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Abstract. A theory of the directional characteristics of the lunar infrared radiation measured by 
Saari and Shorthill has been derived. This theory is in excellent agreement with experiment at all 
angles of observation and at all phase angles. The radiation law used to describe the angular depen- 
dence of the infrared radiation emitted by a flat element of the lunar surface is 0.85 cos 0 + 0.22 cos z 0, 
where 0 is the angle between the surface normal and the direction of observation. This radiation law 
is subsequently modified by taking into account lunar surface roughness. We assume a surface 
covered in part with spherical craters of various depth to diameter ratios as a model for the lunar 
soil. Re-radiation within the craters has been accounted for. Extensive use is made of group theo- 
retical and invariant tensor methods which enable us to show that most of the details of the radiation 
pattern do not depend on the detailed nature of the surface features assumed, but only on the average 
surface slope. A best fit to the Saari-Shorthill data has been obtained by assuming 50 % of the lunar 
surface to be covered with craters with a depth to diameter ratio of 1 : 3, while the remainder of the 
surface is essentially flat. The mean deviation between theory and experiment is 4K. 

1. Introduction 

The directional characteristics of the lunar  infrared radia t ion have been measured 

with great precision by Saari and Shorthill (1967). These measurements  show that  the 

thermal  radia t ion emitted by the M o o n  is strongly anisotropic. The most  character- 

istic feature of the infrared radiat ion is that  it is radiated predominant ly  in the 

direction of the incident  solar light under  most  conditions.  

Smith (1967) has at tempted to explain the strong anisotropy of the radia t ion with 

the help of a statistical model  of lunar  roughness. Excellent agreement has been 

obtained when comparison was made with the variat ion of the subsolar radiance 

with phase. No agreement was obtained, however, when comparison was made with 

the full m o o n  data. 

A drawback of Smith's  method is, furthermore,  that  no general expression has 

been obtained for the lunar  infrared radia t ion and that  separate calculations are 

necessary for each phase. 

Buhl et al. (1968) have used a different approach. They considered the effects of 

craters in altering the emission characteristics of the lunar  surface. However, only 
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the radiation emitted by the subsolar point and at full Moon have been studied in 
this paper. 

Winter and Krupp (1970) have made a very detailed and thorough analysis of the 
Saari-Shorthill data and have obtained the emission characteristics of a cratered 
surface using various crater distributions and shapes. Only points along the lunar 
equator have been considered in Winter and Krupp (1970) and good agreement with 
the experimental data has been obtained. The theoretical papers quoted above possess 
in common the feature that a Lambertian cosine-law has been used to describe the 
directional characteristics of  a uniformly heated flat surface consisting of lunar 
material. There is no reason for this assumption to hold. Electromagnetic theory 
predicts that a uniformly heated dielectric radiates predominantly in the direction of 
the surface normal, although the exact amount  of this enhancement is difficult to 
calculate. 

Here we shall generalize the model by modifying the basic ansatz for the radiation 
law. A parameter  r has been introduced to describe deviations from the Lambert  
law, which might exist even for a flat lunar surface element. This radiation law is 
subsequently modified by taking into account the roughness of  the lunar surface. 

The approach presented here differs from previous work, furthermore, by the 
extensive use of  group theoretical and invariant tensor methods. These methods 
enable us to calculate the radiation emitted by a cratered surface in closed analytic 
form. The theoretical methods used here enable us, furthermore, to determine which 
features of  the radiation pattern are model dependent: i.e. depend on the details of  
the crater distribution, shape etc. I t  turns out that the thermal behaviour of  the rim 
of the lunar disk is the only feature of  the radiation patterns which depends strongly 
on these details while the bulk of the data is influenced only by the rms slope of the 
surface and insensitive to the detailed form of the surface roughness. 

Another advantage of our method is that we are able to calculate lunar temper- 
atures also off-equator and are thus in a position to fit all Saari Shorthill data with a 
single theoretical formula. 

The outline of our paper is the following: Section 2 summarizes the relevant aspects 
of  previous work and contains a detailed analysis of the energy balance. Section 3 
deals with the radiation emitted by unshadowed craters. In this section the group- 
theoretical method is developed and explained in detail. In Section 4 our model is 
specialized to spherical craters, and in Section 5 we calculate the re-radiation effects 
in such craters. The very complicated shadowing effects are considered in detail in 
Section 6 and closed form mathematical expressions are derived for the radiation 
emitted by shadowed craters. In Section 7 we compare our theory with experiment 
and it turns out that excellent agreement with the experimental data can be reached 
for a surface covered in part  (50~) with craters with depth to diameter ratio = 1 : 3. 

2. The Energy Balance 

In this section we shall study the question of the energy balance at the lunar 
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surface in detail ,  s tar t ing with a review of  the work  o f  Ashby  (1966) on the 

influence of  the thermal  conduct iv i ty  and the lunar  a lbedo on the infrared radia t ion .  

In  Table  I we have l isted the energy received per  uni t  surface in the fo rm of  solar  

l ight,  the energy reflected opt ical ly  and the energy lost  by thermal  conduc t ion  as 

funct ions of  the thermal  la t i tude  fl (see Figure  1 for  the definit ion o f  angles). The 

table  shows tha t  opt ical  reflection accounts  for  5 ~  of  the energy, 1~o is t r anspor ted  

TABLE I 

Energy balance 

All energies in cal/cm ~ min 
,8 S sin/? R C I 

90 1.99 0.096 0.010 1.88 
85 1.98 0.096 0.010 1.87 
80 1.96 0.095 0.011 1.85 
75 1.92 0.093 0.011 1.82 
70 1.87 0.091 0.011 1.77 
65 1.80 0.088 0.012 1.70 
60 1.72 0.085 0.012 1.62 

