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Abstract. The analytical expression of the gradient line, i.e. the perpendicular to the Moon’s zonal
equipotential surfaces is derived. Being a sensitive indicator of the geometric structure of the gravi-
tational field, the shape of the trajectory, its direction field and curvature, the points of inflection,
etc., are computed at elevations 0 km, 250 km, 1000 km and 10000 km above the Moon’s surface.
The numerical results were derived from the coefficients of Liu and Laing (1971) and are compared
— whenever suitable — with the results obtained from the coefficients of Michael ez al. (1969).

1. Equation of the Trajectory

The zonal gravitational potential U of the Moon can be described by

[ee]

U= GTM [1 - Z (g) J.P, (sin ¢)], (1)

n=2
where GM is the gravitational constant X mass of the Moon, a is the mean equatorial
radius, P, is the nth degree Legendre’s polynomial, J, is the corresponding harmonic
coefficient, and r is the selenographic distance to a point in the selenographic latitude
¢. Equation (1) is valid in the case of

divgradU =0, 2)

i.e., in empty space where Laplace’s equation is satisfied.
The gradient line is everywhere perpendicular onto the potential surfaces U=const
and satisfies identically the differential equation

dx N grad U
ds |grad U]
wherein x is the position vector referred to the mass center of the Moon, and s is the

arc length of the trajectory. To integrate (3), we switch to the polar coordinate system
r, ¢ in which case the differential equation can be written

0, 3

- ou oU
or o B 1 [ dxt]
gradU rgradU cos ¢ | ds @
ou oU . T dx?
— —— sin ¢ —
o or ds
| rgradU grad U_|
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or
_ —
d_r —p % cos d) di
ds ds | ds (5)
d¢ dr . Tdx? T
"ds ds | | sin ¢ ds |

If we compare the elements in the above left hand matrices, Equation (3) transforms to

dr 1 ou
- =0

+ o 6
ds |grad U| or ©
d 1 ou
T S ) )
ds r-|grad U| 0¢
in which the arc length s appears only implicitly. Hence a simplified version
d ou U
L= ®)
do or | d¢

obtains, which can be integrated with the help of the differential equations (Hobson,
1955)
1

cos ¢

d%) P,(sin¢g) — (n+1)[sing P,(sing) — P,,, (sing)] =0,
)

d 1 d
(n+1)P,(sing) +tg¢ Eq—SPn(Sind))— @@Pnﬂ(sin(ﬁ):&

The gradient line in question then follows (K&hnlein, 1966)

sin ¢ + Z <€r>" ! : ! J,[sing P,(sing) — P, (sing)] + C=0, (10)

with an integration constant C depending on the point ry, ¢, through which the
trajectory runs (initial value problem). The summation term in (10) becomes zero
for r going to infinity; hence,

lim ¢ = ¢ = arcsin(— C), (11)

o

which means that the trajectory through ry, ¢, has the selenographic latitude ¢ as
asymptote.

2. Shape of the Gradient Line

Table I gives the distance

d=rsin(¢ — ¢) (12)
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Fig. 1. Shape of the gradient line along a meridian ro = @, ¢o = 90°, 80°, ..., —90° (Liu’s coefficients).

The circles indicate points of inflection.

of a point r, ¢ on the trajectory from its asymptote ¢ for both the Liu* and Michael
coefficients. The initial points r,, ¢, were taken along a circle with the radius ry=a,
with ¢, varying in tens of degrees from 90° to —90°. The sign of  is assumed to be
positive for a point r, ¢ south of the asymptote ¢, otherwise it is negative. Figure 1
shows a picture of the trajectories relative to their asymptotes. The scale for the dis-
tance d was taken 10000 times dilated compared to the elevation % (above ry=a),
and hence the shape of the gradient line is highly overemphasized. For example,
the tangent in ry=a, ¢,=40° and the corresponding asymptote P40 ** seem to include
in Figure 1 an angle of about 45°; however, both lines intersect actually with an
angle of 29” as shown in Table III.

