
A O N E - D I M E N S I O N A L  G A S D Y N A M I C A L  M O D E L  O F  

M A G N E T O S P H E R I C  C O N V E C T I O N  

M. V. S A M O K H I N  
Moscow Radiotechnical Institute, U.S.S.R. Academy of  Sciences, Moscow U.S.S.R. 

(Received 3 November, 1977) 

Abstract. The plasma flow in the equatorial plane of the magnetosphere is examined within the 
framework of a one-dimensional model in which all quantities are supposed to depend only on the 
distance along the Sun-Earth axis. The following models are considered: (1) the gasdynamical 
model in which the Amp6re force is ignored, (2) the magnetohydrodynamical model in which the 
normal component of the Amp6re force on the magnetopause is taken into account. The flow regime 
is calculated in the region including two regions: (1) the layer of the return flow where flow velocity 
is directed from the Sun, (2) the region of convection where the velocity is directed toward the 
Sun - on the assumption that the form of the magnetopause and the distribution of the solar wind 
pressure on the magnetopause are known. 

The following physical mechanisms are taken into account: (1) the appearance of a centrifugal 
force owing to the magnetopause curvature, the centrifugal force partly compensating for the solar 
wind pressure; (2) the existence of the critical point which is analogous to the point of transition 
through the local sound velocity in the Laval nozzle or in the Parker model of the solar corona. The 
thickness of the layer of the return flow and the velocity of convection in the magnetosphere are 
calculated; and the following peculiarities are found: (1) in the gasdynamical model the convection 
regime is only possible with high velocities corresponding to the substorm, (2) in the magneto- 
hydrodynamic model the convection velocity and the thickness of the layer of the return flow are 
reduced; the reduction being connected to the fact that the pressure of the solar wind is partially 
compensated for by the jump of the magnetic pressure on the magnetopause. 

Introduction 

Accord ing  to mode rn  ideas,  the p l a sma  moves toward  the Sun in the pr incipal  volume 

of  the magne tosphere  (Axford,  1969) and the p lasma  moves in the oppos i te  direct ion 

in a thin layer  near  the magne topause  (F reeman  et al., 1968; Bogot t  and Mozer ,  1971). 

These flows differ f rom each o ther  in the magni tude  of  their  veloci ty;  the first is known 

as the convect ion  and the la t ter  as the re turn  flow. The existence of  such flow pat terns  

in the magne tosphere  is suppor ted  by the da ta  of  Vela satelli tes (Hones et al., 1972, 

1973), by invest igat ions  of  the p l a sma  mant le  (Rosenbauer  et al., 1975), by the electric 

dr i f t  measurements  in the tai l  (Vil lante and Lazarus,  1975; Walke r  et al., 1975). The 

convect ion  creates the electric field in the equator ia l  plane directed from dawn to dusk 

(Obayash i  and Nishida ,  1968; Chappel l ,  1974; Roederer ,  1974). 

The cause of  the existence of  convect ion  is not  finally es tabl ished;  the dissipative 

mechanisms of  viscous-like fr ic t ion (Axford and Hines,  1961) or  of  field line merging 

(Dungey,  1961 ; Levy et  al., 1964) have been p roposed  and a nondiss ipat ive  mechanism,  

in which the existence of  the re turn  flow is the condi t ion  of  equi l ibr ium of  the par t icu lar  

tangent ia l  d iscont inui ty  - magne topause  - under  the solar wind pressure changing 

a long the magne topause ,  is offered (Samokhin ,  1976). In  the la t ter  case, in contras t  
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with the Chapman-Ferraro model, the solar wind pressure on the magnetospheric 
boundary is partly compensated for by the Amp6re force, and partly by the gas pres- 
sure of magnetospheric plasma which is redistributed because of the plasma flow. 

The purpose of the paper is to develop further the last concept. With the aid of such 
supplementary physical ideas as (1) the appearance of the inertia force owing to the 
curvature of the magnetopause and (2) the existence of the critical point, analogous to 
that of transition through the local sound velocity in the Laval nozzle, or in the Parker 
model of the solar corona, one succeeds in finding the velocity of convection in the 
magnetospheric tail and the thickness of the return flow. Two models are discussed: 
(1) the gasdynamical model in which the Ampere force is omitted and (2) the magneto- 
hydrodynamical model in which the component of the Ampere force normal to the 
magnetopause is taken into account. 