55 1.63 0.081 0.012 1.54 
50 1.52 0.076 0.012 1.43 
45 1.40 0.071 0.012 1.32 
40 1.28 0.065 0.011 1.20 
35 1.14 0.059 0.010 1.07 
30 1.00 0.0516 0.009 0.937 

25 0.840 0.0437 0.007 0.786 
20 0 . 6 8 1  0.0352 0.006 0.630 
15 0.515 0.0260 0.004 0.485 
10 0.346 0.0162 0.001 0.329 

5 0 , 1 7 3  0 . 0 0 6 3  0.001 0.168 

R - Reflected energy, 
C -  Conducted energy 
I -  Infrared energy 

by thermal  conduc t ion  and  9 4 ~  are avai lable  for thermal  radia t ion .  In  our  work  we 

shall  a t t empt  to predic t  t empera tures  with an accuracy o f  abou t  ___ 3 K,  cor responding  

to an accuracy of  abou t  3 ~  in the energy balance.  Therefore,  we can neglect  the 

influence of  thermal  conduc t ion  on the energy balance,  which is ra ther  for tu i tous ;  

since the conduct iv i ty  loss depends  not  only on the thermal  la t i tude fl, bu t  also on 

the thermal  longi tude  ~.  The values quoted  in the table  are averages over the longitude.  

Subt rac t ing  the conduc t ion  and  reflection losses f rom the incident  energy S sinfi 

( S =  1.99 cal /cm 2 rain is the solar  cons tant )  we see tha t  the energy avai lable for 

thermal  r ad ia t ion  is given to a high degree o f  accuracy by Sc sinfl, where S c = 1.88 

cal /cm 2 min is the solar  cons tant  corrected for conduc t ion  and  reflection. This result  

is ra ther  for tui tous ,  since it enables us to take  into account  the two other  energy 

t ransfer  processes in a ra ther  simple manner .  I t  has to be emphasized,  however,  tha t  
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the expression S sin{/ for the incident solar energy arises f rom purely geometrical 

considerations, while the approximate expression for the net energy Sc sinfl available 
for thermal radiation is the result o f  rather involved calculations. 

In order to proceed further with the check of  the energy balance we have to intro- 

duce several unit vectors and the angles between them so that  the directional character- 
istics o f  the infrared radiation can be expressed in convenient form. The necessary 

Fig. 1. Definition of thermal coordinates. 

details are contained in Figure 1. N is a unit vector or thogonal  to the lunar surface 
element considered (after averaging over local irregularities), i points in the direction 

o f  the Sun and e is a unit  vector in the direction of  the emitted radiation. The follow- 
ing relations between the scalar products  o f  these vectors and the angles defined in 

Figure 1 hold:  

cos t  = ( i . N )  = sin/3, (2.1) 

cos e = (e .  N),  (2.2) 

cos ~ = ( i .  e), (2.3) 

t, e and e are the angle of  incidence, angle o f  observation and phase angle resp. e can 

be expressed in terms of  ~, e and the thermal longitude g, as 

cos e = cos e cos z + sin e sin t cos g,. (2.4) 

With  the aid o f  these definitions the energy balance reads 

= ( dO E (e, t, . )  = Sc cos t, (2.5) Et 
J 
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where E t is the total infrared energy radiated by a unit surface element and E (e, t, a) 

is the radiation emitted in the direction e per unit solid angle. 
The energy flux E observed experimentally (with a telescope of fixed aperture) is 

connected with E (~, z, ~) by 

Eob ~ = E (e, 1, ~)/cos e. (2.6) 

The factor 1/cos/3 takes into account the variation of the lunar area observed with 

the angle/3 of observation. 
The temperature T of a given surface element can be related to the infrared radi- 

ation emitted with the help of  the Stefan-Boltzmann law 

E t = a T  4 (2.7) 

(a is the Stefan-Boltzmann constant). 
For a Lambertian radiator the energy flux radiated per unit solid angle is pro- 

portional to cose and the observed energy is thus a constant independent of the angle 
of observation, according to (2.6). In this case a simple relation holds between E t 

and the observed energy Eob s 

E~= dOE(e, ~,~)=2~ d(cos/3)Eob~COS/3=~Eobs (2.8) 

and the temperature can, therefore, be defined in terms of the energy flux observed as 

T 4 = Eob~. (2.9) 
G 

For a non-Lambertian radiator, such as the lunar surface, (2.9) can be used to define 
effective temperatures by 

T 4 (/3, ,, a) = re_ Eobs -- ~rE (/3, z, e) (2.10) 
0" O" COS/3 

This effective temperature, which depends both on the angle of incidence and the 
phase angle, has been measured by Saari and Shorthill (1967) and will be calculated 
here from a theoretical model. 

Assuming the Moon to be a Lambertian radiator one easily calculates the temper- 
ature of  the subsolar point from (2.5 and 7) to be 

T = ( S c / a )  1/'* = 390K.  (2.11) 

The apparent temperature at the center of  the lunar disk at full Moon as measured 
by Saari and Shorthill is, however, 

T = 397 K .  (2.12) 

This enhancement of  the subsolar radiation at /3=0 has to be compensated by a 
corresponding lowering of the apparent temperature at large/3 in order to maintain 
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the energy balance. This effect is shown in Figure 2. The value (2.12) is in fact derived 
from such energy balance considerations rather than from direct experimental 
evidence since the absolute calibration of the bolometers used to measure T 0, e, c 0 
is an extremely complicated task. 

Fig. 2. 

~-Lambethotn raoltettor 

\ Lotmbeg~i~n radiator 

Polar plot of lunar heat from the subsolar point for a Lambertian and non-Lambertian 
radiator. 

The older value T=407  K for the centrilunar temperature at full Moon is incorrect, 
since Pettit and Nicholson (1930) have omitted the second factor cose contained in 
(2.8) in their work, leading to an incorrect energy balance and to an overprediction 
of all lunar temperatures. 

