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Abstract. One of the main problems of selenodesy consists of the construction of a net of basic
reference points on the surface of the Moon. At present there exist many catalogues containing the
coordinates of selected objects on the Moon. These catalogues differ by the presence of both systematic
and accidental errors.

The investigations concerning the comparison of catalogues and the elucidation of their systematic
differences are of very recent date. Various methods of interpretation of the systematic differences
between catalogues have been proposed. Without an attempt to encompass the whole problem in
what follows, we shall describe one method for comparative study of catalogues based on the theory
of the deformation of continuous media.

1. A Theory of the Deformation of Selenodetic Coordinate Systems

Systematic differences between catalogues are due to systematic errors of observations.
The causes of such errors vary and often remain unknown. But the general nature of
displacement of one system relatively another can be investigated in sufficient detail
by the mathematical techniques of continuum mechanics.

We shall consider the ensemble of basic points on the Moon as a selenodetic system.
Because of errors in the coordinates of such points, such systems are always deformed.
To study the absolute deformation of the selenodetic net is difficult because of a lack
of exact coordinates of the control points. Therefore, we shall consider only the
relative displacements of basic nets, interpreting them as a transformation of one
selenodetic system into another. Then we treat the linear deformation which is
represented by the equations

alyi + by + el +d =& — &=y, (1a)
elait+ [+ glai+h =ny—1y =1, (1b)
m&o;+ ngy + 1+ k=04 — (o =u;, (10

where &, #, { — are the selenodetic rectangular coordinates of craters relative to main
axes of inertia of the Moon. The positive direction of the £-axis is to the east (to Mare
Crisium); of the x#-axis — to the north and of the {-axis in the direction of the earth.
The indices 1, 2 designate coordinates taken from two different catalogues; i is the
number of the same crater in these two catalogues. The a, b, ... I, k values are the
reduction coefficients of the second catalogue values to the first.
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Small displacements of the selenodesic construction which are determined by
Equation (1) can be visualized as consisting of three parts:

(1) translational movement of the whole system;

(2) a rotation of the whole system, given by A&, An, A(;

(3) a deformation of the system A_f, A_n, ZIZ .

The linear shift of the second catalogue relative to the first is given by the displace-
ments d, &, k along the coordinate axes. We shall consider that this kind of shift has
been taken into account.

Let us represent by the point Ky; (&4, #y4, {y;) the location of the ith crater with its
coordinates in the first catalogue. (Figure 1). The location of the same crater according

Fig. 1.

to the second catalogue we designate by K,; (¢4, 725, {5;). The displacements of the
points &, — &, =8, N;— N =1, {1;— {5;=U; are given by the linear deformation matrix

a b ¢
H=<e f g]. (2)
n 1

We decompose the matrix into a sum of a symmetric and an antisymmetric matrix,
designated by R and Q, respectively. Thus we have

II=Q0+R, 3
where
4 0 b—e c—m)
2
b—e g—n
=] — 0 —_ 4
Q 5 > 4)
c—m g—n
- - 0
2 2 )
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and
. b+e c+m)
a
2 2
b+e g+n
R = 5
2 S 5 &)
c+m g+n ’
L 2 2 /

First, we consider the displacements characterizing the @-matrix. We shall imagine
the trihedron of axes 0&,, #,, {,, which is rigidly connected with the second catalogue
points, and which in the initial stage coincides with the axis of the coordinates 0&n{
The rotation of this trihedron around at the point O will correspond to the displace-
ment of the selenodetic net &,, 5,, {, relative to the first system &, 4, {, as a rigid body.

