 km 
3.34 g/cm z 
400 joules/g 
1.2 joules/g°C 
_ 20°C 
2000 
4 
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and Essene, 1970) suggest that melting of the Apollo 11 basalts is similar to terrestrial 
anhydrous basalts. The melting curve used in this paper is the solidus from the melting 
range of anhydrous basalts (Cohen et al., 1967). We used only one curve to specify 
both partial and total melting; a constant density of 3.34 g/cm 3 and constant surface 
temperature of - 2 0 ° C  (Langseth et al., 1971) have been used. All other parameters 
are listed in Table I. 

3. Computational Technique 

The thermal calculations are carried out for a spherically-symmetric Moon (para- 
meters varying with radius only at a given time), taking into account melting, simulated 
convection and differentiation. In this section these steps are described briefly. 

Temperature models are calculated using the finite-difference solution of the heat 
conduction equation 

aT  1 0 (  ~T)  
Cvo 3t - r 2 ~r r2K ~r  + H (r, t) ,  (4) 

where C v is the specific heat, 0 is the density, T is the temperature, r is the radius, 
K is the thermal conductivity, and H (r, t) is the heat-source term. The coefficient K 
is taken to be temperature-dependent as discussed in the previous section, and heat 
sources may depend on radius and time. 

The finite-difference analog of Equation (4) is given in the Appendix. Heat flux is 
conserved in the differencing technique. Since the scheme is explicit, a stability 
condition relating the time increment and the grid spacing must be fulfilled. The 
stability condition which is developed in the Appendix is 

CpQA r 2 nZ 
At < 2Km,~ (n + ½)2, (5) 

where Km,x is the maximum value of the conductivity at a given time step. The time 
increment is computed at each time step using Equation (5) with a factor of 4 instead 
of 2 in the denominator. Generally a grid spacing of 20 km is used. This is reduced to 
5 km at later stages of calculations for more accurate determination of near surface 
temperature and heat flux. 

To avoid problems with the temperature becoming infinite at the center of the 
Moon (r = 0), the solution was started at r = 20 km. Heat flux was taken as zero at the 
grid point corresponding to r = 20 km by setting T~' = T~ where T~' is the temperature 
at r l = 20 km and T2 is the temperature at r 2 = r 1 + A r. Temperature was kept constant 
( -  20 °C) at the surface of the Moon. Surface heat flux was computed using a parabolic 
fit to the temperature at three grid points starting with the surface point. 

The computational scheme was tested against exact solutions for a radially sym- 
metric sphere with constant heat production and heat production varying sinusoidally 
with radius. Agreement between the finite-difference and the exact solution was 
excellent with temperatures differing by less than 0.2% after 2.5 billion years in the 
case of constant heat production. 
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A. SIMULATION OF MELTING AND CONVECTION 

The effects of melting and convection on temperature were modeled using a technique 
described by Reynolds et aL (1966). In this technique, the temperature profile at some 
time mAt is compared with a given melting-point curve. I f  the tempereture T"~ is above 
the melting point, T,, the temperature increment above the melting point (T"~- T,) is 
converted to its heat equivalent, AH, by dividing by the specific heat and the density. 
If AH is not equal to or greater than a specified heat of fusion, the material is taken 
as partially molten, the temperature at point nAt is held at T, and another iteration 
in time performed. The material at point nAt remains partially molten at temperature 
T n until the sum of the AH's from mAt to some (re+p) At equals the heat of fusion. 
At this point in time the material is completely molten and temperature is allowed to 
increase above T n. Provision is made for the phase change to run either way so that 
molten material may solidify by releasing heat equal to this heat of fusion. 

Convection simulation uses the same technique as does melting except that once the 
material has become completely molten, temperature is held at the melting point. 
Any increase in temperature which would raise the temperature above the melting 
point is converted into its heat equivalent and transferred upward to the next grid 
point as an equivalent temperature increment due to convection. The conversion to 
equivalent heat and back to temperature is necessary since the volume element 
increases with radius. 