3. Thermal Radiation from a Rough Surface 

In this section we shall start our calculation of the directional characteristics of the 
infrared radiation emitted by a rough surface illuminated by a light source at an 
angle of incidence L We shall show that the radiation pattern can be calculated quite 
generally for a surface with arbitrary slope distribution for angles of  observation and 
incidence such that no part  of the surface is shadowed (i.e. invisible from the light 
source) or invisible from the direction of observation. In this case no detailed as- 
sumptions about the surface features are necessary, except that no preferred directions 
exist on the surface when one averages over sufficiently large areas. 

In order to calculate the radiation emitted by a rough surface we have to start 
with an assumption about  the radiation emitted by an infinitesimal flat surface 
element. Usually one assumes this radiation to be Lambertian. There is, however, 
no reason for this assumption to hold for the lunar surface. Electromagnetic theory 
predicts that the radiation emitted by a dielectric will be peaked more towards the 
surface normal than the Lambert  law predicts. 

We shall therefore assume that a flat element of  the lunar surface radiates with an 
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angular distribution proportional to 

3 r f l (e ,n)  = 1 {(1 - r) ( e . n )  + ( e . n )  2} (3.1) , 

where n is the local surface normal (i.e. n is orthogonal to the infinitesimal surface 
element rather than to the mean lunar surface), (e.  n )=  cos 0 is the scalar product of 
n with the unit vector e in the direction of observation*. The constant r describes 
the deviations of the radiation law used here from a purely Lambertian cos-law, 
which would be obtained for r=0 .  The representation (3.1) for the radiation law 
can be considered as the first terms of a systematic expansion in terms of cos 0 and 
higher terms can be added if necessary. The coefficients in (3.1) have been chosen 
in such a way that the angular distribution of the radiation is normalized to one: i.e., 

f dO e ( e , n ) = l .  (3.2) ~o 

This normalization is independent of the value of r. The non-Lambertian parameter 
r could be determined experimentally by measuring the distribution of the radiation 
emitted by the lunar surface material gathered during the Apollo 11 and 12 flights; 
the experiment has not yet been performed, however. 

The energy available for thermal radiation by an infinitesimal element d f  of the 
lunar surface is given by Sc (i. n) d f ,  as discussed in the previous section. This energy 
is then radiated according to (3.1) with an angular distribution 

d f  E(e,  i, n) = Sc d f  ( i .n )  Q(e, n) ;  (3.3) 

E (e, i, n) is, therefore, the infrared energy emitted by a flat unit surface per unit 
solid angle and unit time. Energy is conserved because of (3.2), which leads to 

f dQ e E (e,  i, n )  = ( i .  n ) .  (3.4) S~ 

We turn now to the problem of calculating the radiation emitted by a rough surface. 
We have to integrate the radiation emitted by each surface element over a finite 
surface area with varying surface normal n(f), where f stands for the surface 
element considered (see Figure 3). The total radiation emitted by the surface becomes 

Scf 3 r (e .n )2} ,  (3.5) F E(e,  i, N) = d f  ( i .n )  {(1 - r) ( e . n )  + 

where N is the average surface normal and F is the total apparent surface, both shown 
in Figure 4. This integral can be evaluated rigorously for arbitrary slope distributions. 
Figure 3 shows, however, that (3.5) will not be the exact expression for the radiation 
because of two reasons: 

* cos0 = (e-n) differs from c o s e -  (e.N),  N being the mean surface normal.  
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(1) Parts of  the surface will be invisible and/or shadowed. These parts of the 
surface should be omitted in the integral (3.5). 

(2) Re-radiation effects exist• The radiation emitted by one surface element can be 
absorbed and subsequently re-emitted in a different direction by another surface 
element. 

~0 4 ~ _ l~ht 

Z _ /  
/ -  F 7 

Fig. 3. Local  and  global  surface normal•  Re-radia t ion is shown  at right.  

\ 
\ 
\ 

Q 

Fig. 4. Geomet ry  o f  spherical craters. 

Both effects will be neglected in this section and studied in detail in Sections 4-6 
of this paper. Here we shall show how the integral (3.5) can be evaluated with the 
help of  group theoretical methods if the integration is extended over a part  of  the 
surface which is sufficiently large so that no preferred directions exist on it. This is 
true for a surface covered with circular craters or hills (if one integrates over an area 
containing many craters), but also for much more general surface types covered e.g. 
with linear ridges, if these ridges are not aligned in one dominant direction• This 
assumption is certainly fulfilled for the lunar surface, if we integrate in (3.5) over the 
surface areas (several square miles) which contribute to the Saari-Shorthill (1967) 
data points. To evaluate (3.5) we introduce tensor notation and denote the com- 
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ponents of  the unit vector n by ni, i = 1, 2, 3 etc. Then (3.5) can be rewritten as 

F~ {(1 - r) ike m d f  nknm + ~ ikemer d f  nknm,lr}. (3.6) 

In (3.6) the Einstein sum convention has been used, i.e. a sum over each index that 
appears twice in (3.6) is implied. Therefore a typical scalar product is written as 

3 

(n.e)=nkek - ~ nke k. The two integrals appearing in (3.6) can depend only on the 
k = l  

average surface normal N, since no other preferred directions exist on the lunar 
surface. Therefore we can express the first integral appearing in (3.6) in the form 

f d f  nknm alNkNm (3.7) + a 2Okm ~ 

where a 1 and a 2 are two constants to be determined. 6kin is the Kronecker symbol 
(unit matrix). It  is immediately obvious that the two terms contained in (3.7) are the 
only symmetric tensors of  rank two that can be formed from Nk and the unit matrix. 
A formal proof  can be given using group theory (Hammermesh,  1962). 