1. The Formulation of the Problem in the Case of the Gasdynamical Model 

The pattern of convection and of the return flow in the equatorial plane according 
to the modern ideas is shown in Figure 1. Here 0 is the region of the solar wind, 1 is the 

: t %" ~ ~ ,  ,~'' 

_ _ _  Sz 

) 

Fig. 1. The assumed pattern of convection and the return flow in the equatorial plane of the 
magnetosphere. The layer of the return flow 1 is marked by strokes, the magnetic field in the 
neutral sheet 2 (in the region of convection) is oriented to the north, vl, v2 are the velocities of 
the return flow and convection, $1 is the thickness of the layer of the return flow adjacent to the 
magnetopause, $2 is the halfwidth of the region of convection. The form of the magnetospheric 
boundary and the distribution of the solar wind pressure 0 on the boundary are considered to be 
known, the plasmosphere of the set form is excluded from the cross-section of the region of 
convection 2. The calculations result in the position of the boundary between the regions 1 and 2. 
The wavy line separates the region of the magnetosphere on the day side where the one-dimensional 

model becomes invalid (see the text). 
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layer of the return flow, 2 is the region of convection. The arrows point the direction 
of the plasma flow, $1 and $2 are cross-sections of the corresponding regions per- 
pendicular to the Sun-Earth axis. The plasmasphere in which the plasma taking part 
in the convection flow does not penetrate is excluded from the region 2. Magnetic field 
is directed upwards from the plane of the figure. 

The calculation of the magnetospheric plasma flow pattern in stationary conditions 
represents a sufficiently complex problem even in the framework of the continuous- 
medium approach, when the magnetospheric plasma is supposed to be an ideally 
conducting gas with isotropic pressure, and is supposed to obey the one-fluid magneto- 
hydrodynamic equations 

1 
Q(vV)v = - V p  + c [jB], div B = 0, div ~v = 0, 

4~.  ~ (1) 
rot B = - - j ,  rot [vB] = 0, (vV)~ = 0, 

C 

where Q, p, v, B, j, ~,, c are, respectively, the density, the pressure, the velocity, the 
magnetic field, the current, the adiabatic power law, and the velocity of light. Corre- 
spondingly it seems to be reasonable to consider the convection model in which 
(1) simplification should result from the geometry of the problem, (2) the fundamental 
physical processes should be taken into account. The geometrical simplifications must 
be based on the fact that the magnetospheric tail is pulled out for a considerable 
geocentric distance; therefore all physical values are considered to depend only on the 
distance along the Sun-Earth axis (the one-dimensional problem). 

Let us examine the part of individual physical forces. The first cause of the appear- 
ance of the return flow seems to be a decrease of the solar wind pressure along the 
magnetopanse in the direction from the Sun. According to the momentum equation 
(1), the force -Vp  directed from the Sun drives the plasma to move in the same 
direction. Besides, since the thickness of the layer of the return flow $1 is not zero, a 
component of the current arises across the layer Jn ~ S~ f lR ,  where R is the charac- 
teristic scale of length, j is the fundamental current in the layer to compensate for the 
solar wind pressure. It is easy to see that, in the equatorial cross-section of the layer, 
the magnetic field is oriented to the north and decreases in the direction from the Sun; 
therefore, the component j~ is directed from dawn to dusk, as is the corresponding 
component of the Ampere force from the Sun. The component of the Ampbre force 
is the second cause which makes the plasma in the layer move in a direction away from 
the Sun. 

In Equations (1) one can distinguish the terms of different orders in the flow velocity. 
In the zero order (i.e. in the absence of the plasma movement) the currents must 
dissipate for some seconds, because of the absence of sources and because of the final 
ionospheric conductivity. Then the pressure gradients must disappear. The only kind 
of motion inside the magnetosphere which is driven by the outer source (the solar 
wind) is known to be convection. Therefore, the Ampere force [jB]/c and the pressure 
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gradient Vp have the same source - the plasma flow - and, generally speaking, are of 
the same order of magnitude as the inertial force Q(vV)v. The components of the 
Ampere force can scarcely be well approximated in the framework of a one-dimen- 
sional model. Therefore, if one does not seek an exact solution but only an order of 
magnitude evaluation it is reasonable to omit the Amp6re force in the momentum 
equation, and reduce the problem to a gasdynamical one. 

