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Abstract. The analytical expression of the gradient line, i.e. the perpendicular to the Moon's zonal 
equipotential surfaces is derived. Being a sensitive indicator of the geometric structure of the gravi- 
tational field, the shape of the trajectory, its direction field and curvature, the points of inflection, 
etc., are computed at elevations 0 km, 250 kin, 1000 km and 10000 km above the Moon's surface. 
The numerical results were derived from the coefficients of Liu and Laing (1971) and are compared 
- whenever suitable - with the results obtained from the coefficients of Michael et al. (1969). 

1. Equation of the Trajectory 

The zonal  gravitat ional  potent ial  U of  the M o o n  can be described by 

U = 1 - J , P ,  (sin , (1) 
r 

n = 2  

where G M  is the gravi tat ional  constant  x mass  of  the Moon ,  a is the mean  equatorial  
radius, P .  is the nth degree Legendre 's  polynomial ,  J ,  is the corresponding harmonic  
coefficient, and r is the selenographic distance to a point  in the selenographic lat i tude 
qS. Equat ion  (1) is valid in the case of  

div grad U = 0 ,  (2) 

i.e., in empty  space where Laplace 's  equat ion is satisfied. 
The gradient  line is everywhere perpendicular  onto  the potent ia l  surfaces U =  const  

and satisfies identically the differential equat ion 

dx grad U 
+ - -  - o ,  ( 3 )  

ds Igrad U[ 

wherein x is the posi t ion vector  referred to the mass center o f  the Moon ,  and s is the 
arc length o f  the trajectory. To  integrate (3), we switch to the po la r  coordinate  system 
r, ~b in which case the differential equat ion can be writ ten 

- 

g r ~ U  = ds (4) 

~U ~U ] sin~b 
~ ~rr [_ ds .~ 

1 _ r g r a d U  g r a d U _  
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o r  

F dr 

ds 
de 

rds 

--  - r dss cos ds 

dr [ s i n  = dx3 " 
ds _ L d s  J 

(5) 

If we compare the elements in the above left hand matrices, Equation (3) transforms to 

dr 1 OU 
+ - -  - 0, (6) 

ds [gradU[ ~r 

de  1 ~U 
- -  + - 0,  (7) 
ds r 2 [grad Ul ~¢ 

in which the arc length s appears only implicitly. Hence a simplified version 

dr rzOU/3U 
dq~ - er/c~q5 (8) 

obtains, which 
1955) 

d 1 
de  P. (sin qS) - cosCs¢ (n + 1) [sin q~ P. (sin qS) - P .+,  (sin ¢)] = O, 

d 1 d 
(n + 1) P. ( s i n ¢ ) +  tg¢  ~ P. (sin ¢) cos¢ dq~ P.+I (sin ¢) = O. 

can be integrated with the help of the differential equations (Hobson, 

(9) 

The gradient line in question then follows (KShnlein, 1966) 

oo 

sin ¢ + - -  J .  [sin ~b P. (sin q~) - P.+~ (sin ¢)] + C = 0, (10) 
n 

n = 2  

with an integration constant C depending on the point ro, q5 o through which the 
trajectory runs (initial value problem). The summation term in (10) becomes zero 
for r going to infinity; hence, 

lira q5 = q5 = arcsin ( -  C), (11) 
r -~oo  

which means that the trajectory through ro, ¢o has the selenographic latitude ~; as 
asymptote. 

2. Shape of the Gradient Line 

Table I gives the distance 

d = r sin (~ - ¢) (12) 
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Fig. 1. Shape of the gradient line along a meridian ro = a, ~o = 90 °, 800 ..... -- 90 ° (Liu's coefficients). 
The circles indicate points of inflection. 

o f  a point  r, q~ on the trajectory f rom its asymptote ~ for both  the Liu* and Michael 

coefficients. The initial points r 0, ~b 0 were taken along a circle with the radius r o = a ,  

with ~b 0 varying in tens o f  degrees f rom 90 ° to - 9 0  °. The sign o f  d is assumed to be 
positive for a point  r, q~ south o f  the asymptote  ~, otherwise it is negative. Figure 1 

shows a picture o f  the trajectories relative to their asymptotes. The scale for the dis- 

tance d was taken 10000 times dilated compared  to the elevation h (above r o = a ) ,  
and hence the shape o f  the gradient line is highly overemphasized. Fo r  example, 

the tangent in r 0 = a, ~bo = 40 ° and the corresponding asymptote  ~4o ** seem to include 
in Figure 1 an angle o f  about  45°; however, both  lines intersect actually with an 

angle o f  29" as shown in Table III .  
In  the nor thern hemisphere the gradient line approaches - in general - the asymptote 

f rom the south while the opposite is true for the southern hemisphere. The distance 

* All numerical results refer to the coefficients of Liu and Laing, if not otherwise stated. For brevity, 
we write only Liu and analogously Michael for Michael et al. (1969). 
** ~4o means 7~ ofro =a ,  ~bo =40 °. 
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Fig. 2. Shape of the gradient line around the selenographic equator r0 = a, ~b0 = 1 °, 0°,... (Liu's 
coefficients). 