The second integral contained in (3.6) can be expressed in the form 

f d f  nknmn, blN~,NmN~ + b 2 (bkmN r + C~krN m + OmrNk), (3.8) 

where the two constants b x and b 2 have to be determined. 
Inserting (3.7) and (3.8) into (3.6) we obtain 

E ( e , i ,  N )  Sc = Fro ( (1  - r) a 1 ( i . N )  (e . N )  + a 2 ( i  - r) ( i . e )  

3r 3r (3.9) 
+ ~- b 1 ( i - N )  ( e . N )  2 + ~- bE [2 ( i - e )  ( e . N )  + ( i . N ) ] ) .  

We are thus able to express the directional characteristics of the radiation emitted 
by a rough surface in terms of 4 constants, which have to be evaluated in terms of 
the surface roughness. For this purpose we first put k=m in (3.7) and sum over this 
index, secondly we multiply (3.7) by NkN m. The result is 

f d f  = al + a2, ( n . N )  2 

(3.10) 

f d f  = a 1 + 3a 2 . 

Similarly we can contract (3.8) with NkNmN~ and 6mkN ~ and obtain 

f d f  = bl + 3b2, ( n . N )  3 

(3.11) 

f d f  ( n . N )  = bl + 5b2. 
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In these equations (n. N ) =  cos 0 is the local surface slope. The constants al, a2, bl, b2 
can thus be expressed in terms of the surface moments 

;f 'f Cm= d f  ( n . N )  m =  ] d f ( c o s O ) m : c o s m O ,  (3.12) 

where the bar denotes an average over the surface considered. The % are thus the 
average values of the m-th power of  the surface slope, c 1 has a simple geometrical 
interpretation since 

c 1 = d f  cos 0 = F / f ,  (3.13) 

where F is the apparent surface while f is the total surface area (see Figure 3). I f  we 
express all constants in terms of F and Cm we obtain 

a~ = F ( 3 c z  - Co)/2c 1 , az  = F(1  - C z ) / 2 c l ,  (3.14) 

b 1 : F ( 5 c  3 - 3Cl ) /2Cl ,  b 2  : r ( c  1 - c3) /2c  I . 

Inserting these results into (3.9) we obtain a general expression for the radiation 
emitted by a rough surface. The main advantage of the group theoretical method 
used here over standard calculations is thus that it shows that the main contributions 

to the radiation law (we will have to augment (3.9) by model dependent reradiation 
and shadowing contributions) are model independent and can be expressed in terms 
of the surface moments. These surface moments c, will be calculated for a special 
model surface in the next section. 

4. Geometry of Spherical Craters 

The model of  the lunar surface used here agrees with the one used by Winter and 
Krupp (1970) and Buhl et  al. (1968). We consider the lunar surface as covered in part  
by spherical craters of  various depth to diameter ratios, as shown in Figure 4. To 

describe the crater geometry it is useful to introduce the parameter  

s = h / 2 R ,  (4.1) 

i.e. the ratio of  the depth of the crater to the diameter of  the sphere of which it is 
part. The quantity s is related to the opening angle 7 of the crater (see Figure 4) by 
s--  sin 2 (7/2). The radius a of the spherical crater rim becomes in terms of s 

a = R sin y = 2R x / s (1  -- s). (4.2) 

The total crater area is given by 
2rr 

f : R2 I" dq5 I" sin0 dO : 4nR's, (4.3) 
L t  

0 0 

while the apparent surface area follows from (4.2) to be 

F = a2n = 4 n R a s  (1 - s). (4.4) 
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The calculation of  the surface moment s  Cm of  the crater is easiest in polar  coordinates:  

1 

Cm = ~ d f  ( n . N )  m - 4nR2 s d (cos 0) cos m 0 (4.5) 

COS "~ 

= [1 - (1 - 2s)m+l]/2s(m + 1). 

F r o m  c2 = 1 - 2 s + 0  (s 2) we obtain s ~ l s i n  / 0, and thus a simple interpretat ion of  s 

in terms of  the rms surface slope. Insert ing (4.5) into (3.14) and (3.9) we obtain for  
the radiat ion emitted by a single crater  

1 - 2s/3 
E ( e , i , N ) = S Z { c o s c ~ ( 1 - r ) s  + ( 1 - r )  c o s e c o s t ( l - Z s )  

n 1 - s  

3rs 
+ ~ -  (1 - s) cos t  + 3rs (1 - s) cos ~ cos e (4.6) 

3r 
+ (1 - Ss + 5s 2) c o s t  c o s  2 

This is the main  result of  our group-theoret ical  t rea tment  of  the lunar infrared radiation.  
In  the following sections this result will be modified by taking into account  shadowing 
effects and re-radiation. 

5. Re-radiation Corrections 

In this section we evaluate the contr ibut ion of the radiat ion which is emitted by one 
par t  o f  the crater surface, absorbed by an other par t  and subsequently reemitted. 
We shall assume here that  no par t  of  the crater is shadowed. 

We shall calculate the re-radiat ion in terms of  an infinite series, which will turn 
out  to be a geometrical  series and can, therefore, be summed exactly. This series is, 

of  course, the Fr iedmann  series of  the integral equat ion for  radiative heat  transfer.  
The  geometrical  si tuation is shown in Figure 5. e, i, e0i, nl, n o are unit  vectors in 

11 f / \ ---..... I 

Fig. 5. Re-radiation corrections. 
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the directions indicated. The radiation emitted in the direction e after one absorpt ion 
is given by 

d (1) E (e, i, N)  = Sc f f d fo  (i .no) Q (%1, no) (%lr21"nl) 0 (e, nl)  dfl/F.(5.1) 

This expression can be simplified, using 

(eol "no) : ( e o l  ° n l )  = r01/2R . (5.2) 

Then the integral (5.1) can be evaluated approximately to be 

d (1) E (e, i, N)  = 'q~ K (1 - s) cos ,  {(1 - r)  cos e + 3rs (1 - 2s/3) 
rc 2 (1 - s) 

(5.3) 
+ 3r cos2 e (1 - 2s)}. 