We shall turn the second catalogue system and rotate it through the angles u, v, n
around the coordinate axis {, # and &, respectively (Figure 2). If the angles u, = and v

Fig. 2.

are small, the displacements are determined by

A5=§é_52=052_ﬂ7’12+"52,
An =ny —ny = p&; + 0y, — nl,, (6)
AL =15 =Ly ==& +an, + 00,

where &), 15, {5 are the coordinates of the second catalogue points after the three
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above-mentioned rotations. It is apparent that the rotation is characterized by the
antisymmetric matrix

0 —u V
U 0 —=n). (7
-V s 0

If one compares the angles of rotation with the values

B b—e
ﬂ_ 2 3
cC—m
=22, ®
g—n
T=— ,
2

the geometrical meaning of antisymmetric Q-matrix becomes clear. The values w, =,
w,=v, wy=p are the components of the axial vector w, around which the system
rotates as a whole. The angle of rotation is expressed by

a)=\/wf+w§+a)§. 9)

The selenographic coordinates of the pole of the rotation are

) )
Ap = arctg ‘1, fn = arcsin -, (10)
W, )

Fig. 3.
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With 6 denoting the angle between the axis of rotation and the radius-vector of the
point K (Figure 3) the displacement 4S5 of this point is

As = ro sinf. (11)

One can see that the points lying on the equator of a rotation (§==/2) will exhibit
maximum displacements, while points in the polar region will possess minimum
displacements.

So far we have considered relative linear shift and rotational displacements of
selenodetic systems. Now we shall investigate their pure deformation represented by

— , b+e c+m

Aé =aé, + ) 1y + ) (s,

— b+4e g+n,

An = 3 St fy + €25 (12)
— m+c g+n

{ = 5 $r+ 5 1y + 1G5,

which is described by the matrix (5).

First of all we shall call some general properties of a linear deformation (Equation 1).
In a linear deformation all points lying in the one plane before the deformation will
be in another plane after the deformation. If some points of one catalogue are in one
plane, in the system of the other catalogue they will also be in another plane.

From the law of conservation of planes the law of conservation of straight lines
follows. From last law, the law of conservation of surface order follows, because the
order of surface is determined by number of the points of a intersection of this surface
and a straight line. Therefore, if all points in the system of the second catalogue are
situated on the surface of a sphere, then (after the deformation in the system of the
other catalogue) they will lie on an ellipsoidal surface with the same center as the sphere.

The lines perpendicular to each other before the deformation will not generally
remain perpendicular thereafter. However, there are always certain three lines which,
without change of their direction, will remain perpendicular to each other — both
before and after the deformation. Such directions are given by the principal values of
the matrix R, and we shall call the principal axes of deformation.

Usually one studies the effect of linear deformations along the principal axes of
deformation, because their directions are not affected by the deformation. The
coefficients A, 4,, 5 characterizing the change in length of a system along the principal
axis of deformation are called the principal values of a matrix. They are also called
the coefficients of relative elongation.

In order to study the deformation of one selenodetic system relative to another is
necessary to determine the directions of the principal axes of deformation and
principal values of the R-matrix. The directional cosines of one principal axis at
deformation are p, g, r, while 1 is the corresponding coefficient of the relative widening
along this axis. From a determination of the principal values of a matrix the following
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formulae obtain:
b+e m+c

ap + 2 q + r=24ap,
b+e +n
opfa +r=ag, (13)
m+c +n
) +gTq+lr = Ar.

These linear equations are homogeneous in p, g, r. As all these values cannot vanish
simultaneously, the main determinant must be equal zero: i.e.,

b+e m+e
a—2

2 2
b+e g+n

— =0, 14
s Ik (14)
m+c g+n .

-4

2 2

The three real roots of Equation (14) are 4,, 4,, 43, which are the coefficients of the
relative lengthening of a system.

