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Abstract. In the present paper, the problem of whether the interplanetary matter has a tendency to 
accumulate around the Lagrangian libration points L~ and Ls, is examined statistically. It is concluded 
that : (1) If the particles are initially assumed to be distributed uniformly, they keep the uniformity 
ever after around the libration points. (2) If the particles receive random stochastic perturbations, 
their distribution tends to become uniform even if initially they have non-uniform distributions. 
(3) If the particles mutually collide inelastically, they have a tendency to avoid the regions near the 
libration points. Therefore, the interplanetary matter will not tend to accumulate near the libration 
points. Even if the observations of the 'libration cloud' so far reported are confirmed, the clouds are 
likely to be but temporary objects. 

1. Introduction 

Since Kordylewski reported observations of nebulous matter about the Lagrangian 

libration points L 4 and Ls, which form two equilateral triangles with the Earth and 
Moon in the Moon's  orbital plane (Kordylewski, 1961a), the arguments whether the 

clouds really exist or not have been discussed. Kordylewski observed such clouds again 
in September of the same year (Kordylewski, 1961 b), as did Simpson (1967) and Van3~sek 

(1968) in 1966. But many other observers failed to confirm such clouds, and raised 

doubts about their existence (Roosen, 1966, 1968; Roosen et al., 1967; Bruman, 1969). 

It is well known that a particle near the Lagrangian libration points L 4 and L s 

possessing sufficiently small velocities relative to these points, librates around these 

points and remains permanently in this region, if the mass-ratio of two finite bodies is 
below a definite limit. But, theoretically, this reasoning has a weak point. The li- 

brating particles must have formerly been wandering outside these regions, and owing 
to some kind of disturbances - for example, collisions with the other particles - they 
could have been placed in the state of libration. Hence, these librating particles can 
also escape from these regions by the operation of the same causes. Is there any 

tendency to accumulate around the libration points, if particles originally distributed 
with uniform density in space undergo random perturbations occurring with equal 

probability in all directions? This is the main subject of the present paper. 

2. A Point Set of Uniform Distribution 

Before entering into the main subject, the author wishes to set forth some mathematic- 

al lemmas. Mathematical rigour will not be required, and almost all statements will 
be mentioned without proof  or with simple explanations. 
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(1) Let us suppose an (Euclidian) space, in which coordinate systems (xl, X2,...,  Xn) 
are defined so that the distance between two points {x,} and {x',} is 

In this space, a set of particles is supposed to exist possessing uniform density distri- 
bution. This means that, in all parts of the space, the probability that a definite volume 
element contains definite number of particles, is uniform. 

If  all particles of the space are displaced so that one of their coordinates - for 
example, x, - is replaced by axe; the distribution of the particles remains uniform, 
although the density becomes ct- 1 times. 

(2) If all particles of the space are displaced so that any two of their coordinates - 
for example (xl, xj, i%j)  - are replaced by (xicosO-xjsinO, xisinO+xjcosO), the 
distribution of the particles remains uniform. In this case, the density of the particle 
is not altered. This is a rotation by angle 0 in the (x,, xj)-plane. 

(3) If all particles of the space are displaced by the above two manners successively 
in finite times, the distribution of the particles remains uniform. 

(4) If all particles of the space are displaced so that their coordinates are transformed 
linearly in accordance with 

x~= ~ eij xj ,  (2) 
j = l  

where the determinant [O~ij [ does not vanish, the distribution of the particles remains 
uniform. The reason is the fact that a linear transformation is always a combination of 
dilations, contractions and rotations. 

(5) Let us suppose that a system of differential equations 

2i=Fi(x l  ..... x , , t )  ( i= l .... ,n) (3) 

has a general solution which can be expressed as 

x, = aH, j ( t ) ,  ( i  = 1 . . . .  , n), (4) 
j=l 

where ai are integration constants, and determinant lfij(t)l never vanishes. Then, if the 
probability distribution of particles, whose coordinates {xi} are ruled by Equation 
(3), is uniform at initial time, it remains uniform after that time. The reason is as 
follows. The expression (4) is a linear transformation between {xl} and {ai}. If {xi} 
has uniform distribution at initial time, the {a~} also has, and after that time, the 
{x~} again has uniform distribution, though density itself may be changed. 

(6) Suppose that the particles whose coordinates are given by Equation (3) suffer 

perturbations of the form 

2, = f~(xl . . . . .  x,, t) + 2,(t),  (5) 
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where 2~(t) are stochastic functions with mean value zero, and have equal probability 
in all directions. We imagine that each particle has its proper 2~(t) as a molecule of gas 
has its proper perturbations. Its stochastic character is the same for all particles and 
does not depend on the positions of the particles. Then if the points have uniform 
distribution at initial time, this distribution remains uniform also for all other time. 