In the northern hemisphere the gradient line approaches — in general — the asymptote
from the south while the opposite is true for the southern hemisphere. The distance
* All numerical results refer to the coefficients of Liu and Laing, if not otherwise stated. For brevity,

we write only Liu and analogously Michael for Michael ef al. (1969).
** &40 means ¢ of ro = a, o =40°.
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Fig. 2. Shape of the gradient line around the selenographic equator ro=a, ¢o=1°, 0°,... (Liu’s
coefficients).

d is zero at the poles and increases in magnitude towards middle latitudes: for Liu’s
coefficients d becomes 263 m at ro=a, ¢,=>50° and 269 m at ro=a, ¢,=—40°. At
higher clevations, such as 10000 km above r,=¢, the corresponding values decrease
rapidly to about 8.6 m. As seen from Table I and Figure § most of the change in d takes
place within the first 1000 km elevation. From then on, the gradient line approaches
asymptotically its corresponding radius vector ¢=const. If we plot the distance d
against the latitude ¢ (for the same elevation), we get a sinusoidal curve with zeros
at the poles, extrema in middle latitudes and almost zero at the equator ¢=0°.

In fact, the equatorial region needs particular consideration. Figure 2 shows the
transitional stage between 1°>¢> —3°. To get a detailed picture, the d-scale was
dilated against the A-scale by a factor of 100000. Due to the odd zonal coefficients
J, .- there is no symmetry between the northern and the southern part. In fact,
the typical northern structure tends to impress its pattern down to about ¢4~ —3°;
only from thereon the trajectory assumes its characteristic southern shaped structure.
Noteworthy is also the reversal of directional approach of the gradient line towards
its asymptote (Figure 2). ' :

Another exceptional pattern is seen on the southern hemisphere within the seleno-
graphic latitudes —75°> ¢ > —90°. Up to about 500 km elevation, the southern-shape
structure of the trajectory is completely reversed (Figure 3) due to the strong influence
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Fig. 3. Shape of the gradient line near the south pole ro = a, ¢o = — 77°, — 80°, ... (Liu’s coefficients).

of the odd zonal coefficients of higher degrees. For example, in the latitude —85°
the initial point ry, ¢, lies 36.9 m south of ¢_gs.

In order to find the points r,, ¢, which coincide with their asymptotes, we make
use of the expression

N1 4 b Gng)=0 13
2(7’)1’1 na_(?) N(Slnd))" ( )

by putting ¢o=¢ in (10). Solving this equation numerically, we find for Liu’s coeffi-
cients two real roots (the roots at the poles are trivial), namely at ro=a,

¢ ~ — 802365
and
o ~— 02872.

The last root lies in the transition zone shown by Figure 2 about 26.6 km south of the
selenographic equator.

An insight into the straightness of the gradient line can be obtained by comparing
its length up to infinity with the corresponding radii vectors. Starting from the arc
length s, between the two curve points ry, ¢, and r,, ¢,
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Fig. 4. Difference between the total length of the gradient line and its corresponding radii vectors
(Liu’s coefficients).

do\?
817 = 1 +{r— dr N (14)
dr
r1
we obtain the difference towards the corresponding radii for r, —co

__W
As = 1+(r— ) —1jdr. (15)
dr
Figure 4 shows the numerical results for Liu’s coefficients with
rl =4a
ry =a+ 250 km
ry = a + 1000 km

and r, —oo. The greatest deviation of A4s is about 3 cm for r,=a and ¢~ —40°.
Again we have a sinusoidal pattern: As éﬁiials to zero at the poles, with maxima in
middle latitudes and fractions of a millimeter (for r,;=a) in the neighbourhood of
the equator. At 2=250 km the As variation is already very smooth and the shape of
the trajectory is closely resembled by a hyperbola.

3. Direction and Curvature

The direction of the tangent in each point of the trajectory is given by Equation (3).
Intersecting it with the corresponding radius vector, the angle

1 oU

r|grad Ul,ga (16)

v = arcsin
represents the directional field of the differential Equation (3) in a spherical coordinate
system. The different elevations 4 in Table II refer to the same selenographic latitude
and hence the values do not lie on the same gradient line. As shown in Figure 5 the
pattern is unchanged from the previous ones: zeros at the poles, extrema — in general —
in middle latitudes and almost zero around the equator. The angle v is positively
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Fig. 5. Angle (normalized) of intersection between the tangent of the gradient line and the corre-
sponding radius vector (Liu’s coeff.) Angle (actual, in seconds of arc): the normalized angles must be
multiplied by 12070 (=0 km); 5070 (h =250 km); 2574 (h=1000 km); 174 (h = 10000 km).
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Fig. 6. Actual equator: loci of all points in which the tangent of a gradient line is parallel to the
selenographic equator (Liu’s coefficients).