The directional cosines p;, g;, r; (i=1, 2, 3) are determined by any two Equations (13)
for corresponding values A; and the relation

pE+qi+ri=1. (15)

Thus one can represent the deformation of the selenodetic system in the form of two
operations. With the coordinates taken from the second catalogue we construct in the
space (&) the net of basic points &,, #,, {,. After this we find the positions of these
points relative to the principal axis of deformation. Then the coordinates &,, #,, {,
are transformed in (xyz) according to the formulae

X Pr 41 1 &
y]=|pr: 92 72 )\ 12} (16)
z P3 qs T3 £3

The deformation of the system is a result of its lengthening along three axes. After

this widening the displacements of points will be expressed by the next relative
increments of their coordinates

Ax = A4,
4y =1y, 17)
Az = A3z

or

Ax 44 0 O x
Ay }=1 0 4, O v} (18)
Az 0 0 4
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One can also represent the formula (17) as

Ax AP A4y My ¢,
Ay ) =\ by Aqy Aary Ha - (19)
Az A3ps A3qsz  Asrs (s

If these increments are transformed again to the old axes 0&n{, we shall have

f‘_fl P P2 D3 Ax
dny ) =1 4d1 42 43 )| 4y (20)
Zgz S PU N Az

or
A_§2 P P2 D3 APy A1q1 ATy ¢2
4n, } =141 92 43 APy Aaqy Aoty H2 |- 2D
A_Cz P F2 F3 A3ps Aads  Azta (s

Because the product of matrices is equal to the expression (4) i.e.,

4 g N ( b+e c+m)

Py Py Ps AP MG ATy a

2 2
] b+e g+n
d1 492 43 oDy A2y Aoty | = ) f 2 s (22)
X c+m g+n

Fy F2 13 A3ps  A3ds  Asts 2 ) !

N AN S\ /

we verify that the increments (21) taken as the result of the above-mentioned defor-
mation are the displacements expressed by Equation (12).

We have considered the kinematics of a transformation of one selenodetic
construction into another by Equation (1). In the papers by Arthur (1968), Kisliuk
(1970), Gavrilov and Kisliuk (1971) the differences of coordinates of catalogues which
are compared are expressed by equations

BSai + oty + Bl + e =& — &y, (23a)
— o+ Wy + 0+ f =11 — s (23b)
— B — 2+ uloi+ 9 =1 — (o (23¢)

We shall establish the meaning of the Equations (23). In this case, the matrix of relative
displacement is of the form

uooo B
nI={ -« v 7. (24)
-8B -y

We decompose it into a sum of a symmetrical and antisymmetrical matrix IT=Q + R
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of the form
0 x B
OQ={—-a« 0 y (25)
- -y O
and
u 0 0
R=|0 u 0]. (26)
0 0 u

From the expression for R it is clear that the system of formulae (23) describes a
highly particular case of a deformation: namely, the case of an expansion uniform in
all directions. If a system expands isotropically, all points which lie on a sphere with
radius r, will after deformation, also lie on a sphere, but now with the radius r,= ur,.
For such a type of expansion any three orthogonal axes may be taken as the expansion
axes; in particular, the axes of selenodetic coordinates 0&x{.

Later we will consider the deformation of some selenodetic systems and show that
the deformation is anisotropic.

2. Analysis of Systematic Differences between Basic Catalogues

An investigation of systematic errors of basic nets has been carried out by one of the
authors of the present article (Kisliuk, 1971). For this purpose, the comparisons have
been made for eight catalogues, the list of which is given in Table L

In the Table I the number of common points of corresponding pairs of catalogues
is given.

TABLE I

SchrT Bald AMS ACIC SchrII Kiev  Mills  Arthur

Schrutka I (1958) 150 70 60 41 61 143 1 17
Baldwin (1963) 696 86 94 75 166 7 31
AMS (1964) 256 28 67 107 3 15
ACIC (1965) 196 24 78 61 39
Schrutka IT (1966) 137 91 0 12
Kiev (1967) 500 18 29
Mills (1968) 942 2

Arthur (1968) 48

For the catalogues ACIC and ‘Mills’ we have given the selenographic coordinates
A, B and relative heights of points 4. Therefore, the rectangular coordinates for them
have been computed by

E=(1+ h)cospsini,
n= (14 h)sing, @n
{=(l4+h)cosBcosi.
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In the catalogue by Baldwin (1963) the coordinates &, 5, A are published. We
computed, therefore, the values { by

(= +h)? =& — ¢ (28)

The differences in coordinates of the compared catalogues are expressed in two
different ways. In the paper by Kisliuk (1970) they were given by Equation (23), while
in a later paper of Kisliuk (1971) they were given by Equation (1). The coefficients of
the formula (1) for each pair of catalogues were found by methods of least-squares.

