ON THE GRADIENT LINE OF THE MOON'S ZONAL GRAVITATIONAL POTENTIAL FIELD

WALTER KÖHNLEIN
Institut für Astrophysik und Extraterrestrische Forschung, University of Bonn, Germany

(Received 10 January, 1973)

Abstract

The analytical expression of the gradient line, i.e. the perpendicular to the Moon's zonal equipotential surfaces is derived. Being a sensitive indicator of the geometric structure of the gravitational field, the shape of the trajectory, its direction field and curvature, the points of inflection, etc., are computed at elevations $0 \mathrm{~km}, 250 \mathrm{~km}, 1000 \mathrm{~km}$ and 10000 km above the Moon's surface. The numerical results were derived from the coefficients of Liu and Laing (1971) and are compared - whenever suitable - with the results obtained from the coefficients of Michael et al. (1969).

1. Equation of the Trajectory

The zonal gravitational potential U of the Moon can be described by

$$
\begin{equation*}
U=\frac{G M}{r}\left[1-\sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n} J_{n} P_{n}(\sin \phi)\right] \tag{1}
\end{equation*}
$$

where $G M$ is the gravitational constant \times mass of the Moon, a is the mean equatorial radius, P_{n} is the nth degree Legendre's polynomial, J_{n} is the corresponding harmonic coefficient, and r is the selenographic distance to a point in the selenographic latitude ϕ. Equation (1) is valid in the case of

$$
\begin{equation*}
\operatorname{div} \operatorname{grad} U=0 \tag{2}
\end{equation*}
$$

i.e., in empty space where Laplace's equation is satisfied.

The gradient line is everywhere perpendicular onto the potential surfaces $U=$ const and satisfies identically the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} s}+\frac{\operatorname{grad} U}{|\operatorname{grad} U|}=0 \tag{3}
\end{equation*}
$$

wherein \mathbf{x} is the position vector referred to the mass center of the Moon, and s is the arc length of the trajectory. To integrate (3), we switch to the polar coordinate system r, ϕ in which case the differential equation can be written

$$
\left[\begin{array}{cc}
-\frac{\partial U}{\partial r} & \frac{\partial U}{\partial \phi} \tag{4}\\
-\frac{\partial \operatorname{grad} U}{r \operatorname{grad} U} \\
-\frac{\partial U}{\partial \phi} & \frac{\partial U}{\partial r}
\end{array}\right]\left[\begin{array}{c}
\cos \phi \\
\sin \phi
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{d} x^{1}}{\mathrm{~d} s} \\
\frac{\mathrm{~d} x^{3}}{\mathrm{drad} U}
\end{array}\right]
$$

or

$$
\left[\begin{array}{rr}
\frac{\mathrm{d} r}{\mathrm{~d} s} & -r \frac{\mathrm{~d} \phi}{\mathrm{~d} s} \tag{5}\\
r \frac{\mathrm{~d} \phi}{\mathrm{~d} s} & \frac{\mathrm{~d} r}{\mathrm{~d} s}
\end{array}\right]\left[\begin{array}{c}
\cos \phi \\
\sin \phi
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{d} x^{1}}{\mathrm{~d} s} \\
\frac{\mathrm{~d} x^{3}}{\mathrm{~d} s}
\end{array}\right]
$$

If we compare the elements in the above left hand matrices, Equation (3) transforms to

$$
\begin{align*}
& \frac{\mathrm{d} r}{\mathrm{~d} s}+\frac{1}{|\operatorname{grad} U|} \frac{\partial U}{\partial r}=0 \tag{6}\\
& \frac{\mathrm{~d} \phi}{\mathrm{~d} s}+\frac{1}{r^{2}|\operatorname{grad} U|} \frac{\partial U}{\partial \phi}=0 \tag{7}
\end{align*}
$$

in which the arc length s appears only implicitly. Hence a simplified version

$$
\begin{equation*}
\frac{\mathrm{d} r}{\mathrm{~d} \phi}=r^{2} \frac{\partial U}{\partial r} / \frac{\partial U}{\partial \phi} \tag{8}
\end{equation*}
$$