From this point of view it is easy to ascertain the time of the arrangement of the 
stationary return flow T. So long as Qv/T ~ Ap/R, where Ap is the pressure fall bound 
to the plasma flow, i.e. Ap ~ ~ov 2, R is the characteristic scale, ~o is the density, v is the 
plasma velocity, we obtain T ,,~ R/v finally. For v ~ 200 km s -1 and R ~ 10R~ the 
time is T ~ 5 min. 

Let us, therefore, summarize the basic simplifications: (1) the equatorial cross- 
section of the magnetosphere is considered, (2) all values are supposed to depend only 
on the distance along the Sun-Earth axis, (3) the Amp6re force is omitted, (4) the 
magnetosphere is supposed to consist of the layer of the return flow near the magneto- 
pause, which has an unknown thickness, and the region of convection from which 
the plasmopause is expelled, (5) the form of the magnetopause and the form of the 
plasmapause are considered to be given, the solar wind parameters (the density, the 
temperature, the velocity), the solar wind pressure distribution on the magneto- 
pause and the values of the plasma density in the region of convection in the 
infinity and in the layer of the return flow at infinity (i.e. in the distant tail) are 
supposed to be known, and (6) the power in the adiabatic law is considered to 
be 2. 

The first simplification goes back to the fact that the corresponding experimemal 
data concern mainly the region of the magnetosphere near the equatorial plane. The 
second simplification can be justified by the fact that the magnetosphere is elongated 
considerably in the direction from the Sun. However, on the dayside of the magneto- 
sphere the curvature of the current lines of liquid is comparable with the characteristic 
scale and the assumption becomes invalid. The third assumption is justified by the 
fact that, in the real magnetosphere, the Amp6re force and the pressure gradient are 
generally of the same order of magnitude. Therefore, for an estimate of the orders of 
magnitude, one term from the two can be omitted only if the vectors - V p  and [jB]/c 
are not in opposite directions. This can be verified by comparison of the results of the 
framework calculations of the model with observational data. The fourth simplification 
is based on the up-to-date ideas that the magnetospheric boundary is a tangential 
discontinuity and the plasmapause is an equipotential surface; and, for this simplifica- 
tion, the convection patterns which are the result of the appearance of the equivalent 
ionospheric current systems corresponding to the periodic variations, the data of 
satellites with geostationary orbits, the satellites Vela, the measurements of the electric 
fields in the ionosphere with the help of balloons, etc., are used. The fifth simplification 
is connected with the one-dimensionality, and is essential for the purpose of this paper, 
which is to evaluate the convection velocity in the magnetosphere by use of the solar- 
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wind parameters. The sixth simplification is not essential, and has been introduced 

only to simplify the equations. 
In the scope of these simplifications, Equations (1) assume the forms 

O,v~& = Q, "~ + v~ ?,~ + v~ 
O~ 2 O~ ~o --2-' 

2 

O~ p ~ -  p~O~' i =  1,2, S =  ~ &, 
i = 1  

(2) 

where Q = const (the subscript oe means that the corresponding values are taken at 
great geocentrical distances), S is the set cross-section of the magnetosphere in the 
equatorial plane - i.e. the distance from the Sun-Earth axis to the magnetopause of 
set form (see below), the cross-section of the plasmasphere being extracted. At great 
distances the cross-section S is finite and the pressures in the layer of the return flow 
(i = 1) in the region of convection (i = 2) and in the solar wind are not equal to zero 
and are equal to p~. 

Because of the curvature of the magnetopause in the layer of the return flow, the 
centrifugal force appears as 

01v~ sl (3) f = - g -  ' 

which partly compensates the solar-wind pressure on the boundary, where R is the 
local radius of curvature. Then in the region of convection the pressure is P2 = P - f,  
where p is the solar-wind pressure on the magnetospheric boundary. 

Let us introduce the system of co-ordinates with the centre in the stagnation (sub- 
solar) point of the magnetopause and the axis x, y, z, directed toward the dusk side, 
from the Sun and to the north. Let us approximate the form of the magnetopause in 
the equatorial plane with the aid of an equation which follows as the solution of the 
problem of flow around a wire with current (Zhigulev, 1959; Hurley, 1961) that 

2 
y = l ln  1 + cos x/l' (4) 

the value h = lrr/2 being equal to the distance from the subsolar point to the geo- 
magnetic dipole, the value So = l~r being the half-width of the tail cross-section at the 
great geocentrical distances. It is easy to be convinced that, in spite of its simplicity, 
Equation (4) is applicable to this purpose for l~r ~ 20RE. 