2 

In (5.3) terms of  order rs s/z and smaller terms have been neglected; they contr ibute 
very little (<0 .2%)  to the radiation since r and s are assumed to be small. The con- 
stant K is given by 

3r / 
K = s [ ( 1  - r)  + ~ x / s (1  - s) (1 - s)2]. (5.4) 

The calculation of  terms of  higher order  is straightforward. The contr ibut ion of  the 
n-th order  becomes 

d(") E = Sc f dfo ... f df,(i.no) O(eo~, no) (e°l "n~) ro21 O (et2, n l )  

(el  
× r~2 "'" p (e, nn)/F. (5.5) 

This can be evaluated as before and differs f rom the first order contr ibut ion only by 
extra powers of  K. Therefore  a geometrical  series results and the total re-radiation 
contr ibut ion becomes 

Er(e, i, N)  = d (1) E (e ,  i, N) / (1  - K ) .  (5.6) 

This term has to be added to (4.6). 

6. Shadowing 

We turn now to the case that  par t  of  the crater is either shadowed or invisible. Since 
both  situations show many  similarities we shall treat them here together and use the 
name shadowing for bo th  effects. Whenever  necessary we shall distinguish between 
actual and apparent  shadowing (invisibility). 

Actual shadowing occurs whenever the angle of  incidence t exceeds a critical value 
such that  

cos t  < sin~ = x/4ss (1 - s). (6.1) 

In this case part  of  the crater will be shadowed. 
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Apparent shadowing occurs when the angle of observation exceeds the same 
critical value i.e., 

cos e < sin 7. (6.2) 

In general both actual and apparent shadowing will occur and 4 different situations 
can arise as shown in Figure 7: 

(a) Only actual or apparent shadowing is present. 
(b) Apparent and actual shadows do not overlap. 
(c) Apparent and actual shadows overlap completely. 
(d) The shadows overlap in part. 

Fig. 6. Geometry of shadowing. 

Case (d) is the most complicated one and can be dealt with only approximately. This 
will be done later. In case (c) only the larger one of the two shadows has to be taken 
into account and therefore the situation will be analogous to (a). Case (b) can be 
obtained from (a) by subtracting the 2 independent contributions of the two shadows 
from the total radiation. 

We shall therefore treat (a)first. For simplicity we shall concentrate on actual 
shadowing; apparent shadowing can be derived therefrom by replacing t by e in all 
equations. Figure 6 shows the geometrical configuration. It is well known that the 
area shadowed inside a spherical crater is bounded by a segment of a circle, the 
radius of which equals the radius a of the crater rim. This can also be read off Figure 6 
by observing the symmetry of the figure with respect to the direction N'. 

It will turn out to be convenient to introduce a new coordinate system with the 
Z-axis pointing in the direction N', while the X-axis lies in the direction of the incident 

light (see Figure 6). The tripel of mutually orthogonal unit vectors (X, 9 ,  Z) pointing 
in the directions of the X, Y, Z-axis of the new coordinate system is given by 

(X, ~, 2)  : (i, N × i/sin ,, (N - i cos 0/sin t). (6.3) 
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In this coordinate system the shadowed area is symmetric with respect to reflection 
at the (X, Z )  and (Y, Z )  planes. 

In order to take into account shadowing in the radiation law (3.5) (we shall not 
consider re-radiation at the moment) we have to extend the region of integration 
only over the fraction of the crater area which is not shadowed. Thus we obtain 

integrals of the form 

f df .... f df. . .-  f df . . .-  f df .... (6.4) 
unshad, crater act. shd. app. shd. 

(a) (b) 

(c) (o~) 

Fig .  7. R e l a t i v e  p o s i t i o n  o f  s h a d o w s .  

F ig .  8. D e f i n i t i o n  o f  ove r l ap  reg ions .  
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\ 
\ 

/ / \ \  
\ 

\ 
; \ 

\ 

Fig. 9. Projection of the shadowed area into the XY-plane. 

The integrat ion over the total  crater area has already been performed.  In t roducing 
the tensor calculus used before, we now have to evaluate integrals o f  the fo rm 

f dfnknm and f dfnknmn r. (6.5) 

shd. shd. 

Since the shadowed area is not  rota t ion invariant  a round the N'-a×is we have to 
make  a more  general ansatz for the tensors (6.5) than the one used in Section 3. 
W e  put  

df nkn m = A1Zk~ m -~- A2~kS m "-t- A3 ~/~k ffm, (6.6) 
¢lJ 

shd. 

and 

f df = Bj2k2 , ,2 ,  + (Z~XmXr 2,,~k2~ 2rXkXm) nknmnr B2 + + 
shd. 

+ B3 (2jZm?~ + 2,j'k fl, + 2,f~k?m). (6.7) 

All linear terms in )~, ]? vanish because of  reflection symnaetry. The coefficients 
Ak, Bk k = l, 2, 3 can be obtained as before by contract ing with the appropr ia te  
tensors. Not  all o f  these constants  will be needed, however,  since the tensor (6.6) 
enters in (3.6) only in the combina t ion  

ige m f df nkn,, , = A2 ( i -X)  (e .X) = A2 cosct, (6.8) 

shd. 
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so that only A2 enters in the calculation of the radiation. A 2 can be calculated from 

A 2  = I d f  n x  2 = s F v i ,  

shd.  

(6.9) 

where the shadowing function v~ is defined by 

1 f = v (cos,, s). vi = ~ d f  n x  2 

shd.  

(6.10) 

For apparent shadowing we have to use the function 

Ve = V (COSe, S), (6.11) 

i.e., the same function but of a different argument. The function v(cosl, s) will be 
calculated together with the other shadowing function w in the appendix. They can 
be computed by straightforward, but rather lengthy integrations. 