obtains, which can be integrated with the help of the differential equations (Hobson, 1955)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} \phi} P_{n}(\sin \phi)-\frac{1}{\cos \phi}(n+1)\left[\sin \phi P_{n}(\sin \phi)-P_{n+1}(\sin \phi)\right]=0 \\
& (n+1) P_{n}(\sin \phi)+\operatorname{tg} \phi \frac{\mathrm{d}}{\mathrm{~d} \phi} P_{n}(\sin \phi)-\frac{1}{\cos \phi} \frac{\mathrm{~d}}{\mathrm{~d} \phi} P_{n+1}(\sin \phi)=0 \tag{9}
\end{align*}
$$

The gradient line in question then follows (Köhnlein, 1966)

$$
\begin{equation*}
\sin \phi+\sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n} \frac{n+1}{n} J_{n}\left[\sin \phi P_{n}(\sin \phi)-P_{n+1}(\sin \phi)\right]+C=0 \tag{10}
\end{equation*}
$$

with an integration constant C depending on the point r_{0}, ϕ_{0} through which the trajectory runs (initial value problem). The summation term in (10) becomes zero for r going to infinity; hence,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \phi=\bar{\phi}=\arcsin (-C) \tag{11}
\end{equation*}
$$

which means that the trajectory through r_{0}, ϕ_{0} has the selenographic latitude $\bar{\phi}$ as asymptote.

2. Shape of the Gradient Line

Table I gives the distance

$$
\begin{equation*}
d=r \sin (\bar{\phi}-\phi) \tag{12}
\end{equation*}
$$

TABLE I

ϕ°	d [m]			$\begin{aligned} & h=100 \\ & (\mathrm{~km}) \end{aligned}$	$\begin{aligned} & h=250 \\ & (\mathrm{~km}) \end{aligned}$	$\begin{aligned} & h=500 \\ & (\mathrm{~km}) \end{aligned}$	$\begin{aligned} & h=1000 \\ & (\mathrm{~km}) \end{aligned}$	$\begin{aligned} & h=5000 \\ & (\mathrm{~km}) \end{aligned}$	$\begin{aligned} & h=10000 \\ & (\mathrm{~km}) \end{aligned}$	$\begin{aligned} & h=50000 \\ & (\mathrm{~km}) \end{aligned}$	Asymptotic latitude $\bar{\phi}^{\circ}$
	$\begin{aligned} & h=0 \\ & (\mathrm{~km}) \end{aligned}$		$\begin{aligned} & h=10 \\ & (\mathrm{~km}) \end{aligned}$								
90	L	0	0	0	0	0	0	0	0	0	90
	M	0	0	0	0	0	0	0	0	0	90
80	L	118.5	115.4	95.4	79.2	67.5	55.5	23.0	13.2	3.0	80.0039
	M	82.5	81.6	76.0	71.4	66.2	56.6	23.8	13.7	3.1	80.0027
70	L	127.5	128.8	135.4	134.9	125.3	105.0	43.3	24.9	5.6	70.0042
	M	136.3	137.2	141.1	139.0	128.6	107.8	44.8	25.8	5.8	70.0045
60	L	231.5	229.5	214.5	196.4	174.3	143.1	58.4	33.5	7.6	60.0076
	M	250.3	247.8	228.5	205.8	180.3	147.3	60.5	34.7	7.9	60.0083
50	L	263.3	261.8	248.3	228.4	201.7	164.1	76.4	38.1	8.6	50.0087
	M	265.8	264.0	250.1	231.1	205.8	168.9	68.8	39.5	8.9	50.0088
40	L	261.4	259.9	247.5	228.6	202.3	164.6	66.4	38.0	8.6	40.0086
	M	241.2	241.5	240.0	229.5	207.5	170.3	68.9	39.5	8.9	40.0080
30	L	233.9	232.2	218.3	200.2	177.1	144.5	58.3	33.4	7.6	30.0077
	M	274.8	271.4	246.3	218.1	188.1	151.2	60.6	34.7	7.9	30.0091
20	L	156.2	156.0	152.7	144.4	130.1	106.9	43.2	24.8	5.6	20.0052
	M	176.7	175.8	167.8	155.5	137.9	112.2	44.9	25.7	5.8	20.0058
10	L	94.8	94.0	87.6	79.7	70.0	56.6	22.8	13.1	3.0	10.0031
	M	66.1	67.1	73.2	75.3	71.0	59.2	23.7	13.6	3.1	10.0022
0	L	8.1	7.8	5.6	2.8	0.4	-0.9	-0.32	-0.110	-0.006	0.0003
	M	25.3	23.9	14.4	6.5	1.7	-0.6	-0.34	-0.116	-0.006	0.0008
-10	L	-91.0	-90.7	-87.8	-82.0	-72.9	-59.2	-23.3	-13.3	-3.0	-10.0030
	M	-85.8	-85.5	-83.2	-80.0	-73.8	-61.5	-24.3	-13.8	-3.1	-10.0028
-20	L	-192.7	-190.8	-176.2	-158.5	-137.5	-110.0	-43.4	- 24.8	-5.6	-20.0064
	M	-195.1	-194.0	-183.9	167.8	-145.8	-115.8	-45.2	-25.8	-5.8	-20.0064
-30	L	-232.8	-231.9	-222.3	-205.3	-180.6	-145.5	-58.2	-33.4	-7.6	-30.0077
	M	-289.3	-286.1	-261.1	-229.9	-194.8	-153.3	-60.5	-34.6	-7.9	-30.0095
-40	L	-268.8	--266.3	-247.3	-224.6	-197.8	-161.4	-65.8	-37.9	-8.6	-40.0089
	M	-273.9	-271.4	-252.6	-230.5	-204.3	-167.4	-68.3	-39.3	-8.9	-40.0090