Let us approximate the solar-wind pressure on the magnetopause with the aid of 
the equation 

P = P0 COS2 X -b p~ ,  (5) 

where Po is the solar-wind pressure at the subsolar point without p~, X is the angle 
between the normal to the magnetospheric boundary and the velocity of the undis- 
turbed solar wind, the velocity being directed along the axis y, p~ is the chaotic 
pressure of the solar wind in the distant tail. The plasmasphere will be considered to 
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be the circle of the radius a with the centre in the point x = 0, y = h. Then 

(:  l y  a, 
S = ,  ' - x / a  2 -  ( y - h )  2, [ y -  h I < a, (6) 

where the value of x is a function of y, and obeys Equation (4). The values R and 
cos x can be written in the form 

d 2 y / d x  2 1 
R = [1 + (dy /dx )=]  3/2' c°s2x = 1 + ( d y / d x )  2" (7) 

If we introduce the nondimensional values M~ = O ~ ® v ~ / ( 2 p ~ ) ,  i = 1, 2, u = 

01 /01~ ,  w =  02 /02~ ,  r =  S l o ~ / S ~ ,  U m =  1 + M ~ / 2 ,  Wm = 1 + M ~ / 2 ,  ~ = p / p ~ ,  

~ = Po/P®,  ~: = 41 ~/(202o~) and take account of Equations (3)-(5), Equations (2) can 
be rewritten in the form 

1 1 x /2  S 
F -  ~ + X/2-~ - - - 0 ,  

1 4 " ~  m - -  IA W~v/-W m - w M1So~T 

w 2 = ~ _ 2 a / 2  M 1 a m r  ~ m  -- U, (8) 
R 

1 
Therefore, the problem reduces to finding the value of u as a function of y which is 

determined implicitly by Equations (8) and (4)-(6). Then the pressures and the 
velocities of flow in the corresponding regions and the thickness of the layer of the 

return flows obeys the equations 

P l  = P ~ U  2, P2 = P = W  2, 

J (1-w), 2 
V2 = V2~o 1 q- 

2 ( 1 - u ) ,  vl = vl~ 1 + M---~ 

M 1 S ~ r  

S 1  = ~ U'~/blm - -  1A 

(9) 

In the layer of the return flow the plasma velocity increases from zero (near the 
stagnation point) to the value of the order of the solar-wind velocity (at great geo- 
centrical distances), passing through the local sound velocity. Therefore, by analogy 
with the Laval nozzle or Parker's model of the expansion of the solar corona (Parker, 
1963), the single solution can be realized which passes through the critical point where 
~F/Ou = 0, ~ F / O x  = 0 (it is more convenient to use the changeable value x instead 
of y). These additional equations result in the position of the critical point and the 
value Wm, i.e. the convection velocity at great geocentrical distances. 

2. The Method of  Solution* 

The position of the critical point and the value of Wm obey Equations (8) - i.e. 

OF 2Urn - -  3u M 1 S ~ r ( 2 W m  - 3w) 
a--ff = 2u2(Um u) zl2 - ~ = - 2R'V'Um - u Wa(Wm -- W) am O, 

* This section is of the nature of an appendix, and can be omitted on a first reading. 

(10) 



A ONE-DIMENSIONAL GASDYNAMICAL MODEL OF MAGNETOSPHERIC CONVECTION 415 

 wm-3  ff  
~---x = 2,V/~ w3(wm - w)3/2 dx  + ~ ~ M1So~r dx O. (11) 

The layer of the return flow is located between the region of convection and the 
magnetosheath. The velocity in that layer is about the same as in the magnetosheath, 
and greater than the velocity of convection; one can also expect that the density in the 

layer of the return flow to be greater than in the region of convection, and the thickness 
of the layer to be smaller in comparison with the cross-section of the tail; while the 
dynamical pressure of the solar wind will be large in comparison with the random one. 
Therefore, in the zero-order approximation, one can consider that ~ >> 1, ~ >> l, 
T << 1, $1 << S; and if so, Equations (8), (10) and (11) will assume the forms 

~3/~ _ S ~ / S  = w = ~/-~, 
Wm ~ _ S ~ / S  ~ , 

(S~/S)2(~ 3/2 - 2) - ~3,2 { S__S_~2 d~ 1 dS O, (12) 
4~--~-~ -- ]-) \S® ] d x + S--~ d---x = 