For the non-Lambertian part of the radiation we proceed analogously. The tensor 
(6.7) appears in (3.6) only in the combination 

ike,.e , f d f  nkn,.n. = 2B2 (e.Z) (e.Y() 
act. shd.  

(6.12) 

Brightness temperature along ~he thermal meridic~n for d~ffetent thermal tafi/udes /3= 70q 

400 

° o 350  

300' 

~ (3 = 90 "&ubsolc~r point) 

~ ~ ' ~ ' "  p :~o o 

~ f3.3o o 

25O" 

- 9 0  ~ - 7 0  o - 5 0 "  " 3 0 "  - ~ 0 "  t 0 "  3 0  ° 5 0  ° ?00 90 ° 
i i i i i i i i 

8 observation angle 
o~.(£ .!.) 

Fig. 10. Comparison with experiment - Coplanar data at 90 °, 60 ° and 30 ° solar elevation. 
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for actual shadowing, and in the combination 

ikeme r d f  nknmnr = B2 (i .  Z ')  (6.13) 

a p p .  s h d .  

for apparent shadowing where the coordinate system (6.3) is now defined with e 
A 

rather than i as relevant direction. This has been indicated by the notation Z'. It is 
this freedom in the choice of the coordinate system which is one of the major ad- 
vantages of the tensor formalism used here. 

The scalar products ( e . Z )  and ( i -Z)  resp. can be computed from (6.3) to be 

(e.  Z) = (cos/3 - cos e cos 0/sin t, 

( i . Z ' )  = (cost - cose cos e)/sin/3, (6.14) 

while (e .X) = sine. 
The coefficient B2 will be calculated in the appendix in terms of the shadowing 

function w, defined by 

= f d f  nx2nz = sF sin~wi, (6.1 B2 5) 

act .  s h d .  

where w~ = w (cos t, s). For apparent shadowing the calculation proceeds analogously, 
the function w~ being replaced by we = w(cos/3, s). 

This completes the calculation of the energy radiated from a partially shadowed 
crater in the approximation that re-radiation corrections have been neglected. The 
radiation becomes 

E(e , i ,  N) = Sc {cose(1 - r) s[(a - 2s/3) / (1 - s ) -  v l -  re] 
7C 

+ (1 - r) cos/3 cos t ( l  - 2s) + 3rs(1 - s -  we) cost/2 

+ 3rs(1 - s - w~ + 1We) COSe COS/3 -]- 3rsw i cosZe cost 

+ 3r(1 - 5s + 5s) cost cos2/3/2 }. (6.16) 

The re-radiation contributions have to be added to this expression for the energy 
flux. Before we can do this we have to correct these contributions for the influence 
of shadowing. When part of the crater is shadowed the m-th order re-radiation 
contribution becomes 

+ 3rro /4   

rr d/o ] , 
x LJ 4~R2 (1 - r + 3rr i2 /4e)  m- ~ (e, rim) dA/4~R 2. (6.17) 

The intermediate integrals have to be extended over the whole crater as before. 
These integrals can be carried out, using the same approximations as in the evaluation 
of (5.1), i.e. we neglect terms of order rs 5/2, which amounts to replacing rk,k+ 1 in the 



2 0 6  ROMAN U. SEXL ET AL. 

intermediate integrals by its average value. The m-th order contribution becomes, 
therefore, 

d(m) E=Sc(l-s)K'fdfo(l.no)lfdf,,,o(e,n.,), (6.18) 

where K is defined by (5.4). The first and last integrals in (6.18) are influenced by 
shadowing, however, and have to be considered in detail. The first integral S dfo has 
to be extended over the area which is not actually shadowed (apparent shadowing 
does not influence this integral, since the invisible area contributes to re-radiation). 

brightness ternpuc~fur~ along the thetrnot meridian for different be;real [c#i/udesf3 = 90-~ 

Fig. 11. 

~00 

-9o" -,70. -~0  o -30  o -Ip • 

250' 

200' 

50* 

to" to o ~o. 7o" qo" 
~ observcthbn angle 

~ =  0.*¢)  

Compar ison with experiment - Coplanar  data at 80 °, 50 o and 20 ° solar elevation. 

The contribution of actual shadowing would, however, be proportional to 

f d f  nk = const Zk ; (6.19) 

and the scalar product ikZk needed in (6.18) vanishes. The first integral can thus be 

extended over the whole crater and we obtain 

f dfo (i .  no) = f cos t. (6.20) 

The only re-radiation integral influenced by shadowing is therefore the last one, i.e. 
the integration Sdfm. Here we have to take into account that part of the crater will 
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be invisible from the direction of observation and the re-radiation emitted by this 
part has to be subtracted from the re-radiation. The relevant integrals become 

e k d f  nk = const ekZ k = 0 (6.21) 

app .  shd.  

and t ~  

I d f  nkn,, = A 2 = sFv e. (6.22) ekem 

app.  shd.  

This is the only modification of the re-radiation contribution due to shadowing. 
Inserting (6.22) into (6.18) and summing the infinite series we obtain 

- 3 r  

+ ( 1 -  2s) cos2e)}. (6.23) 

This expression replaces (5.6) and has to be added to (6.16). 
The resulting expression for the energy flux is valid in cases (a) and (b) of the 

classification of the shadowing situations given above. In case (c) only the shadowing 
functions belonging to the larger shadow have to be considered, while the other 
shadowing functions have to be put equal to zero. 

8rightness temperafure along the thermal rne6dian for differenf thermal [c##udes [3 = 90-L 

i 

409 ° 
o £ o n o o . ~  4a...~_" 

~ 3 5 0 :  

30C 
a 

200 ° 

_?o o - to  o -~o o q o  o , 9 o  

~=÷0  o 

~3 = dOO 

~0° 30 ° ,  50 ° 70 ° 90" 
i J i L 

-r,, 8 o b s e r v ~ f z o n  o m g l e  

o~ = ( I , + £ )  

Fig. 12. Comparison with experiment - Coplanar data at 70 °, 40 ° and 10 ° solar elevation. 
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In case (d), when both shadows overlap only partially an extremely complicated 
geometrical situation arises which can be dealt with only approximately. The ap- 
proximation procedure has to fulfil several requirements, listed below, and the follow- 
ing approach has turned out to be the best (see Figures 8 and 9). 