counted if the trajectory intersects the corresponding radius vector under an angle
of slope greater than ¢. In the southern hemisphere v reaches the extremum —2’ in
ro=a, ¢o= —"70° which reduces at higher elevations to —1°3 at h/=10000 km and
¢=—45°

Figure 6 gives the curve loci of all points of the actual zonal equator. Herein v
equals —¢. At zero elevation the actual equator lies approximately 53 m south of the
selenographic equator. This distance D rapidly decreases to about 1 m at 1000 km
elevation, for example.

If we consider the angle of intersection between the tangent of a gradient line and
its asymptote
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B tgf—tgd
v e (1 +tgptg 55) (n
with
¢ dr
B = ¢+arcg</d¢> (18)

we get the values y for the different elevations along the same trajectory as shown
in Table III. The sign of y is analogously defined as that for v. In ¢ = —80° the angle y
amounts to 107", i.e. the maximum at zero elevation. At 10000 km elevation the angle
of intersection reaches its extremum |y|=07670 in the latitude |¢|~45°.

The change of y along the same trajectory leads to the radius of curvature

1
0= === (19)

\/d2x d’x’
ds? ds?

which is infinite at the poles, decreases in general towards middle latitudes and reaches
again large values near the equator. This can be seen at least for higher elevations
(~1000 km) in Table IV, while for lower elevations the disturbance of high degree
coefficients is clearly visible.

Along the same gradient line the radius of curvature increases in general with higher
elevation. The only exceptions are those trajectories which have points of inflections:

dr d?r
r +2<d¢) r(w:O, (20)

such as in Figures 2, 3 and partly in Figure 1 (marked by circles). Here, the radius of
curvature becomes infinite and the shape of the trajectory changes its pattern.

4. Conclusions

The Moon’s gradient line shows a stronger structural variety than the corresponding
trajectory of the Earth’s field (Ko6hnlein, 1966). Most of the variation of the geometric
shape takes place within the first 1000 km above the Moon’s surface. From then on,
the gradient line behaves like a hyperbola approachmg its asymptote very quickly
with higher elevation.

At the poles the gradient line is a straight line and coincides with its selenographic
radius vector. Toward middle latitudes the trajectory is, in general, bent to the south
on the northern hemisphere, and vice versa on the southern hemisphere. With de-
creasing selenographic latitude (J¢|—0°) the gradient line becomes rather straight
and changes its asymptotical approach at the equator. Near the south pole the general
pattern is completely disturbed due to an accumulating effect of the higher degree
harmonics. The gradient line is bent to the south and only changes its pattern at higher
elevation (points of inflection).
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Along a meridian the variation of the direction field, the straightness of the trajec-
tory, etc., are, in general, sinusoidal (at least at higher elevations): zero deviations at
the poles, smalil ones at the equator and extrema in middle latitudes, while for the
radius of curvature — for geometrical reasons - the opposite is true.

The numerical results derived from Liu’s and Michael’s coefficients differ indeed
in details but show a rather good agreement in the overall structure of the Moon’s
gradient line. By taking instead the coefficients of Blackshear ef al. (1971), the
resulting gradient line deviates somewhat stronger from both the Liu and the
Michael values.
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Constants and Coeflicients Used
a=1738090 m, mean equatorial radius of the Moon

GM=4.90278 x 10'?> m?® s~2, gravitational constant x mass of the Moon

Harmonic coefficients

Lia Michael
Ja 0.1996 x 103 0.20707 x 10-3
Js 0.5878 x 10-5 0.6303 X 10—%
Ja —0.1195 X104 —0.1938 x 104
Js 0.4544 x 105 0.7459 X 105
T —0.1088 x 103 0.1078 x 105
J7 —0.1779 x 104 —0.2408 x 104
Jg 0.5967 x 10-5 0.2655 x 104
Jo 0.3206 x 105 0.1543 x 10—3
J1o —0.1367 X 105 —0.5634 x 104
Ju 0.7311 x 105 0.2460 x 10—
Ji2 —0.1251 x 10—* —0.3299 x 104
J13 0.3315 x 104 0.5772 x 104
J1a —0.1044 x 104
Jis 0.2977 x 104
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