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Abstract. The Euler equations for the forced physical librations of the Moon have already been solved 
by using a digital computer to perform the semi-literal mathematical manipulations. Very near 
resonance, the computer solution for the physical libration in longitude is complemented by the 
solution of the appropriate Duffing equation with a dissipation term. Because of its apparent proxim- 
ity to a resonant frequency, the term whose argument is 209 - twice the mean angular distance of the 
Moon's perigee from the ascending node of its orbit - is especially important. Its phase, which soon 
should be measurable, is related to the Moon's anelasticity. The term's frequency, in units of the 
sidereal month, increases as the semi-major axis of the Moon's orbit about the Earth increases. Using 
the Moon's mechanical ellipticity of Koziel and the rate of increase of the semi-major axis of MacDo- 
nald, it is estimated that the 2o~ term will cross the resonant frequency in 130 million years and, if the 
rate of energy dissipation is sufficiently low, a transient libration will be induced. 

1. Introduction 

The Euler  equat ions  for  the forced physical  l ibra t ions  of  a perfect ly elastic M o o n  have 

been solved by using a digi tal  compute r  to pe r fo rm the semi-l i teral  ma themat ica l  mani-  

pu la t ions  (Eckhard t ,  1970). Very near  a three year  resonance,  the compute r  solut ion 

for  the physical  l ib ra t ion  in longi tude  is inadequa te  because it neglects nonl inear  and  

diss ipat ion effects. To complement  the compute r  solut ion,  we have invest igated the 

physical  l ib ra t ion  in longi tude  near  this resonance,  t ak ing  into account  nonl inear  and  

diss ipat ion terms. We have considered also the secular increase in the per iod  o f  the 

re levant  to rque  te rm and its effect, as the per iod  passes th rough  resonance,  on the 

l ibrat ion.  Our  me thod  o f  invest igat ion has been analytic ,  but  since our  goal  has been 

to achieve a qual i ta t ive  insight  into l ib ra t ion  near  resonance,  we have ignored  many  

small  effects and  we have made  some b road  ext rapola t ions .  I f  our  theory  were more  

complete ,  our  results would  be more  exact, but  we believe tha t  our  unders tand ing  o f  
the p rob lem would  no t  be significantly improved.  

2. The Euler Equation for Libration in Longitude 

The Euler  dynamica l  equat ion  for  the physical  l ib ra t ion  in longitude,  ~, may  be 
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approximated by 

1 dZz 

//2 dt 2 - 2.977 [5 sin 2(s - "6) + u] ,  (1) 

where n is the mean motion of the Moon;  7 has its usual connotation as the relevant 
moment of inertia ratio (approximately 2.3 x 10-4); s =s( t )  is the center equation and 
inequalities in the lunar longitude; and u =u( t )  is composed of cross terms involving 
the center equation and inequalities in the lunar longitude and lunar parallax (Eck- 
hardt, 1970). 

According to lunar theory s is, at most, approximately 0.1 radians; let us suppose 
that z is small enough that the following approximation is valid, 

5 sin2(s - '6) = ½ sin2s cos 2"6 - ½ cos2s sin 2"6 

5(1 - 2-62) sin2s - cos 2s(z - ~zs), (2) 

where cos 2s = 1 - 2 sin2s = 0.985 is the mean value of cos 2s. It is known by observa- 
tion that the amplitude of "6 is now less than 10 -3 radians, so there is little loss in 
precision in the linearization 5 sin2 ( s - z ) = 5  sin2s-0.985"6 which, inserted into (1), 
gives the linear differential equation 

ld2  [ ] 
n~ dt ~ + 2.93y'6 = 2.937 ½ sin2s0.985 + U . (3) 

The term in brackets on the RHS of (3) can be expanded into a Fourier sine series, 
2;iH~ sinai, whose arguments are elements of the additive group generated by the 
Hansen or Delaunay arguments. The particular solution to (3) is then given by 

where 

hiHi 
z = 2 i z i - - ~  sinai, 

h i -  1 

1 d~,  2 
hi = 2.937/[n ~ -  1 • (4) 

For  the coefficient of the z term whose argument is 2o9 = 2 F - 2 / ( t w i c e  the mean 
distance of the Moon's perigee from the ascending node of the Moon's orbit) there is 
a singularity at 7 ='7 = 2.126 x 10 -4.  Because 7 is actually very close to '7, the coefficient 
of this three year libration term is considerably amplified over the one arc-second 
amplitude of the corresponding forcing term, and the sign of the coefficient depends 
on the sign of 7-~7; that is, the sign is ambiguous. We shall examine this term by 
dropping the subscript i, letting ~ = 2o9, and considering the equation 

8 2 - 6  
- -  + hz = h H  sin~. 
d~ 2 
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3. The Linear Equation with Dissipation 

