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Abstract. A set of twenty-one point  masses gravitationally equivalent to the L1 lunar potential model 
is presented. By construction, the equivalence is valid only in a region of space 'sampled'  by Apollo 
spacecraft. That  region is taken to be a finite, torus-shaped shell. When used in place of the L1 model 
for Apollo 12 lunar orbit determination, the solution set gives spacecraft positions identical to within 
about 100 rn. 

The solution is developed in two steps: first the L1 potential is examined to determine favorable 
mass locations, and then the mass values are computed to force an optimum matching of the L1 
potential. Therefore the solution set is 'artificial'. It is related to the Moon's  actual mass distribution 
only in its similar gravitational effects in a limited region of space. 

1. Introduction 

A distribution of twenty-one point masses gravitationally equivalent to the L1 lunar 
potential model over a restricted region of space is determined in this paper. Since 
the results must be understood in a rather detailed context, they are deferred to 
Section 4. Although for practical work the distribution seems to be neither more nor 
less useful than the L1 model, it does offer a usable, alternative representation of the 
L1 model. More generally, the method employed may be used to construct a mass 
representation for any potential. 

The object being matched, the L1 lunar potential model, is an approximation to 
the Moon's gravitational potential. It has been used extensively in real-time orbit 
determination for recent Apollo flights. Consider a series expansion of the Moon's 
potential V in terms of solid spherical harmonics. This may be written as 

1 
V(r, 0, qS) = (GM/r) ~ ~, (R/r)tP?(cosO) 

/=0 m=0 

x [Clm COS m~b + Szm sin mqS], (1) 

in which GM is the gravitational constant times the Moon's mass and R the mean 
lunar radius ;* (r, 0, qS) are the spherical polar coordinates of a field point outside the 
Moon, at which the potential is to be evaluated; P~'(cos0) is the unnormalized 
associated Legendre function defined by Erode and Jahnke (1945); and Ct" and St,. 
are the expansion coefficients of V. The L1 potential is a finite approximation to the 
infinite series (1). It is characterized by the six non-zero coefficients listed in Table I. 
These coefficients were determined by a community of American selenodicists after 

* The values assumed for these quantities are GM=4.902778 x 1012 mZ/s 2 and R =  1.73809 × 106 m. 
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careful processing of doppler tracking data from Lunar Orbiter satellites (Wollen- 
haupt, 1970). In the region of lunar space sampled by these spacecraft, the L1 model 
gives a representation of the underlying lunar potential which has been satisfactory 
for lunar navigation and orbit determination in the Apollo program. 

TABLE I 
Non-zero expansion coefficients 

characterizing the L1 lunar potential 
model 

Coo 1.0 
C~o --0.207108 × 10 -3 
C22 0.20716 × 10 -4 
Czo 0.21 × 10 -4 
Ca1 0.34 × 10 -4 
C3s 0.2583 × 10 -~ 

Recognizing that the Moon's gravitational potential exists by virtue of a mass 
distribution, one would like to draw conclusions about the mass distribution from 
the present knowledge of the potential. Unfortunately, because the potential is an 
integral over the mass distribution, it is impossible to infer a unique distribution from 
knowledge of the potential alone. A classic example of this phenomenon is given by a 
point mass and a uniform spherical shell of equal mass, both of which have the same 
external potential. However, when additional information (such as extensive seismic 
data) about the Moon's interior becomes available, it may be possible to use it to 
discriminate between various distributions determined by considering only the po- 
tential. 

For  the present, since there is no means for such discrimination, we will be content 
to determine a simple mass distribution which is gravitationally equivalent to the L1 
potential model. 'Equivalent' is construed as requiring the L1 potential and the 
simple distribution to produce nearly the same state vectors at all times during lunar 
orbit determination for a spacecraft orbiting within a region in which the L1 potential 
is valid. The region is taken to be a torus-shaped shell lying within the space blocked 
out by the orbits studied for the construction of the L1 potential. It simulates the 
lunar space explored by Apollo spacecraft. 'Simple' is construed as requiring a 
smallest distribution of point masses which will produce equivalence. 

The method employed involves selecting the locations of point masses within a 
distribution and then using a least squares integral criterion to determine the optimum 
mass values for the distribution. The mass values are optimum in the sense that they 
force a minimum of the integrated square of  the difference between the LI potential 
and the potential due to the selected distribution. The integration region is the torus- 
shaped shell just described. The mass locations may be iterated to diminish the value 
of the criterion integral until it is satisfactorily close to zero. Satisfactory fit is checked 
by applying the gravitational equivalence criterion mentioned above. 