Table II contains the coefficients a, b, ... [, k. They were the initial data for a des-
cription of relative deformation of the above-mentioned catalogues. The values of the
coefficients are given in the units 107> R,.

TABLE II

Pair a b ¢ d

! f g h

m n h k
Schr I-Bald. 17+ 8 04 10 604+ 22 — 55+ 18
1+ 6 — 6+ 7 624 16 — 59+ 13
— 674+ 53 454+ 65 442 + 140 —348 4-120
-AMS — 534+ 7 234+ 10 — 50+ 21 40+ 17
— 544 6 — 84+ 8 — 184 18 12+ 14
— 140+ 39 — 189+ 51 — 1754113 494 90
-ACIC 7+ 6 — 16+ 7 0+ 15 2+ 12
— 12+ 5 — 194+ 6 — 10+ 13 104+ 11
— 634 23 — 24+ 25 82+ 57 — 734 47
-Schr.II — 234+ 8 — 64 9 124 31 — 94 17
— 94+ 5 — 134£ 6 19+ 3 — 84 11
— 67+ 42 — 16+ 49 297 £108 — 137+ 87
-Kiev 1+ 5 194 7 164 14 — 284 11
— 6+ 4 14 3 — 124+ 11 — 164+ 9
115+ 26 — 24 32 154+ 68 — 6+ 55
-Arthur — 114+ 3 + 3 5S4 23 54 19
— 264+ 3 — 184 3 — 444 20 354 17
—203+ 15 54 16 — 2144123 164 1102
Bald.-AMS — 66+ 6 24+ 6 — 82+ 14 70+ 11
— 554 6 — 704+ 6 — 464+ 13 444 10
— 99+ 42 — 2814 45 — 7304+ 99 483 £ 79
-ACIC — 44 5 — 144+ 6 — 70+ 15 61 - 12
— 15+ 4 — 12+ 4 — 62+ 10 65+ 8
159 + 29 — 61+ 34 — 3694 81 231 & 66
-Schr.IT — 51+ 8 — 12+ 8 — 66+ 23 58+ 18
— 164+ 6 — 64 6 — 394 17 544 13
— 124 54 — 554 55 — 309 4117 3194 72
-Kiev — 64 6 — 184 6 — 47+ 14 53+ 11
24+ 6 — 24 6 — 214+ 14 444 11
— 264 36 — 184 36 — 1924+ 80 1354+ 65
-Mills 274+ 16 364+ 14 — 134 43 84 37
26+ 9 — 9+ 7 100+ 24 — 954+ 20
98+ 59 — 94 50 — 12204159 992 4-137
-Arthur — 184 8 — 84+ 9 — 1344+ 22 124 + 17
— 64+ 9 — 144 9 — 894+ 22 724 17
344+ 64 84+ 73 — 6724174 540 +128
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Table I ( Continued )