Let us first consider the effect of a rate dependent dissipation term in this differential 
equation. The equation may be modified as 

d 2 z  dz 
d4~ 2 + 2~ d~ + hz = h H  sin 4, (5) 

where, for unit  angular velocity, 2~= 1/Q is the dimensionless specific dissipation 
function (Kaula, 1968). In the mantle of the Earth, Q is observed to be essentially 
independent of frequency for frequencies between 10 .4  and 106 Hz. It increases with 
depth from about 80 in the upper mantle to 2000 in the lower mantle. For  frequencies 
less than 10-4 Hz and almost as low as (1/2=) ( d 4 / n d t ) ~  10-8 Hz, the Q of the Earth 
is observed to be somewhere between 10 and 100. This lower Q is likely due to high 
dissipation at the core-mantle and ocean-crust interfaces and is probably not appli- 
cable to the mantle. At 10 .8  Hz, the Earth's mantle per  se likely has a Q between 80 
and 2000 and, by analogy, we may expect that the interior of the Moon has approxi- 
mately the same Q. A conservative guestimate for e, then, is somewhere between 10-2 
and 10 -4 per unit time (½7c cycles). 

The particular solution to (5) may be written in the form 

z = x sin ~ + y cos 4, (6) 

where x and y are constants given by 

x = - (h - 1) r 2 / h H ,  (7a) 

y = - 2c~r2/hH, (7b) 

with 
x 2 + y2 = 1.2 = h2H2/ [ (h  _ 1)2 + 4 2 ] .  (7c) 

Because of the dissipation term, the homogeneous solution of (3) includes the factor 
exp ( - ~ )  and it will decay with time. The behavior o fz  is adequately described by the 
particular solution alone. 

A credible estimate of y, which is derived from Koziel's (1967) mechanical ellipticity, 
f=0 .633 ,  is 7 =2.30 x 10-4; using this in (4), we calculate h = 1.082. Using 7 =2.30 x 
x 10 .4  in a semi-literal computer solution of the coupled nonlinear Euler dynamical 
equations for the rotation of a perfectly elastic Moon gives x = - 1 5 "  and, of  course, 
y =0"  (Eckhardt, 1970). Using (7a, b, c) to extrapolate from the 1/Q --0 case gives 

15" 
X =  

1 + (12/Q) 2 

and 
y = 1 2 x / Q .  

The shift in phase between the forcing terms on the RHS of (5) and the equation's 
solution is t a n - l ( y / x ) = t a n - l ( 1 2 / Q ) .  For example, for a Q of 90, x barely changes 
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from -15",  but y becomes - 2 "  and the phase shift is 0.13 radians. When sin~=O, 
Iz[ = ]y] =2"; this is a displacement along the lunar equator of 17 meters from the non- 
dissipative libration. Such a displacement has become quite significant with the advent 
of lunar laser observatories which have range resolutions better than one meter. 
Conceivably, then, we may be able to learn a little about the anelasticity of the Moon 
from the analysis of lunar laser ranging data. 

4. The Nonlinear Equation with Dissipation 

Now let us modify (5) by adding the z 3 term in the expansion (2). The z 2 term still 
may be neglected because, for the ~ harmonic, [2z31 >> ]z 2 sin2sl. We get 

d 2 z  dr 
d~ 2 + 2c~ ~ + h (z - 2z3) = hH sin 4, (8) 

which is Duffing's equation with a dissipation term, a familiar equation in the study of 
nonlinear oscillations. 

To solve this equation, we use the method of Hayashi (1964). The approximate 
solution to (8) may be written in the form used above 

z = x sin ~ + y cos 4, (6) 

but now we assume x =x(~) and y =y(~) to be functions which vary with ~, but slowly 
enough so that d2x/d~ 2 and dZy/d~ 2 may be neglected. Inserting (6) into (8) and 
equating to zero the coefficients of the sin ~ terms and then of the cos ~ terms gives, 
respectively, 

dy ] 
- 2 cl~ - X + 2 a  - y = h x [ ½ r  2 - 1 ] + h H ,  

dx Id~ x l  _ 2 - -  - y + 2o~ + = hy [½r 2 1]. 
d~ 

Rearranging, we get 

dx = N(x, y), (1 

dy - M(x,  y) (1 + 2 )  d~ = 

where 

and 

M ( x ,  y)  = [x - a y ] f ( r )  + ay + e2x + ½hH, 

N ( x ,  y)  = [y + a x ] f ( r )  - ax + c~2y + ½ahH, 

f ( r )  = ½(1 -- h + ½hr2). 