SIMPL E  MASS D I S T R I B U T I O N  F O R  T H E  L U N A R  P O T E N T I A L  317 

This method is believed to have been suggested originally by McLaughlin (1968). 
A least squares matrix reformulation (Levie, 1971) of McLaughlin's integral criterion 
was adopted for this work because of its superior flexibility. 

It may be noted that this program is qualitatively related to recent efforts at the 
Jet Propulsion Laboratory (Muller and Sjogren, 1968 and 1970; and Gottlieb, 1970) 
and the Aerospace Corporation (Wong, 1970), in which hundreds of masses on the 
nearside lunar surface are fitted directly to spacecraft doppler data on a single-pass 
basis. The result of those investigations is a mass distribution consisting of a mass 
point at the origin and a surface layer of mass covering the visible hemisphere. The 
density highs in the surface layer may be identified as mascons. Such results are made 
possible by the use of local gravitational information, which, due to the present lack 
of farside satellite tracking data, cannot provide mass distributions for the far hemi- 
sphere. This precludes the solution distributions from being used as global gravitational 
sources. 

In contrast, the method of this paper uses information averaged over the whole 
Moon, obtaining a mass distribution which may be used as a gravitational source in 
the manner already described. However, due to the specific use of the L1 potential, 
which contains no high-frequency terms, the mass distribution obtained by this 
method will not contain information about local features such as mascons, except in 

an averaged sense. 
It must be pointed out that both approaches share the problem of inherent non- 

uniqueness of the solution mass distribution, but that this does not obscure physical 
interpretations in the referenced work, due to the presence of supplementary, topo- 
graphic information. 

The present work is also related to studies by Koch and Morrison (1970) and by 
Obenson (1970), in which surface mass distributions are obtained for the Earth from 
satellite tracking data and gravity anomaly data. Attractive as it appears to be, this 
method cannot be applied to the Moon, due to the absence of surface gravimetry for 
that planet. 

2. Calculation of the Masses 

Once a distribution of masses has been selected, its net gravitational potential ~ can 
be computed, provided the mass of each body has been specified. Since it is desired 
to have 17 match a given potential v over some region D of space, McLaughlin (1968) 
proposed selecting the mass values so that the integral 

f = f ( v - ~ ) 2 d z  

D 

(2) 

is minimized. Thus the resulting solution will be optimum in an integral least squares 
sense. Since potentials are linear in the mass, ~ can be written as 

v =  ~ mkVk,, (3) 
k = l  
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where n is the total number of bodies, m k the mass of the kth body, and mk~ k the 
potential of the kth body. Thusf i s  quadratic in the masses, and its minimum is unique. 

In the application being presented, v was taken as the L1 potential model. It was 
represented as a sum of solid spherical harmonics in the form of (1), but truncated 
after l=7 .  The potentials of each of the masses under consideration in (3) were 
expanded in similar series, truncated a f t e r / = 7 .  The coefficients for these series may 
be computed from formulas given by Levie (1970). From (3), then, ~ is also a truncated 
sum of solid spherical harmonics, and each coefficient in the sum is a certain linear 
combination of n undetermined masses. 

With the problem in this form, the integral criterion (2) can be reformulated as a 
classical least squares matrix problem, reported by Levie (1971). This formulation 
was used for the computations, since it allows convenient utilization of a computer, 
by isolating the integral in f i n  a weight matrix. Every element of the weight matrix is 
an integral over D of products of  pairs of solid spherical harmonics, and these integrals 
can be analytically precomputed. 

The region within which the L1 potential and the mass distribution were matched 
- the integration region D in (2) - was chosen to be a finite, torus-shaped shell. Its 
inner and outer surfaces are spherical, with radii* R and R + 0 . 6 x  106m and the 
northern and southern surfaces are cones of latitude at 30 ° and - 3 0  °. The weight 
matrix for such a region is given by Levie (1971). The region was arbitrarily chosen 
as modelling the space sampled by Apollo spacecraft, and it is contained within the 
region in which the L1 potential model is presumed to be a good representation of 
the underlying lunar potential. 

3. Selection of  the Mass Locations 

The availability of  the integral criterion for selecting mass values for the bodies in a 
distribution substantially simplifies the problem under consideration. The remaining 
problems are to select the necessary number of bodies and then to determine locations 
for them. For  simplicity, it will be assumed that all the bodies are point masses. This 
does not seem to weaken the solution, even for a small number of masses. 