The main assumption underlying this technique is that convection occurs on 
complete melting and limits the temperature in the region of complete melting to the 
melting temperature. This scheme accounts for the transfer of heat which would have 
taken place under convection without actually using the mass transfer terms in the 
equation. 

B. D I F F E R E N T I A T I O N  

In the regions where melting occurs, the magma would be enriched with U, Th and K 
and eventually would transfer these heat sources toward the surface. To account for 
this, at discrete time steps the heat sources from the molten zones were differentiated 
upwards. Where no melting occurred no differentiation was carried out and initial 
radioactive abundances were maintained. 

The concentration of radioactive heat sources after differentiation was assumed to 
decrease exponentially with depth (Lachenbruch, 1968) as 

H (r)  ----- Ao e- (a-r ) /h  , 

where A o is the surface abundance, R is the lunar radius, and h is a skin depth. For  a 
skin depth of 10 to 20 kin, reasonable agreement was found between the calculated 
surface abundance A 0 and the average (taking into account mare and highlands) of  
observed surface-rock concentrations. Differentiation was carried out in 2 to 3 steps, 
starting with h=200 km and decreasing to h=  10 km at t =  1.6 b.y. The last differ- 
entiation was assumed to take place 3.0 b.y. ago. 
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4. Temperature  Models 

We now consider  specific models  for the thermal  evolut ion of  the Moon.  Unless  

stated otherwise, in all models  below the thermal  conduct ivi ty  is taken to equal  to 

curve S (Schatz, 1971) in Figure  3; the bulk concent ra t ion  o f  u ran ium in the M o o n  is 

TABLE II 

A summary of model parameters for all modds 

Fig. Base Accretion U concen- Conduc- Melting Surface heat 
No. temp. heating tration tivity at flux 

°C included? (10 -8 g/g) model present (ergs/cm~s) 

4 0 No 1.1-3.3 S No - 
5 0 Yes 2.3 S Yes 24 
7 500 Yes 2.3 S Yes 25 
8 800 Yes 2.3 S Yes 27 
9 Initially molten 2.3 S No 29 

10 500 Yes 2.3 M2 Yes 25 
11 0 Yes 1.1 S No 21 
12 0 Yes 2.3 S No 25 
(convecting) 
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Fig. 4. Final temperature profiles in an initially-cold Moon (0°C at all depths) as a function of 
present-day concentration of uranium. The solidus of anhydrous basalt (Cohen et al., 1967) 

is also shown. 
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set equal to 2.3 x 10- s g/g; and heat transfer by convection and upwards concentration 
of radioactive heat sources are simulated when melting occurs. A summary of all the 
models with corresponding figures is listed in Table II. 

A rough idea of the effect of  such a uranium concentration may be gathered from 
Figure 4. In the figure, the present-day temperature in a uniform, initially cold 
(T=  0 °C everywhere) Moon is shown as a function of the present-day concentration 
of uranium. For U_< 3.7 x 10- s g/g, the temperature is below the solidus of  anhydrous 
basalt (Cohen et  al., 1967) throughout the Moon. Clearly models such as those in 
Figure 4 that begin with an everywhere-cold Moon cannot generate enough heat from 

radioactivity alone to provide the necessary melting and differentiation in the Moon 's  
upper few hundred kilometers. 

A more realistic temperature model is given in Figure 5. In the model, cold (0 °C) 
particles accrete to form the Moon in a time interval of  100 yr. This gives an initial 

temperature profile with melting and probable differentiation to depth of 420 km and 
a cold interior (radius < 1000 km). The evoluation of the temperature profile with time 
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Fig. 5. A model of the evolution of the temperature profile in the Moon as a function of time since 
lunar origin. The initial temperature profile is from Figure 1, with a base temperature of 0°C. The 
Moon is partially or completely molten at those depths where the temperature profile lies along the 
solidus of anhydrous basalt (Cohen et al., 1967). The depth range for complete melting is delimited by 
the small arrows above the solidus. Time, in billions of years, is indicated by the number adjacent 

to each profile. 
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is shown in Figure 5. In this model, the outer portions of the Moon cool monotonically 
with time while the interior progressively warms. Partial melting occurs at some depth 
over the entire lunar history. At present in the model the Moon is partially molten 
below 650 km and the average heat flow through the Moon's surface is 24 erg/cm 2 s. 