2Um -- 3U _ S~o (S~/S)2(~3/2 - 2 ) ) -  ~3'2 ( S ) 3 
U2(b/m __ . )  - - / ~ ,  /.t = ~ ~( 'V/~  2 ~ m  " 

The system of Equations (12) was solved in the following way. At first the solution 

x = xo of the second Equation (12) was found graphically; then its value specified 
numerically by dividing the interval in half. The values wrn, w and u were determined 
from the remaining equations, the method of successive approximations was applied 
for finding the value u as 

u(O)=0 ' u~+l) = a/9 - 81dmlZ(llm - -  U (n))  - -  3 
- -  2/Z(Um - -  U (n))  

for/~ < 0, n = 0 , 1 , . . . ,  (13) 

2 + t ~ u  (~2 for/~ > 0, n = 0 , 1 , . . . .  U (°) = Urn, U ( n + l )  = btm 3 + /zU(n) 2 

These equations can easily be completed if the left-hand side of the last but one 
equation (12) is represented graphically. 

After the solution of Equations (12) has been found, further specification was made 
by successive approximations with the aid of the equations deduced from Equations (8), 
(10) and (12); in these equations the assumption that ~ >> 1, r] >> 1, ~- << 1 was dropped; i.e., 

(1 + 

w 3 - v 2 S~ v2(3w - 2) - w 3 1 
Wm= W2__ U2' t~=---~ V3W2(W-- 1) 1 + a/Wm-- 1/Mla/~'  

(14) 
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the value u being determined by the above-mentioned way from the equation 

2u , " -  3u 
u 2 ( u ~  - u )  = - l ~ ,  

and the location of the critical point being found with the help of the equation 

1 v~(3w- 2 ) -  w 3 
X 

1 + "~ww," - 1 /MI 'V/~  4 w 2 v 3 ( w -  1) 

(15)  

dR) 1 dS d~ ~ - w 2 
x ~-~+ ~ ~ +~-£~- -~=0 .  (16) 

On the right-hand sides of Equations (14) the preceding approximation was intro- 
duced and the left-hand sides obtained by successive approximation and from the 
corresponding values of t~, v. 

The dependence of the parameters of the layer of the return flow and of the con- 
vection region on the geocentric distance follows the equations F = 0 and (8), or 

1 1 
f ( z )  = ~ (Um - z2)z  + ~ "X/w,, - "X/~ - az  = b ,  (17) 

where a new variable z is introduced by setting 

2 s ~  J 2 ( w , "  - l)  1 
z = ~ u , "  - u ,  a = ~ 1 + V'-Wm - 1 / M I " V ~ '  

( l+ 
b - s ~ v  w," - , M1V'-~ ] 

It is easy to see from Equation (17) that there must be a value of z at the same time 
in the intervals 

0 < z < VV2~, ~ - w---~ < z < -~. (18)  
a g 

The value z can be evaluated numerically in the following way. Let us find the 
minimum of the function (17)fmin = f ( z ~ i n ) .  Iffmin < b then two solutions of Equa- 
tion (17) exist which can be evaluated by the method of successive approximations. 
The expressions for the first and the second solutions in four cases shown in Figure 2 
are given below (the first formula is the zero-order approximation; and with the aid 
of the second formula the next approximation can be evaluated if the preceding 
approximation is set into the right-hand side). 

The case 1, 0 < z < ~/a: 

(1) z = 0, z = (2~)-1/2(Um -- Z2) -1 × 

× [b - (~ - az ) - l l2 (w,"  - ~ -  a z ) - l l 2 ]  - 1 ,  (19) 

(2) z = ~/a, z = { ¢ -  (w,"  - " v ' - ( -  a z )  -~  x 

x [ b  - ( 2 ~ ) - 1 1 2 ( u  m - z2)-1z-1]-2)/a. (20) 
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Fig. 2. The qualitative analysis of the dependence of the left part of Equation (17) on z for 
different parameters of the problem (the notations are explained in the text). In the case 1 
(~ - w~)/a < 0 < ~/a < ~/u~ we have 0 < z < [/a, in the case 2 0 < (~ - w~)/a < Ua < ~'ff~ 
we have (~ - w~)/a < z < Ua, in the case 3 ([ - w~)/a < 0 < ~/u~ < Ua we have 0 < z < ~/u-~, 

in the case 4 0 < (~ - w~)/a < "v/'u-~ < Ua we have (~ - w~)/a < z < ~/-u~. 