The differential equation 

M(x,  y) dx + N(x,  y) dy = 0 

(9a) 

(9b) 

(lOa) 

(lOb) 
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is exact if, and only if, c~ =0. Its integral is 

r 4 + 4pr z + 4q = 0, (11) 

where 

p = (1 - h)/h = (9 - ~)/~, (12) 
q = 2(Hx + c),  

and C is an integration constant. An example of a set of solutions to (11) for h = 
= 1.00094 is given in Figure 1. Note that the eccentric circles represent a beat phenom- 
enon between forced and free librations of nearly the same frequency. 

lO0 
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. ~ 0  
f lZ 
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Fig. 1. For  a perfectly elastic M o o n  the  integral curves for l ibrat ion are closed. This  set of  curves 
was generated for ?, = 2.128 × 10 -4. F r o m  left to right a long the x-axis occur  one uns table  saddle 

point,  then two neutral  centers. 

5. The Steady State Solution 

By the method of averaging, Habibullin (1966) arrived at equations (Habibullin's 113) 
analogous to (9a, b). He then considered the steady state conditions dx/d~ =dy/d~  =0  
which would describe stable points toward which the solutions of (9a, b) would 
approach because of dissipation; but he assumed that the dissipation was small 
enough to neglect in setting 

N ( x ,  y, c~ = O) = y f  = O, 



314 DONALD H. ECKHARDT AND KENNETH DIETER 

and 
M ( x ,  y, ~ = O) = x f  + ½hH = O. 

The solution to this pair of  equations is y = 0  and x =a ,  where a is the root of  
M ( a ,  0) =0 ;  this is the Duffing relation 

a 3 .-b 2pa + 2 H  = O. 

The real roots of  this cubic equation locate singular points, stable and unstable, of  the 
integral curves (11). (For an elaboration of this relationship, see Hayashi, 1964.) 
Using (12), the Duffing relation may be written 

7 = ~/(1 - a2/2 - H / a ) .  

Near resonance, this equation supplements the detailed computer solution for 
-c(~) = a  sin~. An appropriate fit for the solutions a = a ( J  in Table I I I  of  Eckhardt 
(1970) is given with y=2.126 x 10 -4 and H =  -1'.'07. This is plotted in Figure 2. For 
7 >2.127 x 10 -4 where the Duffing relation has three roots the intermediate root, in 

absolute magnitude, corresponds with an unstable solution; the other roots are stable. 
I f  e # 0 ,  the singular points which are located by the requirements that M = N = 0  

move away from the x (zero phase) axis. Algebraically juggling these requirements, we 
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Fig. 2. This plot of the Duffing relation gives the amplitude, in arc-seconds, of a sin2ro forced 
physical libration term for a perfectly elastic Moon. The vertical line at y = 2.128 × 10 -4 intersects 

the curve at the three singular points of Figure 1. 



A NONLINEAR ANALYSIS OF THE MOON'S PHYSICAL LIBRATION IN LONGITUDE 315 

find the solution 

x = - ( p r  2 + l r 4 ) / H ,  (13a) 

y = _ 2 e r Z / h H ,  (13b) 

where r 2 is a real root of the cubic equation 

r 6 q- 4 p r  4 + 4(p 2 --k 4c~2/h 2) r 2 - 4H 2 --- 0. (13c) 

We assume that H = - 5 x  1 0 - 6 ~ - 1 ' . ' 0 7 ;  then for ~=0,  the solution is identical 
with that of the Duffing relation; for 1 0 - 4 ~ g > 0 ,  there is a finite range for h over 
which (13c) has three real positive roots for r 2, the intermediate root corresponding 
with an unstable solution; and for ~ > 10-4, over the entire range of h there is only one 
real root to (13c), so the steady state solution is unique and practically the same as the 
particular solution of the original linear differential equation. Note that if terms in r 4 

and r 6 can be neglected, the solution (13a, b, c) is identical with the solution (7a, b, c). 

6.  S e c u l a r  T r a n s i t i o n  T h r o u g h  R e s o n a n c e  

Concerning ourselves with the details of the solution near a resonance may appear 
pedantic because currently z(~) is far enough from its resonance to safely ignore the 
nonlinear effects. There exists, however, a slow secular decrease in h which effects a 
parallel decrease in the resonant frequency in units of 4. (If uniform time were the 
independent variable, the resonant frequency would remain constant, and ~ would 
grow.) If  ~ > 9, resonance will be attained in the future; if 7 < 9, resonance has already 

been attained. 
Referring to the definition ofh  i in (4), we write 

[ '2 do)'] 2 
h = 2.937/Ln dTJ  " (14) 