The extent of melting in the outer 700 km of the Moon is better viewed in Figure 6, 
where we have shown the depth interval over which partial and complete melting 
occur in the thermal model as a function of time since lunar origin. The solid rind or 
lithosphere of the Moon increases in thickness with time at the approximate rate of 
170 km/b.y. Thus, if the time of mare formation is limited by the ages of Apollo 
basalts (3.2 to 3.9 b.y.), then the lithosphere was 115 to 235 km thick at that time. This 
agrees with estimates for the depth of origin of lunar basalts (Ringwood and Essene, 
1970) and accounts for the rigidity of the outer layers of the Moon required to support 
the mascons (Urey, 1968). Presumably only the impact of a large body could excavate 
and weaken the lithosphere to the extent necessary to allow the molten component of 
the hotter material beneath to escape to the surface. 

The effects of somewhat different initial conditions are shown in the next three 
models. Parameters of the model in Figure 7 are identical to those of Figure 5 except 
that the temperature of the particles that accreted to form the Moon is taken to be 
500 °C. This raises the initial temperature profile at all depths below 400 km; initial 
melting extends to a depth of 630 kin. The temperature profile as a function of time is 
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very similar to the previous model at depths less than 250 km. Below about 500 kin, 
the Moon heats more quickly to the solidus than in the previous model and, because 
of the more efficient transfer of  heat upon melting, is generally cooler at the present. 
The Moon is currently solid to a depth of 1100 km in this model, and the surface heat 
flow at present is 25 erg/cm 2 s. 

In Figure 8 is shown a temperature model which begins with melting extending to a 
depth of 900 km. The initial temperature profile below 900 km depth, though not 
strictly obtained from an accretion model, is of the same general shape as in models 
considered earlier. Again, the outer 250 km behaves similarly in this model and in 
those of Figures 5 and 7. The center of  the Moon heats to the solidus in about 2 b.y. 
The outer 1000 km of the Moon are solid at present, and the surface heat flow is 
27 erg/cm 2 s. 

As an extreme case, we consider an initially molten Moon in Figure 9. In this model, 
all the radioactive elements are concentrated near the lunar surface at time zero. 
Because of the depletion of heat sources in the interior and because of the efficient 
heat transfer in the molten regions, the Moon in this model cools more rapidly than 

in previous models. The lithosphere grows in thickness at a rate of 200 to 250 km/b.y. 
and the Moon is entirely solid and cooling everywhere at the present time. The final 
surface heat flow is 29 erg/cm z s. 
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Thermal evolution in a Moon accreted at a base temperature of 500°C. All other parameters 

and symbols are identical to those of Figure 5. 



THERMAL EVOLUTION OF THE MOON 203 
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Thermal evolution in a Moon initially melted to a depth of 900 km. All other parameters 
and symbols are identical to those of Figure 5. 

Details of the thermal evolution are sensitive to the adopted values of thermal 
conductivity as a function of temperature. In Figure 10 is shown a model with physical 
parameters equal to those of  Figure 7 except that the thermal conductivity is taken to 
equal approximately curve M2 (MacDonald, 1963) of  Figure 3. This appreciably 
increases the efficiency of heat transfer at temperatures greater than 500 °C. Thus the 
outer portions of  the Moon  cool more rapidly than in the model of  Figure 7 and 
there exists a period from about 2 to 2.5 b.y. after lunar origin when the Moon was 
entirely solid. At present, in the model, there is a small partially molten core of radius 
300 km and the surface heat flow is 25 erg/cm / s. 

The final temperature profiles in all of the above models with some initial melting 
are reasonably similar. At depths greater than 1000 kin, temperatures are within 
100°C of the basalt solidus in all of  these models. A partially molten core is present in 
all models except those with extreme initial conditions or physical properties. The 
greatest difference among present-day temperatures in the models occurs between 
300 and 700 km depth and amounts to no more than 350 °C. 