T h e  case  2, (~ - W~m)/a < z < ~/a:  

(1) z = (~ - w ~ ) / a ,  z = {~ - {w, ,  - (~ - az )  - z  × 

x [b - ( 2 ¢ ) - 1 / ~ ( u m  - z g - l z - ~ ] - 9 9 / a ,  ( 2 1 )  

(2) the  va lue  z is f o u n d  by use o f  E q u a t i o n s  (20). 

T h e  case  3, 0 < z < Urn: 

(1) the  va lue  z is f o u n d  by  use o f  E q u a t i o n s  (19), 

(2 )  z = ~ / ~ ,  z = {u.~ - ( 2 0 - ~ / ~ z  - ~  × 

× [b - (~  - a z ) - ~ 1 2 ( w m  - ~ / ~  - a z ) - l l 2 ] - ~ }  l /2 .  ( 2 2 )  

T h e  case  4, (~ - w ~ ) / a  < z < "V/'u-~: 

(1) the  va lue  z is f o u n d  by  use o f  E q u a t i o n s  (21), 

(2) the  va lue  z is f o u n d  by  use o f  E q u a t i o n s  (22). 

3. The Formulation of the Problem in the Case of the MHD-model 

In  the  case  o f  the  M H D - m o d e l  t he  c o m p o n e n t  o f  t he  A m p e r e  force ,  wh ich  is per-  

p end i cu l a r  to the  m a g n e t o p a u s e ,  can  be  t a k e n  in to  accoun t .  Le t  us cons ide r  t ha t  (1) the  



418 M. V.  S A M O K H I N  

current layer coincides with the layer of the return flow; and (2) the current layer is 
locally flat. The assumption (1) is justified by the fact that, according to the above- 
mentioned discussion, the Amp6re force and the pressure drop are of the order Qv2; 
therefore, the current is more intense where the flow velocity is greater. The assumption 
(2) is justified by the fact that the layer is sufficiently thin and taking into account the 
curvature results in the correction of the order of the relation of the layer thickness to 
the radius of curvature. Then, since the flat current layer results in magnetic field on 
two sides which has the same values and opposite directions, 

B~ + B = Bin, Bg - B = B~, (23) 

where Bg is the field of the sources which there are inside the magnetosphere (the dipole 
and the neutral sheet), B is the field which is generated by the boundary current sheet, 
Bm is the field on the inward boundary of the layer of the return flow, B~ is the field 
on the outward boundary (out of the magnetosphere). Hence, 

B = B o - Bt ,  am = 2Bo - B,. (24) 

Then the component of the magnetic pressure which is normal to the boundary is 

given by the equations 

C B m +  B~ _ 
P m =  IB1,  I =  ~ B ,  B1 = 2 Bg, (25) 

where I is the current which currents through the cross-section of the layer of the 
return flow, B~ - the mean field in the layer. 

So that the equatorial cross-section is considered, the field Bg can be approximated 

by the equation 

Bg = (x 2 +__My2)3m + Bo, (26) 

where Mg is the moment of the geomagnetic dipole, Bo is the constant field in the 
neutral sheet of the tail which is perpendicular to the neutral sheet. Equations (2) then 

assume the forms 

where 

_ _  ' v ~  p~ p "  O,v~S~ = Qo, 2p~+ v~ 2p____~ + _ = _ _  

i =  1, 2, S =  ~ S~, (27) 
i = 1  

(80 - g , )~o ,  (28) ! 

p~ = p~o 27r 

p~ is the gas pressure in the solar wind at infinity, it standing p ~  = pl~o because of 
the absence of the magnetic field jump between the regions 1 and 2. Analogously, 

P2 = P - f -  PM, m ~  = O,~oV~oo i = 1, 2; (29) 2-W ' 
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and, finally, the basic equations take the form (8) as in the case of a gasdynamical 

model if the value ~ is substituted for 

where 

o r  

~ = (~ + ~,)~ - ~ ,  (30) 

(Bo - Bi)Bo PM 
7 2zrp" ' ~M = p.,-- (31) 

~s~ ~s~ 
~M - -  (X 2 + y2)a + (X 2 + y2)a/2 + 7, 

My Mo(2B o - B,) 
2rrpo~S~' f l =  , a ' 2rcp~S,~ 

(32) 