Table I (Continued)

-50.0071 -50.0053 -60.0063 60.0081 70.0068 70.0070 80.0002 79.9982 90 90
 1111111111

\square
\square

-50	L	-215.7	-215.6	-213.2	-204.9	-187.9	-157.3	-65.5	-37.8	-8.6	-50.0071
	M	- 159.9	-163.2	-182.9	-193.0	-187.0	-160.9	-67.9	-39.2	-8.9	-50.0053
-60	L	-190.6	-190.6	-188.2	- 179.4	--163.1	-136.3	- 57.4	-33.2	--7.6	-60.0063
	M	-244.7	- 241.4	-217.8	-192.9	-168.6	-139.5	- 59.4	-34.4	-7.8	-60.0081
-70	L	-207.2	-202.7	-172.7	-145.8	- 123.7	-100.7	-42.5	-24.6	- 5.6	-70.0068
	M	-213.3	-209.1	-179.6	-151.3	-127.2	-103.0	-43.9	-25.5	-5.8	-70.0070
-80	L	-6.2	-11.2	-41.1	-59.1	-61.8	-53.2	-22.6	-13.1	-3.0	-80.0002
	M	55.4	47.2	-5.3	-43.1	-57.8	-53.6	-23.3	-13.6	-3.2	-79.9982
-90	L	0	0	0	0	0	0	0	0	0	-90
	M	0	0	0	0	0	0	0	0	0	-90

[^0]

Fig. 1. Shape of the gradient line along a meridian $r_{0}=a, \phi_{0}=90^{\circ}, 80^{\circ}, \ldots,-90^{\circ}$ (Liu's coefficients). The circles indicate points of inflection.
of a point r, ϕ on the trajectory from its asymptote $\bar{\phi}$ for both the Liu* and Michael coefficients. The initial points r_{0}, ϕ_{0} were taken along a circle with the radius $r_{0}=a$, with ϕ_{0} varying in tens of degrees from 90° to -90°. The sign of d is assumed to be positive for a point r, ϕ south of the asymptote $\bar{\phi}$, otherwise it is negative. Figure 1 shows a picture of the trajectories relative to their asymptotes. The scale for the distance d was taken 10000 times dilated compared to the elevation h (above $r_{0}=a$), and hence the shape of the gradient line is highly overemphasized. For example, the tangent in $r_{0}=a, \phi_{0}=40^{\circ}$ and the corresponding asymptote $\bar{\phi}_{40} * *$ seem to include in Figure 1 an angle of about 45°; however, both lines intersect actually with an angle of $29^{\prime \prime}$ as shown in Table III.