These present-day temperatures are fairly high: temperatures exceed 1000°C at 
depths ranging from 400 to 600 km. Thus these thermal models are at odds with many 
of  the recent estimates of lunar temperature from measurements of  electrical conduc- 



204 M, NAFI TOKSOZ ET AL. 

tivity in the Moon (Sonett et al., 1971 ; Dyal and Parkin, 1971 ; Sill, 1971), unless a 
resistive material such as enstatite is assumed for the major constituent of the lunar 
mantle (Sill, 1971). 

One means of generating temperature models which are cooler at present is to 
postulate a lower bulk concentration of radioactive heat sources for the Moon. In 
Figure 11 is shown the temperature profile as a function of time in a model that is 
identical in physical parameters with the model of  Figure 5 except that the bulk 
concentration of uranium in the Moon today is assumed to be 1.1 x 10 - s  g/g. In the 
model of  Figure 11, the upper 400 km cool somewhat more quickly and the lowest 
1200 kin heat considerably slower than in the more radioactive model. The Moon 
solidifies completely within 2 b.y. after formation in this model. Because below 400 km 
the Moon is undifferentiated, the interior of  the Moon (radius < 800 kin) is still 
heating at present. The final surface heat flow is 21 erg/cm 2 s. 

In all of the models above, heat transfer by convective mass transport was ignored 
at sub-solidus temperatures. This is probably unreasonable. Several authors (Runcorn, 
1962; Kopal, 1962; Turcotte and Oxburgh, 1969b; Tozer, 1971) have argued persua- 
sively that convection by solid-state creep should be at least as efficient a heat-transfer 

mechanism as lattice conduction and radiation at temperatures considerably below 

2 0 0 0  L . . . .  I . . . .  I . . . .  I I ~ 

]- / I  by~ 
1600 I- 

°~ 1200 
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E 8OO 
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Fig. 9. 

0 500 I000 1500 
Depth, km 

Thermal evolution in a Moon initially molten. All other parameters and symbols are 
identical to those in Figure 5. 
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Fig. 10. Thermal evolution in a Moon with an artificially high thermal conductivity (approximately 
curve M2 of Figure 3). Parameters otherwise equal to those of Figure 7. For explanation of symbols, 

see Figure 5. 

the solidus. Inclusion of the effect of  solid-state creep should produce present-day 

temperature profiles that are cooler than those given above. 
While we cannot solve the complete problem of thermal evolution in a realistically 

convecting Moon, we can make some simplifying assumptions that allow us to make 
a zero-order estimate of  the effect of solid-state creep on our thermal history calcu- 
lations. Convective solutions to the present temperature profile in the Moon generally 
show a stable shell of a few hundred kilometers overlying a convecting interior of  
nearly constant viscosity (Turcotte and Oxburgh, 1969b; Tozer, 1971), a consequence 
of the low pressures and small adiabatic temperature gradient in the Moon. We 
therefore postulate in our thermal evolution models that solid-state creep will be an 
efficient heat transfer mechanism when the temperature in the bulk of the lunar 
interior is such that the viscosity exceeds a critical value. This temperature is essentially 
the 'stabilization temperature '  of  Tozer (1970, 1971). Convection is simulated, as 
before, as a 100~-efficient process: all heat in excess of  that required to maintain the 
viscosity of the material at the critical value is transferred upward in the model. We 
assume a rheology proposed by Turcotte and Oxburgh (1969a) for diffusion creep in 
the Earth 's  mantle. Thus we ignore the probable complication of  non-Newtonian 
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viscosity (Weertman, 1970), an uncertain increase in viscosity associated with the 
depletion of volatiles in the Moon relative to the Earth (Orowan, 1965), and the 
apparent conflict between geophysical constraints on the rheology of the Earth's 
mantle and presently available laboratory measurements of high-temperature creep 
in rocks (Goetze and Brace, 1971). Two values for the critical value of viscosity were 
chosen: 1021 and 1024 poise. The first was predicted for the lunar interior by Turcotte 
and Oxburgh (1969b) on the basis of their boundary-layer theory and is also within 
an order of magnitude of values often cited for the viscosity of the Earth's upper 
mantle. The second value is an estimate, obtained from marginal stability theory in a 
uniform, gravitating sphere, of the maximum value permissible if the Moon is 
currently convecting (Turcotte and Oxburgh, 1969b). We found that using a value of 
1021 poise for the critical viscosity did not alter significantly the thermal evolution 
from models similar in all respects but neglecting solid-state creep; this is because the 
temperatures at which such a viscosity is reached, according to the viscosity-temper- 
ature relationship of Turcotte and Oxburgh (1969a), are very near the basalt solidus 
of Cohen et al. (1967). Thus only a model which convects when the viscosity is less 
than 1024 poise throughout most of the Moon is considered below. 