By lunar theory 

1 de) 
- 9 - c (15 )  

n dt 
for 

3m2 9 m3 273m4 9797m5 9 = 1 + - -  - . . . .  , (16) 
4 32 128 2048 

c = 1 . . . . . .  3m2 225ma 4071rn 4 265493m5 , (17) 
4 32 128 2048 

and 
m = n ' / n  = 0.0748 c u r r e n t l y ,  

where n' is the mean motion of the Sun (Brouwer and Clemence, 1961). Because of 
tidal friction, the semi-major axis of the Moon's orbit about the Earth is increasing at 
a rate of about 3.2 cm/yr (MacDonald, 1964); that is, the semi-major axis is increasing 
at the relative rate 8.3~o/109 yr. By Kepler's third law 1/n  is therefore increasing at the 
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relative ra te  3x8.3~oo/10 9 yr=12.5%/109 yr; so, for n '=cons t an t  ( I / r n ) ( d m / d t ) =  

=0.125 x 10-9/yr. Using (14)-(17) 

l d h  - 2  d 
- ( g  - c )  

h d t  g - c d t  

_2_r 81rn 3 1899 m4 79905 mS ] 1  dm -- - i  3 m  2 +  + _ _  + _ _  + . . .  
g - c L 4 16 128 m dt 

= -  0.61 x 10-9/yr.  

l f h  = 1.082 now, resonance will occur in about 130 x 10 6 yr. 
I t  is of  interest to see what will happen (or has already happened if h <  1) as h 

decreases and passes through h = I. Over a short span of time encompassing this 
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With c~ = 10 -2 and 10 -3, the integral curves about resonance are virtually identical with plots 

of the particular solutions of the linear problem. 

phenomenon, we assume that h(~) varies linearly with ~ such that h (0 )=  1.025 and 
dh/d~ = - 0 . 3  x 10 -9 (currently d~/dt=2.1 radians/yr). We take H = - 5  x 10 .6 and, 
for various values of  e solve (ga, b) by numerical integration. Because h(0) is suffi- 
ciently removed from unity, the linear solution (7a, b, c) provides suitable initial 
conditions for x and y. The integration is carried through resonance until h (1 x 109) = 
= 0.975. The integration was accomplished using a standard fourth order Runge-Kutta 
scheme with a step size A~ =833. The computations were done on an IBM 7094 and 
the results were plotted as phase plane diagrams by a Calcomp 780 plotter. 
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I f  c~ =0  and h is fixed the numerical integration of (9a, b) should yield the same 

family of  closed trajectories as the analytic integral, (11). For  7=2 .128x  10 -4, 
h=1.0094 and Duffing's relation has three roots (shown in Figure 2) which corre- 
spond with singular points of the corresponding phase plane diagram. This diagram, 
presented in Figure 1, was plotted using the numerical integration solution with initial 
conditions selected along the x-axis such that a set of  suitably spaced curves is gener- 
ated. This set of closed curves serves as a check on the accuracy of our numerical 
integration technique. 

The phase plane plots for varying h are presented in Figures 3-6. In Figure 3, the 
cases e = 1 0  -z  and e = 1 0  -3 are shown superposed at the same scale. The curves are 

Fig. 4. 
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The libration solutions move generally clockwise in the phase plane as h decreases through 
unity. For c~< 10 -4 the steady state solution for the libration has a discontinuity 

and a transient is introduced. 

approximately the arcs of  circles of radius H/4a and origin x = 0 ,  y =H/4o~. They are 
virtually identical with the plots of x(h), y(h) which are generated by the particular 
solutions (7a, b, c) of  the linear problem. 

In Figure 4; the cases ~=10  -3, c~=0.2 x 10 -3, ~ = 1 0  -4, c~=0.75 × 10 -4  and ~ =  

=0.50 × 10 -4  are shown superposed at the same scale. The steady state solution (13a, 
b, c) for monotonically decreasing h always corresponds with the minimum real root 
r z of (13c). For  ~>  10 -4 there is onty one real root and the steady state solution is 
continuous; but for ~ ~< 10 -4 the steady state solution has a discontinuity where the 
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number of  real roots drops from three to one. The complete solution must be contin- 
uous, so a compensating transient must be introduced where the steady state solution 
jumps. As c~ becomes smaller, the jump becomes larger as does the transient, and the 
transient decays more slowly. This is apparent in Figure 4. 

The cases c~ = 10-5 and a = 10-6 are presented in Figures 5 and 6. In both cases the 

transient introduced has approximately the same magnitude, but the rate of  decay of 
the transient differs between the two cases by a factor of  ten. In Figure 5 one can 
clearly see that the transient solution tends to decay in a spiral, so the total solution 
approaches the moving steady state solution in a moving spiral. For Figure 6, the 
plotter was stopped to avoid wearing through the paper where the curves become very 
dense. The central portion was filled in by a draftsman. 
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F ig .  5. 
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T h e  case  c~ = 10 -5 s h o w s  t h a t  t he  t r a n s i e n t  s o l u t i o n  decays  in  a sp i r a l  a b o u t  
a m o v i n g  s t e a d y  s t a t e  so lu t i on .  
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Figure 6. The case a = 10 -6 shows a slowly decaying transient. 
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