Pair a b c d
! f g h
m n h k
AMS-ACIC 60+ 6 — 174+ 7 34+ 17 — 254+ 14
30+ 8 37+ 8 — 44 20 11+ 16
146 + 39 293 69 — 504169 26 139
-Schr.II 114 10 — 484 8 54 22 54 18
414+ 6 68+ 5 - 34+ 14 194 11
774+ 57 197 + 47 197 +129 921103
-Kiev 494 7 — 704+ 8 4+ 19 18+ 15
58+ 6 7247 64 7 194+ 13
36 & 44 219 4+ 47 — 1634116 — 294 91
-Arthur 43+ 7 — 33+ 5 — 254 13 35&4 9
42+ 12 44 9 24 21 44 15
119 + 108 143+ 79 — 2274192 279 + 135
ACIC-Schr.11 — 484 10 — 104+ 10 44+ 28 34 22
— 84 6 17+ 6 7+ 17 24 13
— 1844+ 49 — 574 48 113 + 141 104110
-Kiev — 24+ 8 7+ 8 — 224 20 11+ 17
— 124 6 — 10+ 7 — 144+ 17 — 5+ 14
— 564 36 — 524 39 — 2214+ 93 1954+ 77
-Mills — 334+ 8 - 54+ 8 — 344 22 264 19
— 34+ 4 20+ 4 44 11 — 8+ 10
— 244 18 80 £ 616 — 111+ 48 96+ 41
-Arthur — 124 4 7+ 5 — 284 10 34+ 8
— 44 4 — 14+ 5 — 28+ 12 16+ 9
— 1314 22 79+ 28 — 150+ 62 133 + 47
Schr.II-Kiev — 334 8 18+ 9 — 144 24 84+ 18
— 214+ 6 04 7 — 13+ 16 — 114 13

— 18+ 39 — 14+ 42 95+ 113 21 + 89

We now consider the relative progressive shifts of these catalogues. From the table
we see that in the majority of the cases the relative shifts of the systems in the direction
of the Earth (the coefficients k) are ten times larger than the shifts in the normal plane.
They vary for different catalogues between 0.2 km (ACIC-Schr.l) and 17.2 km
(Bald.-Mills). The large displacements in the direction of the Earth are explained by
uncertain determinations of the {-values.

We now proceed to analyse mutual displacements of different catalogues caused by
their rigid-body rotation. Using Equations (8) to (10) and the values from Table II,
we computed the angles of rotation n, v, 4 and the coordinates of the pole of the
rotation (8, A) of one catalogues relative to the others. The results are given in Table IIL.
It is clear from the table that, in the majority of cases, the displacements of the seleno-
detic nets in the normal planes, which are given by the rotation around the 0{-axis
through the angle y, are smaller than the displacements caused by the change in the
orientation of a system related to the direction to the Earth (the angles v and =).
Relative to the system ‘Schrutka I’ (with the exception of AMS) the vectors of
rotation of catalogues o are directed towards the polar region of the Moon.
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TABLE III

Pair 7 v u B y
Schr.I-Bald — 1775 13079 170 82°21/ — 86°38’
-AMS —176.4 92.8 — 794 25 38 65 46
-ACIC — 144 65.0 4.1 77 01 — 74 04
-Schr.II — 36.0 81.5 — 31 66 03 85 06
-Kiev 10.3 —102.1 — 25.8 — 74 48 —2148
-Arthur 50.5 214.5 — 309 74 34 —58 32
Bald.-Schr.I 17.5 —130.9 — 1.0 —82 21 — 86 38
-AMS —242.4 17.5 — 81.5 355 —171 25
-ACIC 1.0 —236.2 — 1.0 —90 00 —45 00
-Schr.II — 16.5 — 804 — 4.1 —78 06 — 7559
-Kiev 3.1 — 21.6 20.6 —46 06 8 32
-Arthur 100.0 173.3 2.1 60 00 88 49
Mills —112.4 —114.5 — 103 —45 24 84 46
AMS-Schr.1 176.4 — 92.8 79.4 —25 38 65 46
-Bald. 242.5 — 175 81.5 — 355 71 25
-ACIC 306.3 —115.5 48.5 —20 25 81 01
-Schr.1I 206.3 — 742 91.8 —1812 66 01
-Kiev 232.0 — 330 132.0 — 703 60 22
-Arthur 149.5 — 148.5 77.3 —41 25 62 39
ACIC-Schr.1 14.4 — 65.0 — 4.1 — 77 00 — 74 04
-Bald. — 1.0 236.2 1.0 90 00 —45 00
-AMS —306.3 115.5 — 48.5 20 26 81 00
-Schr.II — 66.0 193.9 4.1 71 10 — 86 26
-Kiev — 392 — 80.4 — 19.6 —61 26 63 26
-Arthur 110.4 106.2 — 113 43 45 34 08
-Mills — 78.4 — 10.3 2.1 — 730 —88 30
Schr.I1-Schr.I 36.1 — 815 3.1 — 66 03 85 06
-Bald. 16.5 80.4 4.1 78 06 75 59
-AMS —206.3 74.2 — 91.8 18 12 66 01
-Kiev — 1.0 4.1 — 40.2 551 128

Consequently, the systematic differences relative to the catalogue ‘Schrutka T’,
caused by rigid rotation, will be largest for the points in the equatorial region of the
Moon. The angles of rotation for the different catalogues are in the interval 1:7-3!7.