d is zero at the poles and increases in magnitude towards middle latitudes: for Liu's 

coefficients d becomes 263 m at to=a, q~0=50 °, and 269 m at ro=a, q5o= - 4 0  °. At 
higher elevations, such as 10000 km above r o = a, the corresponding values decrease 
rapidly to about 8.6 m. As seen from Table I and Figure 1 most of  the change in dtakes 
place within the first 1000 km elevation. From then on, the gradient line approaches 
asymptotically its corresponding radius vector ~ = const. I f  we plot the distance d 
against the latitude q5 (for the same elevation), we get a sinusoidal curve with zeros 

at the poles, extrema in middle latitudes and almost zero at the equator 4> = 0 °. 
In fact, the equatorial region needs particular consideration. Figure 2 shows the 

transitional stage between l ° > q ~ > - 3  °. To get a detailed picture, the d-scale was 
dilated against the h-scale by a factor of  100000. Due to the odd zonal coefficients 
J2n-1 there is no symmetry between the northern and the southern part. In fact, 
the typical northern structure tends to impress its pattern down to about ~bo ~ -  3°; 
only f rom thereon the trajectory assumes its characteristic southern shaped structure. 
Noteworthy is also the reversal of  directional approach of the gradient line towards 
its asymptote (Figure 2). 

Another exceptional pattern is seen on the southern hemisphere within the seleno- 
graphic latitudes - 75 ° > q5 > - 90 °. Up to about  500 km elevation, the southern-shape 
structure of  the trajectory is completely reversed (Figure 3) due to the strong influence 
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Fig. 3. Shape  o f  the  gradient  line nea r  the sou th  pole  ro ~ a, ~o = --  77 °, - -  80°, . . .  (Liu ' s  coefficients). 

of the odd zonal coefficients of higher degrees. For example, in the latitude - 8 5  ° 
the initial point r o, ~b o lies 36.9 m south of ~-85. 

In order to find the points to, q5 o which coincide with their asymptotes, we make 
use of the expression 

oo 

\r/(a~nlJ"n ~ P n ( s i n q ~ ) = 0  (13) 

n = 2  

by putting q~o = ~ in (10). Solving this equation numerically, we find for Liu's coeffi- 
cients two real roots (the roots at the poles are trivial), namely at ro = a, 

~b o ~ -  80?365 

and 

~b o ~ -  0?872. 

The last root lies in the transition zone shown by Figure 2 about 26.6 km south of the 
selenographic equator. 

An insight into the straightness of the gradient line can be obtained by comparing 
its length up to infinity with the corresponding radii vectors. Starting from the arc 
length st2 between the two curve points r 1, 4)1 and r 2, q5 z 
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Fig. 4. Difference between the total length of the gradient line and its corresponding radii vectors 
(Liu's coefficients). 

r2 

s12=f~/l+(rdCp~ 2 d r /  dr ,  
r l  

we obtain the difference towards the corresponding radii for r 2 ~ oe 

As=iI~/i+frd~']2-11dr'\ d r J  

(14) 

(15) 
r l  

Figure 4 shows the numerical results for Liu's coefficients with 

rl -= a 
r 1 = a + 250 km 

r 1 = a + 1000kin 

and r2~oo.  The greatest deviation of As is about 3 cm for r~=a and q ~ - 4 0  °. 

Again we have a sinusoidai pattern: As equals tO zero at the poles, with maxima in 

middle latitudes and fractions of a millimeter (for r I = a) in the neighbourhood of 

the equator. At h = 250 km the As variation is already very smooth and the shape of 
the trajectory is closely resembled by a hyperbola. 

3. Direction and Curvature 

The direction of the tangent in each point of the trajectory is given by Equation (3). 
Intersecting it with the corresponding radius vector, the angle 

1 ~U 
v = arcsin (16) 

r lgrad U ] . ~  

represents the directional field of the differential Equation (3) in a spherical coordinate 
system. The different elevations h in Table II  refer to the same selenographic latitude 
and hence the values do not lie on the same gradient line. As shown in Figure 5 the 
pattern is unchanged from the wevious ones: zeros at the poles, extrema - in general - 
in middle latitudes and almost zero around the equator. The angle v is positively 
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Fig. 6. Actual equator: loci of all points in which the tangent of a gradient line is parallel to the 
selenographic equator (Liu's coefficients). 

counted if the trajectory intersects the corresponding radius vector under an angle 

o f  slope greater than qS. In  the southern hemisphere v reaches the extremum - 2 '  in 

ro=a,  q S o = - 7 0  ° which reduces at higher elevations to - 1 ' : 3  at h =  10000 km and 
qS= - 4 5  °. 

Figure 6 gives the curve loci o f  all points o f  the actual zonal equator. Herein v 

equals - qS. At  zero elevation the actual equator  lies approximately 53 m south o f  the 
selenographic equator. This distance D rapidly decreases to about  1 m at 1000 km 
elevation, for  example. 