Such a model is shown in Figure 12. This model is identical to that in Figure 5 for 
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Fig. 11. Thermal  evolut ion in a M o o n  with a present-day u r a n i u m  concentra t ion  of  1.1 × 10-8 g/g. 
All other  parameters  and  symbols  are as in the  model  of  Figure 5. 
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the first 2 b.y. At  that  time, a lmost  all of  the M o o n  below 250 km depth is at a 
tempera ture  high enough to give a viscosity less than  1024 poise. Al though the 

viscosity was less than  that  value over a more  limited depth range at times less than  
2 b.y., we argue tha t  solid-state creep was p robab ly  un impor tan t  at  these early stages 
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Fig. 12. The effect of convection by solid-state creep on the later stages of thermal evolution in the 
Moon (see text). From 0 to 2 b.y., this model is identical to that of Figure 5. 

by appeal ing qualitatively to the very strong dependence of  the Rayleigh number ,  a 
criterion for  hydrodynamic  instability, on the characteristic length (depth interval) o f  
the convective cell (e.g., Turcot te  and Oxburgh,  1969b). After  2 b.y. in the model  
(Figure 12), the tempera ture  in the convecting interior is stabilized at  that  tempera ture  
necessary to mainta in  a viscosity of  1024 poise;  the gradient  is slightly superadiabatic.  

All excess heat  is t ransferred to the non-convect ing outer  shell, which is slowly cooling 
and thickening with time. The  present-day heat  flow at the lunar surface in this model  
is 25 erg/cm 2 s. 

5. Discussion and Conclusions 

In  this paper  we studied the thermal  evolut ion of  the M o o n  f rom three basic initial 
models :  (a) A M o o n  initially cold, (b) A M o o n  accreted hot  and initially mol ten 
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everywhere, and (c) A Moon accreted relatively rapidly so that the outer few hundred 
kilometers were at near-solidus temperatures while the interior was relatively cold. 
The results of our computations indicate that: 

(1) An initially cold Moon (Figure 4) would neither melt nor differentiate to 
account for the lunar crustal rocks and basalts with any plausible radioactive heat- 
source abundances. Thus it is not an acceptable model. 

(2) An initially molten Moon would have cooled below the solidus at the present 
time. While such a model is consistent with the majority of thermal constraints, there 
are a number of other complications (e.g., Ringwood, 1970), and this model is not 
favored. 

(3) Moon models based on rapid accretion satisfy the requirements for early and 
extended periods of magma generation. Thermal evolution for such models follows a 
characteristic pattern, where, with increasing time, the outer part of the Moon cools 
while the inner portion heats up. Melting progresses downward. At 4.6 b.y. most 
models have a partially molten core of the same composition as the initial primordial 
lunar material. 

(4) Addition of sub-solidus convection at high temperatures eliminates melting at 
the center, without altering the general shape of the above temperature curves. The 
surface effects of such a model will be the same. Near the surface where temperatures 
are relatively low, convection is not an important factor in heat transfer. 