The shadowed areas are projected stereographically on the plane through the crater 
rim and the resulting areas are denoted by F1, F2 and Fo resp. for the projections of 
the apparent shadow, actual shadow and overlap resp. Then we replace the shadowing 
functions by the following new functions 

v i + v  e--*(v i + v e )  1 F I +  ' 

w,-~ w, (1 - Fo/Fa ) . (6.25) 

This ensures that the sum of two shadowing functions does not exceed the limiting 
value corresponding the total shadowing of the crater. The temperatures at large 
angles of observation are, furthermore, very sensitive to the exact manner in which 
we and v e approach their limiting values as ~--+n/2. By using the approximation (6.25) 
and leaving v e and we unchanged one ensures that this limiting value is unaffected 
by the approximations used here. 

We have checked the approximations (6.24, 25), furthermore, in the case where 
i, e and N are coplanar (i.e. along the lunar equator). In this case the overlap situation 

3rightness [ernpcra~urcs as funcbon o/phase angte for [~xed fhefmal latitude/3 and longitude V 

400 

3~7 

300' 

25~ 

2oo' 

the~m, long ~/= 300 

o o 

~ 70 ° 

° ~ ~ . . ~ .  f3o~o ° 

1o" 3,o" ~o" 7 7 9oo ~ o o  
or. = pho~se angle 

1 • 

--~ ~. phase 

Fig. 13. Off-equator data [. 
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can be dealt with exactly with the help of the tensor techniques developed in Section 3. 
The differences between exact result and approximate equation are smaller than 3 K 
at all angles of observation. 

The only remaining task is the calculation of the areas F1, F2 and F o. These areas 
can be computed with the help of standard geometrical formulas. The resulting 
equations are, however, extremely complicated and will not be given here explicitly. 

7. C o m p a r i s o n  wi th  E x p e r i m e n t  

We are now in a position to compare our theoretical results with the experimental 
measurements. Adding (6.23) to (4.6) we obtain for the energy radiated by a unit 
surface element per unit time and solid angle 

E (e, t, ~z) = E (e, i, N) + E" (e, i, N) 

- { [ 1 - 2 s +  K _ ( I _ - - s ) l  Sc(1-r)rc 1 - K  j c o s e c o s z  

+s[ l-2s/31-s (V,+Ve)(I FIF° ']Ic°s~'~+F2/_] ' 

 cgrl[ + 1 - 5 s + 5 s + ( 1 - 2 s )  K - -  cos~cos 2e 
r e 2  1 - K  

[ K (1--2S/3+SVe--Ve)ICOSl +S 1 - - S - - W e +  1 ~  

+ 2S[1 -- S -- W/(1 -- Fo/F1) + 1We] COS(X COS8 

+ 2swi (1 - Fo/F1) cos 2 c~ cos t}. (7.1) 

The apparent temperature of the lunar surface is related to E (e, t, e) by 

T 4 m  re - - -  E (e, t, cQ. (7 .2 )  
COS g 

In order to get some ideas on the parameters r and s to be inserted into (7.1) we 
calculate first the temperature of the subsolar point at zero phase-angle, which is 
known experimentally to be 397 K. We obtain 

I 1 5 
T 4 ( 0 , 0 , 0 )  = Sc  1 + -  r - - -  rs  + - -  

re 2 2 

s2 ] 
3 (1 - s) + 0 (rs 2) . (7.3) 

The factor So/re corresponds to a temperature of 390K (or to 385K if we assume an 
albedo of 0.08), the factor in square brackets in (7.3) has thus to be approximately 1.10. 
This can be obtained either by putting r=0.20, s = 0  or r = 0  and s=0.4 or by a 
suitable combination of both non-Lambertian terms and roughness effects. 

Our theoretical Expression (7.1, 2) has been evaluated for a large number of crater 
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Brightness &rnperature a5 function of phase c~ngle for liked thermal latitude/3 c~nd longitude y 
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Fig. 14. Off-equator data II. 

distributions and values of r by means of a computer and a statistical analysis of the 
data has been performed. The total Z z has been calculated for each fit, ascribing to 

the experimental data of Saari and Shorthill a formal error of __+ 10K. The rms 

deviation between theory and experiment has also been computed for each case. 
We have fitted both a representative sample (151 data) of the measurements along 
the lunar equator as well as a total of 526 data distributed evenly over all values of 

z, s and e. The results are shown in Table II. 
The table shows that the best fit to the data is achieved for model C as far as the 

coplanar data are concerned and for model E when all data are considered. Model E 

has the disadvantage, however, that the temperature of the subsolar point comes out 

to be only 392K at full Moon which is unacceptably low. Therefore, model A has 
been chosen as the best fit for all lunar data. The table shows, however, that the 
quality of different fit is not too different and that excellent results can be achieved 

with a wide variety of lunar surface models. 
Especially simple theoretical expressions for the lunar surface temperatures are 

obtained when models E, B or F are used. For numerical calculations is therefore 
best to use the simple fit E, which agrees with the lunar surface model suggested first 
by Buhl e t  a l .  (1968). The non-Lambertean parameter r does not lead to a very 
substantial improvement of the explanation of the emperical data and one can 
conclude therefore that the assumption that a flat element of the lunar surface is a 

Lambertean radiator is in good agreement with experiment. 
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TABLE II 