4. The Results of Calculations 

As a preliminary, it is necessary to find the connection between the solar-wind 
parameters and the parameters of the return current layer. If the magnetospheric 
boundary is considered to be a tangential discontinuity, then the fact that the value 
Ov 2 must be of the same order of magnitude on two sides of the boundary (Samokhin, 
1970) ensures the equality of the complete (gas and magnetic) pressure on two sides 
of the discontinuity, and the above-mentioned concept that the movement of the 
plasma causes a diminution of the gas and magnetic pressures. Let us denote the 
parameters of the undisturbed solar wind with the subscript u, the solar-wind param- 
eters at the stagnation point with the subscript 0, and at infinity with the subscript ~ .  
Then for large Mach numbers and the power 2 of the adiabatic law we have 

27 2 27 
Po = ~ ~v~, ~o = -~- 0~. (33) 

Since the magnetopause is the current line of liquid and the pressure obeys Equation 
(5), the equations 

vo~ = 2 pa/~o/~o a /1  - 1/X/W, O~ = Qo/~¢~, po~ = Pofil (34) 

follow the Bernoulli equation and the adiabatic law. Then, in accordance with the 
approximate equality O~v% ~ 0 1 ® v ~ ,  we conclude finally that 

M 1 = "~v /R( ,v r '~ -  1 ) ,  Um= "V/~--~. ( 3 5 )  

Figure 3 shows the results of the numerical calculation of the form and the size of 
the layer of the return flow and the other parameters of plasma in the magnetosphere 
with the above-mentioned method. The following values of the initial parameters have 
been adopted: the half-width of the tail at infinity ~rl = 20RE, the distance from the 
centre of the Earth to the subsolar point h = 10RE, the size of the plasmosphere 
a = 6R~., the relation of the densities at infinity in the layer of the return flow and in 
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Fig. 3. The change of the thickness of the layer of the return flow, the velocities and the densities 
in the layer of the return flow and in the region of convection with the distance from the subsolar 
point. The equatorial plane of the magnetosphere is shown, the layer of the return flow is marked 
by strokes. The function x(y) gives the change of the cross-section of the magnetosphere with the 
distance from the subsolar point y in the Earth radii accordingly to Equation (4), $1 is the cross- 
section of the layer of the return flow adjacent to the magnetopause, vllv~ is the relation of the 
velocity of the return flow at a given point to the velocity of this flow at infinity (for y -+ m), 
i.e. in the distant tail u is the relation of the density in the layer of the return flow at a given point 
to the density at infinity, v2/v2® is the relation of the convection velocity at a given point to the 
convection velocity at infinity, w is the relation of the density at the point in question in the region 
of convection to the density at infinity in the region of convection. In the first table 2~ is the 
relation of the densities at infinity in the layer of the return flow and in the region of convection, 

is the relation of the dynamical and chaotic pressures in the solar wind, a is the radius of the 
plasmosphere, M2 is the Mach number at infinity in the region of convection, wm = 1 + M~/2, 
$1~ is the vaIue of the thickness of the layer of the return flow at infinity, x~ is the co-ordinate x 
of the critical point, i.e. the point analogous to the point of transition through the local velocity of 
sound in the Laval nozzle or in the Parker model of extension of the solar corona. In the second 
table T2~ is the supposed temperature of plasma in eV in the region of convection at infinity, ~0 is 
the potential difference in the tail in kV which is bound to the convection, B~ is the north component 

of the interplanetary magnetic field in 7 (the velocity v2~ is in km s-l). 

the region of convection 2~ = 10, the relation of the dynamical  and statical pressures 

in  the solar wind ~7 = 100; the model  is gasdynamical  (i.e. the interplanetary magnetic 

field is zero, B~ = 0, the magnetic  pressure in the magnetosphere is not  taken into 

account).  The first line of the upper  part  of Figure 3 shows the calculated values of the 

Mach number  in the region of convection M2 (and win), the thickness of the layer of 

the re turn flow $1 ® at infinity and the co-ordinate of the critical poin t  xk are pointed 

out. If  the temperature  of the plasma sheet is considered to be T ~  = 100 eV at 

infinity, then by use of the Mach number  M2 the velocity of convection at infinity v2 

and  the potential  difference ~ across the tail in the real magnetosphere (with the normal  

componen t  B0 = lz  in  the neutral  sheet) which corresponds to the velocity of con- 

vection v2~ can be evaluated. These values at the second line of the upper  part  of 
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The parameter 2f is ten times greater than on Figure 3, the value a is decreased to 4Rs 
(see the caption of Figure 3). 