(5) Our computations indicate that a Moon model that is initially molten and 
differentiated to a depth of 600-800 km satisfies the geologic, geophysical and 
geochronologic constraints for the formation of a lunar crust and mare basalts. 
During the first 2 b.y. of lunar history, the top of the partially molten zone remains 
within 300 km of the lunar surface. At the present time, these models give an average 
surface heat flow of about 25 to 30 erg/cm 2 s (see Table II) which is slightly lower than 
the measured value at the Apollo 15 site (Langseth et al., 1971). It should be clarified 
that theoretical values do not take into account the contribution to heat flow by the 
radioactively enriched lunar soil which affects the measurement. 

(6) The temperatures for the above models (in fact, for all the models we computed) 
are higher than the values of Sonett et al. (1971), as can be seen in Figure 11, unless 
we reduce the average U abundance to below 1.0 x 10 .8 g/g (cf. Hays, 1971) and/or 
increase the conductivity to a value even higher than curve M2 (Figure 3). Neither of 
these alternatives is acceptable. Considering the difficulties and uncertainties involved 
in estimating electrical conductivity and converting these to temperatures, it may be 
advisable to await further analysis and data before we are rigidly bound by this 
temperature model. 

(7) Most of our models point to a transition zone between 600-1000 km depth 
(going from differentiated to undifferentiated, non-convecting to convecting, sub- 
solidus temperatures to partial melting). It is interesting that the largest and most 
persistent moonquakes (A-1 type events described by Latham et aI., 1971) have focal 
depths of about 800 km. The transition region beneath a cool and rigid lithosphere 
may indeed be the zone of deviatoric stresses. 
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Appendix 

A. FINITE-DIFFERENCE EQUATION 

The finite-difference analog of Equation (4) which conserves heat flux is 

[ (  (K2+1 + K m) (T:~+ ~ _ T,?) 
T~ +1 --= 7,," + n + ½)2 2 

- (n - ~)2 (K2 + K L 1 )  (T2 - TLd]  + ~n2 
2 

(A1) 

where p=Ar, r=np, t=mAt, o~=t/Cpo , T~= T(np, mat). 

B. STABILITY 

Equation (A1) may be expressed in matrix form as 

U m + l  = (I + A) um + H m, (A2) 

where u re+l, u m, and H m are column vectors defined by 

and 

u ~+~ = (T~ '+~, T~ '+t, ... T~t+ 1), 

t~l in . H ~ = ~ (U? ,  ~ . . . .  n;}) ,  

I is the identity matrix and A is the (M x M) matrix defining the finite-difference 
scheme given by 

with 

and 

I 
- (B + C) B 

C - (B + C) 
A =  

0 

B = 

C = 

° l 
° . °  

c - (B + c )  B ' 
C - (B + C) 

(A3) 

(,, + ~)2 (K.+I + K.) 
2n2p 2 

~(n  - ½)2 (K. + K ._I )  
2 n 2 p  2 

I f  we express u ° in terms of the eigenvectors of  A 

M 

n°~ 2 ]lkWk 
k=l 

(A4) 

and substitute in Equation (A2), we obtain 
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m - 1  
u m = ( I + A ) m u ° +  • (I+A)m-I-'H ". 

p=O 

Expanding H ° in terms of the eigenvectors of A 

M 

H ° =  ~ flkWk 
k = l  

and noting that Aw = 2w we find that 

M m - 1  M 

um= Z (1 + 2k) m ykWk + Z Z (1 + .~k) m - l - p  flkWk . (A5) 
k = l  p = 0  k = l  

Therefore, l1 +Akl < 1 if the difference scheme is to be stable. Noting that "~r =Awr "Wr 
and using the expression for A given by Equation (A3), it can be shown that 

M 
W 2 2, .=-½ Z ( B + C ) ( w p + l , r -  p,r) (A6) 

p = 0  

by letting Wo, r = win+l, ,=0 .  Since B and C are positive, all of the eigenvalues of A 
are negative. Then letting 

M 

U : Z O~kWk ~ 
k = l  

IAu'ul = ~ [A~I + ~21221 +"" + ~ [2MI. 