For Baldwin’s system the situation becomes more complicated. For the majority of
the catalogues (Schr.I, ACIC, Schr.II, Arthur) the w-vector is directed towards the
polar region; for two other catalogues (Kiev, Mills) — in the direction of intermediate
latitudes. For the AMS-system the vector is directed towards the equatorial region.
The values of the rotations are from 05 to 4'3. The AMS-catalogue is particularly
interesting: relative to this catalogue all investigated systems have the w-vectors,
directed in the south-east region of Mare Foecunditatis. The maximum systematic
differences are for points situated in the region around the great circle going through
Mare Humboldtianum in the north-east, and the southern part of Mare Nubium in
the south-west. The rotational angles for all catalogues are rather large: namely,
between 0:4-5". The linear displacements on the surface of the Moon are about 2.5 km.
When comparing the catalogues with the ACIC-system we observe the large scatter in
the w-vector direction. The values of the rotations are between 1:1 and 5!5.
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In order to study therelative deformations of selenodetic constructions, we computed
the directional cosines of the principal axes of deformation and the coefficient of
relative lengthening by Equations (13) to (15). In the first three lines of Table IV we
give, for each pair of catalogues, the matrices of directional cosines between the
&n{-axis and the axis of deformation (designated as x, y, z). In the fourth row we have
given the coefficients of the relative expansion along the x-y-z axes.

The results show that, in the majority of cases, the maximum deformation takes place
along the OZ-axis.

We now consider a sphere with the center at O and a radius R, in an undeformed

TABLE IV
P q1 r1
D2 qz r2
pP3 qs3 5]
A1 % 108 Jg X 10° Jg X 108
Schr.I-Bald 0.0468 — 0.9921 0.1168
0.9995 0.0316 0.0043
— 0.0079 0.1169 0.9931
—12.33 17.00 448.33
-AMS 0.6544 — 0.7460 0.1235
— 0.6582 — 0.4816 0.5787
0.3722 0.4600 0.8061
—53.26 19.18 — 27792
-ACIC 0.4973 0.8280 0.2592
0.8055 — 0.5516 0.2165
— 0.3223 — 0.1011 0.9412
—32.73 0.12 94.61
~Schr.II 0.9033 0.4225 0.0743
0.4205 — 0.9063 0.0421
— 0.0852 0.0068 0.9963
—28.77 — 9.59 299.36
-Kiev — 0.7349 0.1556 0.6611
— 0.1237 — 0.9877 0.0952
0.6678 — 0.0119 0.7442
—59.37 2.49 73.88
-Arthur — 0.0221 — 0.9938 0.1093
— 09263 0.0620 0.3717
0.3761 0.0928 0.9219
—16.11 29.46 — 256.36
Bald.-AMS — 09662 0.2483 0.06%6
— 0.2233 — 0.9424 0.2491
0.1273 0.2252 0.9660
—55.51 —30.45 — 780.05
-ACIC — 0.6841 — 0.7282 0.0414
0.7213 — 0.6688 0.1874
— 0.1089 0.1581 0.9814
—22.13 20.97 — 383.85
-Schr.II — 0.9765 — 0.1699 0.1326
0.2116 — 0.9739 0.0818
0.1069 0.1522 0.9826

—49.77 2.99 — 319.22
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Table 1V ( Continued)