In the northern hemisphere the gradient line approaches - in general - the asymptote from the south while the opposite is true for the southern hemisphere. The distance

* All numerical results refer to the coefficients of Liu and Laing, if not otherwise stated. For brevity, we write only Liu and analogously Michael for Michael et al. (1969).
** $\bar{\phi}_{40}$ means $\bar{\phi}$ of $r_{0}=a, \phi_{0}=40^{\circ}$.

Fig. 2. Shape of the gradient line around the selenographic equator $r_{0}=a, \phi_{0}=1^{\circ}, 0^{\circ}, \ldots$ (Liu's coefficients).
d is zero at the poles and increases in magnitude towards middle latitudes: for Liu's coefficients d becomes 263 m at $r_{0}=a, \phi_{0}=50^{\circ}$, and 269 m at $r_{0}=a, \phi_{0}=-40^{\circ}$. At higher elevations, such as 10000 km above $r_{0}=a$, the corresponding values decrease rapidly to about 8.6 m . As seen from Table I and Figure 1 most of the change in d takes place within the first 1000 km elevation. From then on, the gradient line approaches asymptotically its corresponding radius vector $\bar{\phi}=$ const. If we plot the distance d against the latitude ϕ (for the same elevation), we get a sinusoidal curve with zeros at the poles, extrema in middle latitudes and almost zero at the equator $\phi=0^{\circ}$.
In fact, the equatorial region needs particular consideration. Figure 2 shows the transitional stage between $1^{\circ}>\phi>-3^{\circ}$. To get a detailed picture, the d-scale was dilated against the h-scale by a factor of 100000 . Due to the odd zonal coefficients $J_{2 n-1}$ there is no symmetry between the northern and the southern part. In fact, the typical northern structure tends to impress its pattern down to about $\phi_{0} \sim-3^{\circ}$; only from thereon the trajectory assumes its characteristic southern shaped structure. Noteworthy is also the reversal of directional approach of the gradient line towards its asymptote (Figure 2).

Another exceptional pattern is seen on the southern hemisphere within the selenographic latitudes $-75^{\circ}>\phi>-90^{\circ}$. Up to about 500 km elevation, the southern-shape structure of the trajectory is completely reversed (Figure 3) due to the strong influence

Fig. 3. Shape of the gradient line near the south pole $r_{0}=a, \phi_{0}=-77^{\circ},-80^{\circ}, \ldots$ (Liu's coefficients).
of the odd zonal coefficients of higher degrees. For example, in the latitude -85° the initial point r_{0}, ϕ_{0} lies 36.9 m south of $\bar{\phi}_{-85}$.

In order to find the points r_{0}, ϕ_{0} which coincide with their asymptotes, we make use of the expression

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n} \frac{1}{n} J_{n} \frac{\mathrm{~d}}{\mathrm{~d} \phi} P_{n}(\sin \phi)=0 \tag{13}
\end{equation*}
$$

by putting $\phi_{0}=\bar{\phi}$ in (10). Solving this equation numerically, we find for Liu's coefficients two real roots (the roots at the poles are trivial), namely at $r_{0}=a$,

$$
\phi_{0} \sim-80.365
$$

and

$$
\phi_{0} \sim-0.872
$$

The last root lies in the transition zone shown by Figure 2 about 26.6 km south of the selenographic equator.