I f  we consider the angle o f  intersection between the tangent  of  a gradient line and 
its asymptote  
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• /I t g f l -  t g ~ ~  
~ =  arctg ~i- ~ g - f l  t~-~) (17) 

(/;) f l = ~ b + a r c t g  r , (18) 

we get the values ~ for the different elevations along the same trajectory as shown 
in Table III. The sign of ~ is analogously defined as that for v. In ~b = - 80 ° the angle 
amounts to 10T', i.e. the maximum at zero elevation. At 10000 km elevation the angle 
of intersection reaches its extremum I~l = 0':670 in the latitude [~b[ ~ 45 °. 

The change of ~ along the same trajectory leads to the radius of curvature 

1 
(19) 

"X/ ds 2 ds  2 

which is infinite at the poles, decreases in general towards middle latitudes and reaches 
again large values near the equator. This can be seen at least for higher elevations 
(~  1000 kin) in Table IV, while for lower elevations the disturbance of high degree 
coefficients is clearly visible. 

Along the same gradient line the radius of curvature increases in general with higher 
elevation. The only exceptions are those trajectories which have points of inflections: 

( d r  ~ 2 - d2r 
r 2 + 2 \dq~] r dq~2 = 0, (20) 

such as in Figures 2, 3 and partly in Figure 1 (marked by circles). Here, the radius of 
curvature becomes infinite and the shape of the trajectory changes its pattern. 

4. Conclusions 

The Moon's gradient line shows a stronger structural variety than the corresponding 
trajectory of the Earth's field (K6hnlein, 1966). Most of the variation of the geometric 
shape takes place within the first 1000 km above the Moon's surface. From then on, 
the gradient line behaves like a hyperbola approaching its asymptote very quickly 
with higher elevation. 

At the poles the gradient line is a straight line and coincides with its selenographic 
radius vector. Toward middle latitudes the trajectory is, in general, bent to the south 
on the northern hemisphere, and vice versa on the southern hemisphere. With de- 
creasing selenographic latitude ([q~[ ~ 0  °) the gradient line becomes rather straight 
and changes its asymptotical approach at the equator. Near the south pole the general 
pattern is completely disturbed due to an accumulating effect of the higher degree 
harmonics. The gradient line is bent to the south and only changes its pattern at higher 
elevation (points of inflection). 



ON THE GRADIENT LINE OF THE MOON'S ZONAL GRAVITATIONAL POTENTIAL FIELD 397 

A l o n g  a m e r i d i a n  the  v a r i a t i o n  o f  the  d i r ec t i on  field, the  s t ra ightness  o f  the  t ra jec-  

tory ,  etc. ,  are,  in  genera l ,  s inuso ida l  (at  least  at  h ighe r  e l eva t ions ) :  ze ro  dev ia t ions  at  

the  poles ,  smal l  ones  at  the  e q u a t o r  a n d  e x t r e m a  in m i d d l e  la t i tudes ,  whi le  fo r  the  

r ad ius  o f  c u r v a t u r e  - fo r  g e o m e t r i c a l  r easons  - the  o p p o s i t e  is t rue.  

T h e  n u m e r i c a l  resul ts  de r i ved  f r o m  L iu ' s  and  M i c h a e l ' s  coeff icients  differ  i n d e e d  

in deta i ls  b u t  s h o w  a r a the r  g o o d  a g r e e m e n t  in the  ove ra l l  s t ruc tu re  o f  the  M o o n ' s  

g r a d i e n t  l ine.  By t a k i n g  ins t ead  the  coeff icients  o f  B l ackshea r  et al. (1971), the  

r e su l t i ng  g rad ien t  l ine  devia tes  s o m e w h a t  s t ronge r  f r o m  b o t h  the  L i u  a n d  the  

M i c h a e l  values .  
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Constants and Coefficients Used 

a =  1738090  m,  m e a n  e q u a t o r i a l  r ad ius  o f  the  M o o n  

G M = 4 , 9 0 2 7 8  x 1012 m 3 s -2 ,  g r a v i t a t i o n a l  c o n s t a n t  × mass  o f  the  M o o n  

Harmonic coefficients 

Liu Michael 

J2 0.1996 × 10 -a 0.20707 x 10 -3 
Js 0.5878 × 10 -5 0.6303 × 10 -5 
J4 --0.1195 ×10 -4 --0.1938 x 10 -4 
J5 0.4544 × 10 -~ 0.7459 x 10 -5 
J6 --0.1088 × 10 a 0.1078 × 10 -5 
J7 --0.1779 x 10 -4 --0.2408 × 10 -4 
J8 0.5967 × 10 -~ 0.2655 x 10 -4 
J9 0.3206 x 10 -~ 0.1543 x 10 -5 
J10 --0.1367 × 10 -~ --0.5634 × 10 -4 
Jll  0.7311 × 10 -~ 0.2460 × 10 -4 
J12 --0.1251 x 10 -4 --0.3299 × 10 -4 
J~s 0.3315 × 10 -4 0.5772 × 10 -4 
J14 -- 0.1044 × 10 -4 
Jl5 0.2977 × 10 -4 
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