The reason is as follows. The solutions of Equation (5) are easily obtained by regard- 
ing the {a~}'s as a function of time and inserting them in Equation (5). Thus we get a 
system of linear differential equations 

difij(t) = 2i(t), (6) 
i = i  

which is solvable for di as the determinant If,.j(t)l does not vanish. The vector {d~} thus 
obtained has not necessarily uniform distribution in all directions. But if the distri- 
bution of {at} is initially uniform, it will remain uniform ever after. In this case, the 
relations (4) also hold although a[s are functions of time. Hence, if initially {xi} 
possesses uniform distribution, {ai} at the initial state will also retain it. Consequently, 
if {at} possesses it at all times, then {xz} also has uniform distribution for all times. 

(7) Let us suppose that the vector {dz} has finite probability in all directions and 
vectors {d~} and { - d} have the same probability of occurrence. This is always possible 
owing to the relations (6), if {2i(t)} has similar character unless the determinant 
If~j(t)l vanishes. Then, if vector {a~} has non-uniform distribution at initial state, the 
distribution tends to uniform asymptotically after a sufficiently long time interval. 

The reason is as follows. The probability that {a~} changes to {a'~} is equal to that of 
reverse procedure. If  state {a~} contains initially more particles than {a'~}, the more 
particles are transferred from {at} to {a'~}. Hence, difference of numbers of particles 
between two states must diminish exponentially. If {a~} becomes uniform, the distri- 
bution of {x~} also becomes uniform. 

Considering all lemmas above stated, we arrive at the following conclusions. If  a 
swarm of particles whose motion is governed by Equation (3) suffers random pertur- 
bations of the form (5) then, even if the particles initially have a non-uniform distri- 
bution, the swarm approaches the state of uniform distribution asymptotically, and 
never has a tendency to accumulate around any special point of the space. 

3. Libration Around L 4 and L 5 

Now to return to our main subject. The aim of the present section will be to show that 
the libration motion around L 4 and L 5 of the restricted problem of three bodies is 
subject to conditions mentioned in the previous section. 

It is well known that the equations of motion near the librational point can be 
reduced to the following form (cf. Szebehely, 1967) 

5?- -29=ax ,  
y + 22 = by. (7) 
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These equations apply under the following conditions: two bodies are rotating 
uniformly around their common gravity centre, interacting with each other by gravi- 
tational force, and their distance is assumed to be invariable. The unit of  length is 
their distance, and the unit of  time is taken so as to make the revolutional velocity of  
the two bodies unity. The unit of mass is the sum of both masses. Thus the gravitatio- 
nal constant becomes unity owing to the Kepler 's third law. We take the mass of  the 
smaller body as/~, hence the mass of the other body is 1 - # .  If/~ is smaller than a 
definite value of  

< 1 {1 - -  ( 2 ~ )  1/2} = 0 . 0 3 8 5  . . . .  

it is known that the motion of the third body around the L ,  or L 5 is stable. In our case, 
the ratio of  mass of the Moon to that of  the Earth is 1:81.3, and so we have # = 0.0122. 

In the present paper, we assume that the whole system is confined to a plane. As 
L 4 and L 5 are situated asymmetrically with respect to the line joining the Earth and 
Moon, we consider the motion about L ,  only hereafter. The coordinate system 
(x, y) is taken so as to make its origin coincide with L 4 and the x-axis inclines to the 
above line at angle c~, which is defined by 

tan 2c~ = ~/3 (1 - 2p). (8) 

The constants a and b are expressed as 

a = 3{1 - x/1 - 3p(1 - #)}, ) 

b = 3{1 + ~/1 - 3/z(1 - p)}. ~ (9) 

Equations (7) can be rewritten as 

p = Y ,  

X - 2 Y =  a x ,  

~" + 2 X  = b y .  

(10) 

Hence, their general solutions must contain four integration constants. They are 
easily found to be 

x = A 1 cos n t t +  B 1 sin n~t + A 2 cos n2t + B z s i n n z t ,  

y = cq (A~ sin n~t  - B~ cos n i t )  + c~2 (A2 sin n2t  - B2 cos n2 t ) ,  (11) 

where Ai and Bi ( i=  1,2) are integration constants and 

nl = 2 ½ { 1  + x / 1  - 2 7 # ( 1  - /~ )} ,  } (12) 

"2 = J½ {1 -- ~ 1  - 27#(1 -- p)}, 

2ha n~ + a 

- ~t  - n~ + b - 2n~ ' 
2 (13 

2n2 n2 + a 

- e Z - n Z 2 + b -  2n2 



ON THE THEORETICAL POSSIBILITY OF THE LIBRATION CLOUD 133 

Inspecting the solutions (10) we can immediately conclude that they consist of linear 
combinations of the integration constant of the form (4). Hence, owing to the lemma 
(5) of the previous section, the set of particles having initially uniform distribution 
keeps the same state thereafter. 