P q1 ri
P2 qz2 ra
pP3 qs r3
A1 X 109 Az X 108 Az x 10°
Bald.-Kiev — 0.6531 - 0.7307 0.1986
— 0.7478 0.6594 0.0768
0.1875 0.1035 0.9768
— 3.85 4.80 — 200.94
-Mills — 0.5094 0.8604 0.0146
0.8599 0.5083 0.0470
— 0.0329 - 0.0370 0.9988
26.58 47.65 —1223.07
-Arthur — 0.8101 — 0.5781 0.0976
0.5702 - 0.8214 0.0089
0.0756 0.0617 0.9952
—16.97 - 8.71 — 678.32
AMS-ACIC — 0.2876 — 0.5281 0.7990
— 0.8224 0.5637 0.0766
0.4910 0.6348 0.5966
—177.97 47.16 177.81
-Schr.II - 0.7733 — 0.5033 0.3857
0.6182 — 0.7340 0.2811
0.1415 0.4553 0.8790
—11.73 33.81 253.93
-Kiev — 0.0652 0.3569 0.9319
— 0.9791 — 0.2030 0.0086
0.1910 — 0.9122 0.3624
—205.16 47.58 115.57
-Arthur - 0.8279 0.5607 0.0139
0.5554 0.7842 0.2767
— 0.1499 — 0.2335 0.9607
39.14 72.77 — 251.91
ACIC-Schr.II 0.8928 0.1772 0.4141
— 0.2171 0.9748 0.0508
— 0.3945 — 0.1354 0.9089
—91.73 17.93 155.81
~Kiev — 0.5539 — 0.8283 0.0841
0.8291 — 0.5405 0.1429
- 0.0729 0.1489 0.9861
— 8.32 2.56 — 227.24
-Mills — 0.9457 — 0.2553 0.2012
— 0.1866 0.9334 0.3064
0.2661 — 0.2521 0.9304
—27.91 34.59 — 130.68
-Arthur — 0.3566 — 0.9338 0.0306
0.8228 — 0.4021 — 0.4017
0.4071 — 0.1258 0.9047
— 1.26 27.55 — 189.29
Schr.II-Kiev 0.9871 0.0921 0.1308
— 0.1079 0.9869 0.1202
0.1181 — 0.1329 0.9841

—35.26 — 148 98.74
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medium that is constructed from the points (£,#,(,) of the second catalogue. Referred
to the principal axes of deformation Oxyz the equation of the sphere is

x2+y2+22=R(2. (29)
According to Equation (17) the coordinates of the points will after the deformation
have the values

X=X+ Ax,

yi=y+hy, (30)

z, =2+ A3z,

from which
2 2 2
X1 J1 Zy 2
oyt o + — 5 = R¢. 31
CE N R (RN (R b
We see that the deformed surface is an ellipsoid with semi-axes
R(1+4;), R{(1+1), R(1+4;). (32)

For the majority of the catalogues the prolongation along this axis varies between
2-4 km. An exception is the Baldwin system, for which the deformation relatively to
all catalogues is very large and reaches —21 km (Baldwin-Mills). It also is in a direction
opposite to the linear displacement (+ 17) given above.

Therefore, the characteristic feature of the systematic catalogue errors by pure
deformation is the fact that they cause maximum distortion of selenodetic systems in
the direction of the Earth.

The catalogue analysis shows that the hypothesis of relative isotropic expansion of
the selenodetic constructions is not real. This is clear from the fact that the {-coordinates
of lunar objects are determined with errors ten times as large as the £- and #-coordinates.
Because of this the expansion coefficients cannot be equal (that is, 1, =1, =A1;=p). As
the calculations show, the A3-value is larger than the coefficients 4, 4, in almost all
cases. Moreover, the axes of relative deformation do not coincide with the axis 0&x{
and, therefore, one must not take the last-mentioned axis as the principal axis of an
expansion.

From the above-mentioned facts it is clear that the basic lunar coordinate systems
are deformed anisotropically, and for a transformation of one catalogue into another
it is necessary to use the reduction formulae given by the general expression (1).
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