There appear to be three ways of selecting point mass locations for the distribution. 
Each requires a single mass at the origin to account for the gross, radially symmetric 
part of the Moon's  density function. The methods are: 

(1) Place a point at the location of each suspected inhomogeneity. 
(2) Distribute points evenly over some spherical surface, to approximate a surface 

distribution of matter. 
(3) Place 'multipole' patterns of points very close to the origin. 
The first approach is out of the question due to insufficient information. The scheme 

that was used employs a combination of the second and third approaches, both of 
which are deeply rooted in potential theory. The second is based on a theorem that 

* R is defined in Section 1, and is 1.73809 × 106 m. 
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on the surface of a sphere there exists a distribution of matter which reproduces a 
given external potential (MacMillan, 1958). The third states a result in electrostatics, 
that any external potential may be replaced by a suitable collection of  multipoles 
(Feshbach and Morse, 1953). A multipole is an infinitesimal arrangement of point 
masses whose total external potential consists of just one term of (1) and (except for 
the central body term) whose total mass is zero. Each term of ( l )  has its corresponding 
multipole. 

The multipole approach has been the most useful one for obtaining mass point 

FROM 
NORTH 
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EARTH 

Fig. 1. 

NORTH 

(3,0} (3.1} {3,3) 

Patterns of zeros of the spherical harmonics in the L1 lunar potential model (excluding the 
central body term). Not drawn to scale. 

locations. Since the symmetries of a single multipole distribution are connected with 
the locus of zeros of the corresponding spherical harmonic, only the pattern of zeros 
needs to be consulted to get an indication of the relative positions of mass points in 
the corresponding multipole. These patterns are shown in Figure 1 for the spherical 
harmonics needed in the L1 potential model, omitting the central body term. The 
distribution of twenty points in Figure 2 seems to capture all the symmetries shown in 
Figure 1. It also seems to be the smallest such set. Mass points at the indicated 
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locations plus a mass point at the origin constitute the distribution of twenty-one 
point masses whose values were determined by minimizing (2). 

The radius of  the sphere on which the points were placed is 0.2109 R. For  the 
distribution to approximate a true set of  multipoles, the sphere's radius should 
approximate zero. This cannot be done in practice, of  course, since the resulting 
distribution would appear to a computer to be singular. The adopted value was 
therefore a compromise between the requirements of  a good multipole representation 
and numerical tractability. 

Although the distribution has just been presented in the context of  mu/tipoles, it 
has another interpretation. It  is also a simple approximation to a continuous distri- 

v, Ewl 1 FROM 
NORTH 

VIEW 
FROM 
EARTH 

J 
Fig. 2. Distribution of twenty mass points with the symmetries of the spherical harmonics of the L1 
potential model (excluding the central body term). The southern hemisphere is reflection - symmetric 

with the northern hemisphere. Drawn to scale. 

bution of matter  on a spherical surface. The approximation consists of  a uniform 
surface distribution, represented by the point mass at the origin, which is modulated 
by a sprinkling of twenty discrete masses on the surface. This interpretation empha- 
sizes that the Moon 's  actual mass distribution is not being determined here. What  is 
being determined is some distribution which reproduces the effects of  the L1 potential 

model within a torus-shaped shell. 

4. Results 

The mass distribution determined by the methods of the last two sections is presented 
in Table II. It  consists of  twenty point masses placed symmetrically on a sphere of  
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rad ius  0.2109 R,  plus  a p o i n t  mass  at the  center .  This  mass  p o i n t  con t a in s  the  M o o n ' s  

mass  p lus  c o n t r i b u t i o n s  wh ich  r e n d e r  the  ' m u l t i p o l e '  masses  zero.  T h e  to ta l  mass  o f  

the  d i s t r i bu t i on  equa l s  the  M o o n ' s  mass ;  the  cen te r  o f  mass  is w i th in  three  me te I s  

o f  the  o r ig in ;  a n d  the  cross  p r o d u c t s  o f  ine r t i a  a re  zero.  These  resul ts  s t em f r o m  

m a t c h i n g  a spat ia l  d i s t r i bu t ion  and  a p o t e n t i a l  wi th  re la ted  symmet r i e s  whi le  us ing  

a h igh ly  s y m m e t r i c  r eg ion  fo r  the  fit. 