Figure 3 are given. Along the horizontal axis the distance from the subsolar point in 
RE is marked, along the vertical axis the following values are marked: (1) the position 
of the magnetospheric boundary x = x(y), (2) the inward boundary of the layer of 
the return flow x - $1 (the layer of the return flow is marked by strokes), (3) the 
cross-section of the region of convection (the broken line), (4) the density in the layer 
of the return flow u which is divided by the density at infinity, (5) the dimensionless 
density in the region of convection w, (6) the dimensionless velocity in the layer of the 
return flow vl/v~o, (7) the dimensionless velocity of convection v2/v2~. It is seen that 
the layer of the return flow becomes very thin near the critical point at the dawn and 
dusk sides of the magnetosphere, has the maximum thickness in the cross-section of 
the tail on the geocentrical distance ~10R~. and with the further increase of the 
geocentrical distance the thickness of it decreases approximately to 5R~,. In Figure 4 

t he  analogous results for 2f  = 100, ~ = 100 and a = 4 are shown (the rest parameters 
are the same). Increasing f results in decreasing the thickness of the layer of the return 
flow to 1.5RE on the great distances which is found to coincide with the data of 
Pioneer 7 (Intriligator and Wolfe, 1972) and somewhat reduces the velocity of con- 
vection. In Figure 5 the variant of the model is shown in which the contribution of the 
normal component of the Amp6re force (the jump of the magnetic field) in supporting 
the equilibrium of the layer of the return flow is taken into account. The interplanetary 
magnetic field is supposed to have the north component Bt = 27, the normal com- 
ponent of the geomagnetic field in the neutral sheet at large geocentrical distances is 
supposed to be Bo -- 17. The rest of the initial parameters are the same as for Figure 4. 
It is seen that taking into account the jump of the geomagnetic field on the magneto- 
pause results in a decrease of the thickness of the layer of the return flow, the velocity 
of convection and the potential difference in the tail as one could expect. It is worth 
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Fig. 5. The normal component of the Ampere force on the magnetopause is taken into account 
(the MHD model), the interplanetary magnetic field Be = 2y is directed to the north, the rest 

parameters are the same as for Figure 4 (see the caption of Figure 3). 

noting that the method of calculation employed does not allow to continue the solution 
to the region occupied by the interval between the stagnation point and the critical 
point; besides, in the latter region the one-dimensional model becomes invalid since 
the characteristic length along the axis x and y turn out to be comparable. 

A comparison of the results of theoretical calculation with the data provided by the 
Vela satellites (Hones et al., 1972, 1973) demonstrates that the considered mechanism 
is sufficient to explain high velocities of convection (up to ~1000 km s-1) directed to 
the Earth and registered as substorms near the neutral sheet of the tail. 

Conclusions 

For investigation of the plasma flow in the equatorial plane of the magnetosphere 
taking into account the real configuration of the magnetosphere, the following one- 
dimensional models can be offered: (1) the gasdynamical model in which the Ampere 
force is ignored and the solar-wind pressure on the layer of the return flow near the 
magnetopause is compensated by the centrifugal force, which is bound to the curvature 
o f  the layer, and the plasma pressure inside the magnetosphere in the region of 
convection and (2) the MHD-model, in which the normal component of the Amp6re 
force on the magnetopause is considered. The following physical mechanisms are 
essential: (1) the appearance of the centrifugal force because of the curvature of the 
magnetopause and because of the relatively rapid motion of plasma in the layer of the 
-return flow which partly compensate the solar-wind pressure for, (2) the existence of 
the critical point analogous to that of transition through the velocity of sound in the 
Laval nozzle, or in the model of the solar corona of Parker, which makes it possible to 



A ONE-DIMENSIONAL GASDYNAMICAL MODEL OF MAGNETOSPHERIC CONVECTION 423 

obta in  a single solution.  The values of  the thickness of  the layer of  the re turn flow, the 

veloci ty of  convect ion and the potent ia l  difference across the tail which were calculated 

in the f ramework  of  these models  agree in orders  of  magni tude  with the observat ional  

data.  In the gasdynamica l  model  the convect ion regime is possible only for high flow 

velocities cor responding  to substorms.  In  the M H D - m o d e l ,  by selecting the init ial  

parameters  of  the problem,  the velocity of  convect ion can be decreased to the values 

cor responding  to the undis turbed  geomagnet ic  condi t ions ;  then the j u m p  of  the 

magnet ic  pressure on the magne topause  is the pr incipal  cause of  suppor t  of  the 

equi l ibr ium layer  of  the re turn flow. 
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