An insight into the straightness of the gradient line can be obtained by comparing its length up to infinity with the corresponding radii vectors. Starting from the arc length s_{12} between the two curve points r_{1}, ϕ_{1} and r_{2}, ϕ_{2}
TABLE II
Angle of intersection between tangent and radius vector

ϕ°	$h=0 \mathrm{~km}$		$h=250 \mathrm{~km}$		$h=1000 \mathrm{~km}$		$h=10000 \mathrm{~km}$	
	L	M	L	M	L	M	L	M
90	$0^{\prime \prime}$	0"	$0^{\prime \prime}$	$0^{\prime \prime}$	$0{ }^{\prime \prime}$	$0{ }^{\prime \prime}$	$0{ }^{\prime \prime}$	$0^{\prime \prime}$
80	$1^{\prime} 21^{\prime \prime}$	$29^{\prime \prime}$	22"9	12 "2	$8{ }^{\prime \prime} 1$	7"9	0 0"465	$0{ }^{\prime} 482$
70	- $14^{\prime \prime}$	- $3^{\prime \prime}$	$19 \% 4$	21"0	15!3	15"6	0 0"874	0 0'906
60	$1^{\prime} 10^{\prime \prime}$	$1^{\prime} 23^{\prime \prime}$	$41 \% 7$	47",4	21.4	22.0	1 1"178	$1 " 221$
50	$1^{\prime} 3^{\prime \prime}$	$1^{\prime} 8^{\prime \prime}$	$48!8$	47 "6	24!9	25"3	11339	1"389
40	$1^{\prime} 0^{\prime \prime}$	$22^{\prime \prime}$	48.0	41 "2	25\%0	25"7	1"338	11389
30	$1^{\prime} 5^{\prime \prime}$	$1^{\prime} 44^{\prime \prime}$	42.8	54"1	21.9	23!3	11175	11"220
20	$23^{\prime \prime}$	39"	27\%0	32"2	16"1	17"1	0 0"870	0 0'904
10	$29^{\prime \prime}$	- 15"	17.7	8"8	$8!7$	8"9	0 0'460	0×478
0	$6^{\prime \prime}$	$34^{\prime \prime}$	3"3	7"6	$0 \% 08$	0"26	-0"0058	-0\%0061
-10	- $16^{\prime \prime}$	- 17"	-16.6	- 13"0	-9"1	-9!2	-0"469	-0.488
-20	$-1^{\prime} 3^{\prime \prime}$	- $46{ }^{\prime \prime}$	-37\%3	-38"1	$-17!2$	-18"4	-0"875	-0"909
-30	- $47^{\prime \prime}$	$-1^{\prime} 40^{\prime \prime}$	-43"9	$-60 \% 1$	-22"5	$-24 \% 4$	-1"173	-1!218
-40	$-1^{\prime} 24^{\prime \prime}$	$-1^{\prime} 26^{\prime \prime}$	-49"9	-49!7	$-24!3$	-25 "1	-1"329	-11379
-50	- $27^{\prime \prime}$	$52^{\prime \prime}$	-34\%5	-17"2	-22"8	-22"6	-1"324	-1/373
-60	- $21{ }^{\prime \prime}$	-1'38"	-32"1	-46"6	$-19 \% 7$	-20"1	-1"161	$-1!203$
-70	$-2^{\prime} 0^{\prime \prime}$	$-1^{\prime} 56^{\prime \prime}$	$-41 / 3$	--44.0	$-14!8$	--15\%2	-0"860	-0"890
-80	$-1^{\prime} 47^{\prime \prime}$	$3^{\prime} 3^{\prime \prime}$	$4!7$	24"1	- 7"6	- 7"2	-0"457	-0 \% 473
-90	$0^{\prime \prime}$	$0^{\prime \prime}$	$0^{\prime \prime}$	0 "	$0^{\prime \prime}$	$0{ }^{\prime \prime}$	$0^{\prime \prime}$	$0^{\prime \prime}$

Fig. 4. Difference between the total length of the gradient line and its corresponding radii vectors (Liu's coefficients).

$$
\begin{equation*}
s_{12}=\int_{r_{1}}^{r_{2}} \sqrt{1+\left(r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right)^{2}} \mathrm{~d} r \tag{14}
\end{equation*}
$$

we obtain the difference towards the corresponding radii for $r_{2} \rightarrow \infty$

$$
\begin{equation*}
\Delta s=\int_{r_{1}}^{\infty}\left[\sqrt{1+\left(r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right)^{2}}-1\right] \mathrm{d} r \tag{15}
\end{equation*}
$$