When the particles are subject to random perturbations, the Equations (10) are 
replaced by 

2 = X  
p = Y  
2 - 2 Y  = ax + 2( t ) ,  (14) 

I" + 2X  = by + v(t) .  

The solutions of these equations can be expressed in the same forms as (11), but the 
quantities Ai, B~ (i--1,2) are not now constants, but functions of time. They are 
obtained by integrating the differential equations 

A 1 - -  

/ ) I -  

A 2 - 

/ ) 2 -  

V ( t )  COS/ ' /1  t ~ 2 , ~ ( t )  sin n l t  
t- 

n l ~  1 - -  /'12~ 2 /7,2~ 1 - -  n l ~  2 

v(t)  s inni  t ~22(t) cosni  t 

n l ~  1 - -  H 2 ~  2 

v(t)cos 2t 
n 2 ~  2 - -  n l ~  1 

v(t)  sin n2 t 

n 2 ~  1 - -  n l ~  2 

~12(t) sin net 

~ 1 ~ 2  - -  n 2 ~  1 

~12(t) COS n2t 

n 2 ~  2 - -  n l ~  1 ~ 1 ~ 2  - -  n 2 ~  1 

(15) 

Let us hereafter assume that the vectors (2, v), (A1,/)1) a n d  (A2, / )z)  individually 
constitute three two-dimensional spaces. If a set of these vectors has a density distribu- 
tion dependent only on its length, and independent of its direction, we call the distri- 
bution isotropic. Inspecting the above Equations (15) we see that even if distribution of 
(2, v) is isotropic, that of (A I,/)1) and (A2, t)2) are not necessarily isotropic. In order 
to ascertain if the distribution functions of (/il,/)1) and (Az,/)2) are isotropic, it is 
sufficient that the absolute values of 

~ 1 ~ 1  - -  ~ 2 ~ 2  H I ~  1 - -  n 2 ~  2 
~a and ~1 

~ 1 ~ 2  - -  n 2 ~  1 n l ~  2 - -  ~ 2 ~ 1  

are equal to unity, respectively. But if the functions 2(t) and v(t) are statistically inde- 
pendent of sinnlt and sinn2t the distribution functions of (A1, 1)1) and (A2,/)2) 
become isotropic in the mean during sufficiently long time intervals. 

Hence, from the lemma (7) of the previous section, we can conclude that even if, 
at the initial state, distribution of the particles is not uniform, it becomes uniform 
after a sufficiently long time interval. Therefore, even if a 'libration cloud' is produced 
around the libration points temporarily, it is bound to disperse sooner or later, and 



134 N. SEKIGUCHI 

therefore there is no tendency to accumulate on the libration points for the particles 
floating near these points. 

By the same reasoning, we see that there should also be no tendency for inter- 
planetary matter to accumulate around the equilibrium points L1, L2 and L3, which 
lie on the line connecting the Earth and the Moon. 

4. Case of Inelastic Collisions 

In the above theory, it is assumed that the statistical nature of the perturbations is an 
utterly random one. But if we assume that the mutual collision of the particles is 
inelastic, the perturbations will acquire a special character to increase the sum of 
Jacobi's constants of individual particles. 

Integrating Equations (7) we get the Jacobi integral 

22 + ~2 = a x  2 + by2  _ C ,  (16) 

where C is Jacobi's constant (Szebehely, 1967). 
If  a particle moves freely inside the Earth-Moon system, it has an individual 

Jacobi constant of its own. If two particles collide mutually inelastically, the sum of 
each kinetic energy 1(22 "Jt-y 2) must diminish; hence, the sum of each Jacobi constant 
of each particle increases, and the number of particles which have positive Jacobi 
constants increases. As these particles cannot reach the Lagrangian libration points 
L 4 and L 5 beyond the zero-velocity curve, the density of particles near the libration 

points must be diminished. 
This reasoning also applies if the particle is far from the libration points, as the 

Jacobi integral exists everywhere in the orbital plane. 
Owing to these arguments, the author inclines to the opinion that the Lagrangian 

libration points L 4 and L 5 do not possess a tendency to accumulate interplanetary 
matter; but, on the contrary they should constitute the 'zones of avoidance' of the 
matter. It may be possible that interplanetary matter disintegrates around these 
points and forms a temporary cloud or swarm, but it will disperse into space in the 
course of time. The objects which Kordylewski and Simpson observed might be such 

dispersing clouds. 
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