Comparison of theory with the Saari Shorthill data 

Model Coplanar data All data T(O, O, O) 

x ~ rms x 2 rms 

A 54.8 0.170 184.0 0.168 394.6 
B 40.1 0.152 215.8 0.172 396.7 
C 37.5 0.148 396.8 
D 54.5 0.175 165.4 0.164 390.5 
E 38.2 0.154 392.6 
F 47.0 0.160 391.8 

Description of models: 

A...albedo 5% r=0.15 s--(0.3 50% 0.013 50%) 
B...albedo 5% r=0.0  s--(0.49 45% 0.01 55 %) 
C...albedo 5% r--0.05 s=(0.49 45% 0.01 55 %) 
D...albedo 10% r=0.15 s=(0.3 50% 0.013 50%) 
E...albedo 10% r=0.0  s=(0.49 45% 0.01 55%) 
F...albedo 10% r=0.0  s=(0.49 33~ 0.2 33% 

0.01 34%) 

N N 

-- T,, theor.~2 ]Tei exp -- T2i theor. I ) l /2  x 2 = ~ (  T~exv 10 / rms = ( I ~  T2~ ex, 
/ 

i=l i=l 

N =  151 coplanar data, 526 all data. 

211 

Acknowledgements 

Our thanks are due to J. Harr ison and B. Jones for many  valuable suggestions and to 

Dr H. Urban tke  for his analysis of the crater geometry. Dr  J. Nance has part icipated 

in the initial  stages of this work. 

References 

Ashby, N.: 1967, Publ. Astron. Soc. Pacific 78, 254. 
Buhl, D., Welch, W. J., and Rea, J.: 1968, J. Geophys. Res. 73, 5281. 
Hammermesh, M. : 1962, Group Theory, Addison Wesley, Cambridge, Mass. 
Pettit, E. and Nicholson, S. B.: 1930, Astrophys. J. 71, 102. 
Saari, J. M. and Shorthill, R. W. : 1967, 'Isothermal and Isophotic Atlas of the Moon', NASA Rep. 

CR-855 (Sept.). 
Smith, B. G.: 1967, J. Geophys. Res. 72, 4059. 
Winter, D. F. and Krupp, J. A. : 1970, Boeing Sci. Res. Laboratories, Report No. D1-82-0987 (July). 

Appendix: Calculations of the Shadowing Function 

The shadowing funct ions v and w defined before are of the general type (h 0 = v, 
/h =w) 
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1 ( d f  nx2nz ".  h" (cos z, s) - Fs sin" (A.1) 

shd.  

The integrals have to be extended over the shadowed area of  the crater, i.e. over 
a wedge of  a sphere. Note  that  the directions X and Z refer to the coordinate  system 
defined in (6.3) and that  the region of  integrat ion is thus symmetr ic  with respect to 
the (J(, Z )  and  (Y, Z )  planes. Fo r  simplicity, we have d ropped  the bar  over the axes. 

The region of  integrat ion is bordered by the crater edge and the edge of  the shadow 
resp. as shown in Figure 6. The  equat ion of  the crater r im is given by the intersection 
of  a plane with a sphere 

z = R cosy,  X 2 -t- y 2  -b Z 2 = R 2 . (A.2) 

In  the (X, Y, Z )  system the sphere remains unchanged while the equat ion of  the plane 
is given by 

- X cos z + Z sin z = R cos y. (A.3) 

The other border  of  the shadow is then obtained by the substitution X ~  - X. Because 
of  the symmet ry  of  the shadowed area shown in Figure 6, it will suffice to integrate 
over  one quar ter  of  the shadowed area only, i.e. only in the region X > 0 ,  Y>0 .  

In t roducing polar  coordinates  by 

Z = R cos 0, X = R sin 0 cos q~, Y = R sin 0 sin ~ ,  (A.4) 

the equat ion for  the crater r im becomes 

cos OR sin t -- sin OR COS t COS q~ = COS 7" (A.5) 

This equat ion can be solved for  ~R = c o s  O R as 

~R = [COS7 sins + cos q5 cos t  ~/sin2 7 -- k2])(1 - k2),  

where 
k = cos t sin qS. 

o f  these variables the 

(A.6) 

(A.7) 

surface element d f  becomes d f = R  2 dqSd~. To  In  terms 
evaluate (A. 1) we need, fur thermore ,  the directional cosines 

nx = cos q~ sin 0 = cos q~ x/1 - ~2 nz = cos 0 = 4. (A.8) 

The integrals (A. 1) thus become 
~ / 2  1 

4R2 f f h,, (cos z, s) = sin" z4rcgas 2 (1 - s) d~b cos 2 q5 d~ ~" (1 - ~2). 

0 ~R 

m = 0, 1 (A.9) 

The  factor  4 in the numera to r  is due to the fact that  we integrate in (A.9) only over 
one quar ter  of  the shadowed area, as discussed before. The integral over ~ can be 
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carried out without difficulty, leading to integrals of the general type 

~/2 

I,.= f dq~(1-~)= 
0 

~t/2 

= f dq5 {1 - [-(cos y sin t + cos q5 cost  x/sin 2 ~ - kz)/(1 - k2)] m. 
0 

These integrals can be evaluated analytically. Putting 

p = c o s t ,  q=x/sinZ7-cos2t=x/4s(1-s)-p 2, 
and introducing the abbreviations 

1 q 1 
A = - arctg - ,  B = - arctg 

7z p 7z 
we obtain 

q 

p (1 - 2s) '  

v(p,s)=ho=2B[1-2s/3p2 1 
i ~ s  + - - s  ( 1 - 2 s )  

1 { pq(l_12s_l_12s2) } 
+ 3s2(1 _ s) A-B+2r c 

w ( p , s ) = h l = 2 B  l - s +  ( 1 - 5 s + 5 s  a 
S 

4~s 3 s ( 1 - s ) ( 1 - p 2 ) - 1 0  . 

This completes the evaluation of the shadowing functions. 

(A.IO) 

(A.11) 

(A.12) 

(A.13) 