Figure 4 shows the numerical results for Liu's coefficients with

$$
\begin{aligned}
r_{1} & =a \\
r_{1} & =a+250 \mathrm{~km} \\
r_{1} & =a+1000 \mathrm{~km}
\end{aligned}
$$

and $r_{2} \rightarrow \infty$. The greatest deviation of Δs is about 3 cm for $r_{1}=a$ and $\phi \sim-40^{\circ}$. Again we have a sinusoidal pattern: Δs equals to zero at the poles, with maxima in middle latitudes and fractions of a millimeter (for $r_{1}=a$) in the neighbourhood of the equator. At $h=250 \mathrm{~km}$ the Δs variation is already very smooth and the shape of the trajectory is closely resembled by a hyperbola.

3. Direction and Curvature

The direction of the tangent in each point of the trajectory is given by Equation (3). Intersecting it with the corresponding radius vector, the angle

$$
\begin{equation*}
v=\arcsin \frac{1}{r|\operatorname{grad} U|} \frac{\partial U}{\partial \phi} \tag{16}
\end{equation*}
$$

represents the directional field of the differential Equation (3) in a spherical coordinate system. The different elevations h in Table II refer to the same selenographic latitude and hence the values do not lie on the same gradient line. As shown in Figure 5 the pattern is unchanged from the previous ones: zeros at the poles, extrema - in general in middle latitudes and almost zero around the equator. The angle v is positively

Fig. 5. Angle (normalized) of intersection between the tangent of the gradient line and the corresponding radius vector (Liu's coeff.) Angle (actual, in seconds of arc): the normalized angles must be multiplied by $120.0(h=0 \mathrm{~km}) ; 50^{\prime \prime} 0(h=250 \mathrm{~km}) ; 25^{\prime \prime} .4(h=1000 \mathrm{~km}) ; 1^{\prime \prime} .4(h=10000 \mathrm{~km})$.

Fig. 6. Actual equator: loci of all points in which the tangent of a gradient line is parallel to the selenographic equator (Liu's coefficients).
counted if the trajectory intersects the corresponding radius vector under an angle of slope greater than ϕ. In the southern hemisphere v reaches the extremum -2^{\prime} in $r_{0}=a, \phi_{0}=-70^{\circ}$ which reduces at higher elevations to -1.3 at $h=10000 \mathrm{~km}$ and $\phi=-45^{\circ}$.

Figure 6 gives the curve loci of all points of the actual zonal equator. Herein v equals $-\phi$. At zero elevation the actual equator lies approximately 53 m south of the selenographic equator. This distance D rapidly decreases to about 1 m at 1000 km elevation, for example.

If we consider the angle of intersection between the tangent of a gradient line and its asymptote
TABLE III
Angle of intersection between tangent and asymptote

ϕ°	γ (seconds of arc)							
	$h=0 \mathrm{~km}$		$h=250 \mathrm{~km}$		$h=1000 \mathrm{~km}$		$h=10000 \mathrm{~km}$	
	L	M	L	M	L	M	L	M
90	0	0	0	0	0	0	0	0
80	67	20	15	5	3.9	3.6	0.233	0.241
70	-29	-19	5	7	7.4	7.5	0.438	0.453
60	42	53	21	26	10.6	10.9	0.590	0.611
50	32	36	25	24	12.5	12.6	0.670	0.695
40	29	- 7	24	17	12.6	12.8	0.670	0.695
30	37	72	22	31	11.0	11.9	0.588	0.611
20	4	18	12	16	8.0	8.7	0.435	0.452
10	18	-23	9	1	4.4	4.4	0.229	0.239
0	5	31	3	7	0.15	0.31	-0.0038	0.0040
-10	- 5	- 7	-8	- 5	- 4.6	- 4.6	-0.236	-0.245
-20	-40	-23	-21	-21	- 8.9	- 9.7	-0.438	-0.456
- 30	-19	-66	-23	-36	-11.5	-12.9	-0.587	-0.610
-40	-53	-53	-27	-26	- 12.1	-12.5	-0.664	-0.689
-50	- 1	71	-13	3	-11.0	-10.5	-0.661	-0.684
-60	1	-69	-13	-27	- 9.4	- 9.6	-0.579	-0.599
-70	-95	-90	-26	-28	- 7.3	- 7.4	-0.428	-0.442
-80	107	176	-11	28	- 3.6	- 3.1	-0.227	-0.234
-90	0	0	0	0	0	0	0	0