(A7) 

If the eigenvalues of A are ordered so that 

then 
I~ai < 1221 < 12MI, 

IAu'ul (AS) 

Thus, [Au.u[/(u'u) is bounded by the numerically least and greatest eigenvalues of A. 
Analogous to Equation (A6), one has for any arbitrary vector 

M 
]Au-u[ _ ½ ~ (B + C) (up+l - up) 2 (A9) 
(u.u) p=o 

ifuo =uM+l =0. Letting K* and K,  be the maximum and minimum values of B and C 
respectively, and A* and A,  the corresponding A, one has 

[A,u'u] IAu'ul [A*u'ul (u.u) < ~ ) -  < (u.u~ (AIO) 

The eigenvalues of A* and A.  are 

kT~ 
- 4K* COS 2 

2 ( M +  1) 
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and 
k~ 

- 4K,  cos 2 
2 ( M +  1)' 

respectively (Lowan, 1957). Thus 

k = 1, 2, 3, ..., M,  

k~r k~ 
1 -- 4K* cos 2 ~ < 1 + 2 k < 1 - 4K,  cos 2 

2 (M + 1) 2 (M + 1)" 
(All)  

If  [ 1 + 2k] < 1 then K* < 1, giving the stability criterion 

At (n +½)2 
Cp¢ n2Ar 2 Km~ < ½ 

H 2 
At < C~O Ar2 

2Km.x (n + ½)2, 

where Km,x is the maximum value of the conductivity at the given time step. 

(A12) 

C. CONVERGENCE 

Let U (r, t) be the exact solution of Equation (1). Expanding U (r, t) in a Taylor 
series about (nA r, mA t) and substituting the expansion into Equation ( A 1 )  

8U 2K 8U 8K 8U ~ 2 U  

8~ = f l - r  --Sr + fl O-rr Sr  + flK ~2r2 + fill(r,  t ) -  ~ ,  (A13) 

where 

and 
fl = 1 / C ~  

At flAr 2 
= Utt 2 4r (K,  Ur + KUrr) + O(At 2, Ar3). (A14) 

Letting d~ = U(nAr, mA t) - T m, substituting into Equation (A1) and using Equation 
(A13) gives 

d m+l = (I + A) d m + ( I )  m . (A15) 

The difference between the exact and finite-difference solutions satisfies the same 
equation as the finite-difference solution with H"  replaced by ~m" 

For the finite-difference solution to be accurate as well as stable, d m+~ ~ 0  as Ar 
and At~O.  To begin, it is reasonable to assume that d ° = U ( n A r ,  O) -T°=O.  
Therefore, 

d m+l = ~ (I + A)m-P*p. (A16) 
p = 0  

Expressing ~p in terms of the eigenvectors of A so that 

M 

~p = Z C~kP)Wk (A17) 
k = l  
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yields 
M 

(I + A)m-P¢p = Z C~ p) (1 + 2k)m-PWk, 
k = l  

which on substituting into Equation (A16) yields 
M 

dm+' = ~, [Cg °) (1 + 2k) m + Cg ') (1 + 2k)"- '  +""  + C~ ")] Wk. (a18) 
k = l  

Letting dh m+~ and Wh, k be the h component of d "+ 1 and Wk, respectively, produces 
M 

d~ '+1 = Z EC(k °) (1 + 2k)" + Cg 1) (1 + 2k) m-1 +. . .  + Cg m)] Wh, k. (a19) 
k = l  

From Equation (A17) 
1 

cgp  = = + . .  + % ,   wM, 

It has been shown (Lowan, 1957) that an upper bound for Wh, k is ~ .  It is necessary 
that the stability condition, Equation (A12), hold so that the A matrix has the proper 
form (A*) in order for the upper bound on the eigenvector components to be valid. 
Thus 

where q~* is an upper bound of the components of the ¢ , ' s .  
Equation (A19) now yields 

d~ +1 < 2 M ( m  + 1) q~*. (A20) 

Thus by Equation (A14), it can be seen that as At and Ar ~ O, d~ '+~ ~ 0 provided that 
the stability condition, Equation (A12), is satisfied. Furthermore, the finite-difference 
scheme is second-order accurate in the time step and third-order accurate in the 
spatial step. 
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