TABLE II 

A distribution of mass points reproducing the gravitational effects of the L1 lunar potential model 
throughout a torus-shaped shell. ~ 

Mass Location b Mass Mass Location b Mass 
(/tM) c (/~M) e 

latitude longitude latitude longitude 
(deg) (deg) (deg) (deg) 

45 0 1340 45 180 --2039 
0 0 656 0 180 1409 

-- 45 0 1798 -- 45 180 -- 1581 

45 60 --604 45 --120 --1210 
0 60 --1792 0 120 1782 

--45 60 -- 146 -- 45 --120 752 

45 120 --1210 45 - -  60 --604 
0 120 1782 0 -- 60 -- 1792 

--45 120 752 45 60 -- 146 

90 0 --436 
--90 0 -- 2384 
(coordinate origin) 1007996 

The inner and outer surfaces of the shell are spheres of radii R and R + 0 . 6  × 106 m, where 
R -- 1.73809 × 106 m. The northern and southern surfaces are cones of latitude at + 30 ° and -- 30 °. 
b All the mass points lie on a sphere of radius 0.21085789 R, except for one at the coordinate origin. 
e The mass unit is micromoons, or 10 -6 lunar masses. 

Tab l e  I I I  lists the  e x p a n s i o n  coeff icients  Clm (refer  to  (1)) fo r  this d i s t r i bu t ion  up  to 

/ = m = 7 .  T h e  S-coeff ic ients  a re  all  zero.  C o m p a r i s o n  wi th  T a b l e  I shows  tha t  the  

e x p a n s i o n  coeff icients  fo r  the  d i s t r i bu t ion  are  n o t  the  same  as those  o f  the  L1 po ten t i a l .  

T h e  r ea son  is t ha t  the  d i s t r i bu t ion  is i nhe ren t ly  i n c a p a b l e  o f  r e p r o d u c i n g  the  L1 

po t en t i a l  at  all  p o i n t s  o f  space.  T h a t  is, i t  c a n n o t  gene ra t e  the  L1 coeff icients  exclu-  

sively. 

T h e  so lu t ion  d i s t r i bu t ion  does  give a sa t i s fac tory  facs imi le  o f  the  L1 po t en t i a l  

w i th in  the  t o r u s - s h a p e d  shell ,  however .  This  was  d e m o n s t r a t e d  by  us ing  the  p o t e n t i a l  

coeff icients  in T a b l e  I I I  fo r  two-pass  o rb i t  d e t e r m i n a t i o n  wi th  free-fal l  d o p p l e r  d a t a  

f r o m  A p o l l o  12.* C o m p a r i s o n  wi th  resul ts  f r o m  orb i t  d e t e r m i n a t i o n  us ing  the  L1 

* The elements of the orbits considered were approximately a=1.84755 × 106 m, e=0.00502, 
i = 164.°86, g2 = 335.°6, co -- 66.°6, in the selenographic frame. The period was about 1.979 h. 
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potent ia l  model  revealed changes in the epoch state amoun t ing  to 100 m and  0.037 m/s. 

The doppler  residuals for the two potentials were nearly indist inguishable over a five 

revolut ion propaga t ion  of the two epoch state vectors. When  the n u m b e r  of mass 

points  in the solut ion set was decreased, these results were seriously degraded, indi- 

cat ing that  the set presented is the simplest practical one. 

I f  is interesting to compare equipotent ia l  contours  for the L1 model  and the solut ion 

TABLE III 

Low-order expansion coefficients for the potential of the mass 
distribution in Table II. The S-coefficients are not given, since 

they are all zero. Mantissa-exponent format is used. 

Coo 1.000 C58 0.6037 -- 9 
Clo 0.9859 -- 6 Ca4 0.0 
CI1 --0.5910--6 C55 --0.9183--9 
C2o --0.2073 3 C6o - 0.1908 -- 6 
C~1 0.0 C61 0.0 
C22 0.2087 4 C62 0.1430 8 
Cso 0.2281 -- 4 C68 0.0 
C~1 0.3303 -- 4 C64 0.7990 -- 10 
C82 0.0 C65 0.0 
C3z 0.2584-- 5 C66 --0.2693 13 
C4o -- 0.2870 -- 6 C7o 0.2963 -- 7 
C41 0.0 C71 -- 0.4280 8 
C4z O. 1667 -- 6 CTz 0.0 
C4a 0.0 CTa 0.2322 -- 9 
C44 0.1359 -- 7 C74 0.0 
C5o 0.1242 -- 5 C75 0.1077 -- 10 
C51 --0.5141 6 C76 --0.1954-- 12 
C52 0.0 C77 -- 0.2835 -- 12 

mass distr ibution.  These are shown in Figures 3 and 4, respectively. Careful com- 

par ison of the two figures reveals an excellent match  within the fit zone and a 

deterorat ing match  outside the fit zone. The fine in format ion  in the L1 potent ia l  

near  - 180 ° in  the fit zone suffers some distort ion in the mass point  representat ion,  

but ,  on the basis of the previous paragraph,  this does no t  seem to be part icularly 

harmful .  The si tuat ion probably  would be improved by adding one or two mass 

points  to the solut ion set. 