TABLE IV
Radius of curvature

ϕ°	Q (in km)							
	$h=0 \mathrm{~km}$		$h=250 \mathrm{~km}$		$h=1000 \mathrm{~km}$		$h=10000 \mathrm{~km}$	
	L	M	L	M	L	M	L	M
90	∞							
80	416E3	120E4	310E4	203E5	764E5	134E6	520E7	504 E 7
70	602E3	831E3	531 E 4	677E4	482 E 5	469E5	276 E 7	268E7
60	111E4	995E3	595E4	381 E 4	276E5	252E5	205E7	198E7
50	133E5	215E4	738E4	753E4	216E5	232E5	180E7	174 E 7
40	223E5	844 E 3	905E4	985E4	216E5	230E5	180 E 7	174 E 7
30	182E4	652E3	667 E 4	277E4	257E5	212E5	205E7	197E7
20	229E4	140E6	611 E 5	155E5	374E5	321E5	278E7	267 E 7
10	289E4	999 E 3	140E5	594E4	595E5	803 E 5	529E7	507 E 7
0	624E5	994 E 3	200E5	567 E 4	270E6	176E6	216E9	207E9
-10	409E4	256E4	720E5	522E5	606 E 5	843E5	508E7	487 E 7
-20	134E4	904E4	552E4	101 E 5	278E5	247E5	275E7	264E7
-30	237E4	117 E 4	133E5	234E4	221 E 5	171E5	206E7	198E7
-40	995E3	854E3	425E4	454E4	229E5	233E5	183 E 7	176 E 7
-50	197E4	358E3	134E5	202E4	317E5	496E5	184 E 7	178 E 7
-60	121 E 4	606E3	280E5	273E4	349E5	304E5	211 E 7	205 E 7
-70	329E3	398E3	207E4	203E4	352E5	318E5	286E7	278 E7
-80	224E3	159 E 3	173E4	964 E 3	120 E 6	607E6	539 E 7	524 E 7
-90	∞							

E3 means 10^{3}.

$$
\begin{equation*}
\gamma=\operatorname{arctg}\left(\frac{\operatorname{tg} \beta-\operatorname{tg} \bar{\phi}}{1+\operatorname{tg} \beta \operatorname{tg} \bar{\phi}}\right) \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta=\phi+\operatorname{arctg}\left(r / \frac{\mathrm{d} r}{\mathrm{~d} \phi}\right) \tag{18}
\end{equation*}
$$

we get the values γ for the different elevations along the same trajectory as shown in Table III. The sign of γ is analogously defined as that for ν. In $\phi=-80^{\circ}$ the angle γ amounts to $107^{\prime \prime}$, i.e. the maximum at zero elevation. At 10000 km elevation the angle of intersection reaches its extremum $|\gamma|=0.670$ in the latitude $|\phi| \sim 45^{\circ}$.

The change of γ along the same trajectory leads to the radius of curvature

$$
\begin{equation*}
\varrho=\frac{1}{\sqrt{\frac{\mathrm{~d}^{2} \mathbf{x} \frac{\mathrm{~d}^{2} \mathbf{x}}{\mathrm{~d} s^{2}} \frac{\mathrm{~d} s^{2}}{}}{}}, \text {, }, \text {. }} \tag{19}
\end{equation*}
$$

which is infinite at the poles, decreases in general towards middle latitudes and reaches again large values near the equator. This can be seen at least for higher elevations ($\sim 1000 \mathrm{~km}$) in Table IV, while for lower elevations the disturbance of high degree coefficients is clearly visible.

Along the same gradient line the radius of curvature increases in general with higher elevation. The only exceptions are those trajectories which have points of inflections:

$$
\begin{equation*}
r^{2}+2\left(\frac{\mathrm{~d} r}{\mathrm{~d} \phi}\right)^{2}-r \frac{\mathrm{~d}^{2} r}{\mathrm{~d} \phi^{2}}=0 \tag{20}
\end{equation*}
$$

such as in Figures 2, 3 and partly in Figure 1 (marked by circles). Here, the radius of curvature becomes infinite and the shape of the trajectory changes its pattern.

4. Conclusions

The Moon's gradient line shows a stronger structural variety than the corresponding trajectory of the Earth's field (Köhnlein, 1966). Most of the variation of the geometric shape takes place within the first 1000 km above the Moon's surface. From then on, the gradient line behaves like a hyperbola approaching its asymptote very quickly with higher elevation.

At the poles the gradient line is a straight line and coincides with its selenographic radius vector. Toward middle latitudes the trajectory is, in general, bent to the south on the northern hemisphere, and vice versa on the southern hemisphere. With decreasing selenographic latitude $\left(|\phi| \rightarrow 0^{\circ}\right)$ the gradient line becomes rather straight and changes its asymptotical approach at the equator. Near the south pole the general pattern is completely disturbed due to an accumulating effect of the higher degree harmonics. The gradient line is bent to the south and only changes its pattern at higher elevation (points of inflection).

Along a meridian the variation of the direction field, the straightness of the trajectory, etc., are, in general, sinusoidal (at least at higher elevations): zero deviations at the poles, small ones at the equator and extrema in middle latitudes, while for the radius of curvature - for geometrical reasons - the opposite is true.

The numerical results derived from Liu's and Michael's coefficients differ indeed in details but show a rather good agreement in the overall structure of the Moon's gradient line. By taking instead the coefficients of Blackshear et al. (1971), the resulting gradient line deviates somewhat stronger from both the Liu and the Michael values.

Acknowledgments

This work was supported by grant WRK 226 from the Bundesministerium für Bildung und Wissenschaft.

Constants and Coefficients Used

$a=1738090 \mathrm{~m}$, mean equatorial radius of the Moon
$G M=4.90278 \times 10^{12} \mathrm{~m}^{3} \mathrm{~s}^{-2}$, gravitational constant \times mass of the Moon

Harmonic coefficients

	Liu	Michael
J_{2}	0.1996×10^{-3}	0.20707×10^{-3}
J_{3}	0.5878×10^{-5}	0.6303×10^{-5}
J_{4}	-0.1195×10^{-4}	-0.1938×10^{-4}
J_{5}	0.4544×10^{-5}	0.7459×10^{-5}
J_{6}	-0.1088×10^{-5}	0.1078×10^{-5}
J_{7}	-0.1779×10^{-4}	-0.2408×10^{-4}
J_{8}	0.5967×10^{-5}	0.2655×10^{-4}
J_{9}	0.3206×10^{-5}	0.1543×10^{-5}
J_{10}	-0.1367×10^{-5}	-0.5634×10^{-4}
J_{11}	0.7311×10^{-5}	0.2460×10^{-4}
J_{12}	-0.1251×10^{-4}	-0.3299×10^{-4}
J_{13}	0.3315×10^{-4}	0.5772×10^{-4}
J_{14}	-0.1044×10^{-4}	
J_{15}	0.2977×10^{-4}	

References

Blackshear, W. T., Daniels, E. F., and Anderson, S. G.: 1971, NASA-TM-X-2260.
Hobson, E. W.: 1955, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Co., New York.
Köhnlein, W.: 1966, Smithsonian Astrophys. Obs. Spec. Rep. No. 216.
Liu, A. S. and Laing, P. A.: 1971, Science 173, 1017-1020.
Michael, W. H., Jr., Blackshear, W. T., and Gapcynski, J. P.: 1969, Plenary meeting COSPAR, 12th, Prague.

[^0]: $\mathbf{L}=$ by use of Liu's coefficients.
 $\mathrm{M}=$ by use of Michael's coefficients.