5. Conclusions 

On the basis of the orbit  de terminat ion  comparison,  it is concluded that  the mass 

dis t r ibut ion in Table II  and the L1 lunar  potent ial  model yield similar gravitat ional  

effects in  the region of space ' sampled '  by Apol lo  spacecraft. Tha t  region is assumed 

to be a torus-shaped shell. Some calculat ional  comparisons of these two represen- 

tat ions of the lunar  potent ial  have shown that  neither is more efficient than the other. 

This underl ines the practical equivalence of the two representations in the stated 

region. 
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There appear  to be three ways of  improving the correspondence o f  the distribution's 

potential  to the L1 potential:  
(1) Increase the number  o f  mass points, to make a better approximat ion of  a 

continuous surface distribution. 
(2) Move  a l l  the mass points closer to the origin, in the spirit of  multipole theory, 

to diminish the size of  unwanted expansion coefficients in the distribution's potential. 

6 0  . . . . . .  

4o . . . . .  -L--t_2._-_ 
. . . . .  1 - l _ [ - -  

2 0  - - . - - ~ 4 _  1 "  

-I--d -r, .  

1:3 - - 4 -  ~ "k 

LLi 

0 : : : 

_ _ . _ . L - - i - - i . .  
- 2 0  . - 4 ~  ; "  I /  

. . . .  " I | 

a L, I . . . . . . . .  ~ ' " .  I 

I | | | | l l | N l | U i i u | m | | ~ i a i =  
I l g l l l i l | l l i l l | ~ 6 m | | B d !  
B B l D B H l H l l B N i i i K D m J 6 1 J i l  

~HmNllllHniniiHgiOB K J i l i  
i U l i l i l l U i l i N l i l i N m i l l i  

I D H B H U H H I N I H I U N H D H I H I D ! I  
ummmmmmmmmmmmmaJmmaamann 
i l i m n u i m m i a l i l U a i n a a i l i i  
I N H i u l i g R i m l B N i H R l K n G 3 1 |  
l i U l i l l i l m i l i i l a i g e R i m 3 |  
l l U I M R m m m m B M | | B I m B ~ E i m i ~  

F I T  

Z O N E  

.~ ..-4~1 .. , 

~"~'" "" "[ ,/ .- ' ,t' ] ~" " ' ~  ~ - - -  

~ ' , '  . . . .  " : .' ." / i l  : ~ .  \ . " ' - - ' ' -  2"-  

: : : ", .  '.. ' \ . ,  _ - / / / .,,"1 , ,  

_ _ .,'-,•- .- .., .. 
- - 6 0  - ; ~ ~ ~ ,  ~'-. .~: ~ . . .  

- -  ~ "1 . . ,4LL r "  

-8o : : : : ~ "  . . . . . . .  - ~ '  ~" I I 

. . . .  ' ' '  ~ . . . .  I I 
- - 1 5 0  - - 1 0 0  - 5 0  0 5 0  1 0 0  1 5 0  

L O N G I T U D E  ( D E G )  

F i g .  3 .  Equipotential contours for the L1 potential. The fit zone lies between + 3 0  ° a n d  - - 3 0  ° 
l a t i t u d e ,  a s  s h o w n .  

(3) Adjust  the region in which the match is to be valid so that  the distribution 
needs to match fewer convolutions of  the given field. 

The first approach  is plausible, but  unesthetic, and the second is limited by nu- 
rnerical considerations in the calculations. However,  the third approach  is simul- 
taneously practical, consistent with the spirit o f  McLaughl in ' s  criterion, and consistent 

with the realities of  our  present understanding of  the Moon ' s  gravitational potential. 
I t  is expected that  if  the scheme for  determining an equivalent mass distribution is 

applied to potentials only slightly more  intricate than the L1 field, then the number  of  
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mass points required will grow steeply. This is because a mass point distribution must 
capture simultaneously all the symmetries of  the spherical harmonics comprising the 
gravitational potential to be matched. This would mean exorbitant numbers of mass 
points in the multipole sets for such fields. 

It  is not meaningful to discuss the physical reality of  the solution mass distribution. 
This is because, as shown by Feshbach and Morse (1953), a mass distribution whose 
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Fig. 4. Equipotential contours for the 21 mass point potential. The fit zone ties between + 30 ° and 
- -  30 ° latitude, as shown. 

external potential precisely matches some given potential lacks uniqueness. However, 
as more becomes known about  the Moon 's  interior, the new information can possibly 
be used to differentiate between acceptable solutions. For  the present, the solution 
obtained must simply be regarded as an alternative representation of the L1 lunar 

potential model for Apollo orbits. 
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