SELECTION OF POINTS FOR THE DEVELOPMENT OF A FUNDAMENTAL CONTROL SYSTEM ON THE LUNAR SURFACE

A. A. GURSHTEIN and N. P. SLOVOKHOTOVA Institute for Space Research, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

(Received 4 January, 1971)

The fundamental astrometry has accumulated wide practical experience on the development of the inertial co-ordinate system in space, which confirms in particular that rational selection of objects for this purpose is an important stage in investigations and requires urgent attention from the very initial steps. In this respect the problem of the development of a fundamental control system on the Moon is similar to those of the fundamental astrometry (Hopmann, 1967).

Up to the present different catalogues used as reference points for selenodetic datums different kinds of relief features: craters (mainly with diameters from 3 to 20 km), separate mountain peaks or central peaks of great craters, light spots, groups of hills or small craters. However it is well known that conditions for observations of mountain peaks vary considerably according to the changing of azimuth and altitude of the Sun, and are considerably dependent on the relief of neighbouring regions also. The appearance of the light spots depends greatly on the albedo of surrounding areas, their forms and sizes being unequal. Groups of hills or small craters look different on photographs of different scale. Naturally various effects of such kind decrease the precision of measurements.

In this connection a tendency appeared in the last decade to use as reference points only small craters of regular circular form (Kopal, 1960; Kopal and Finlay, 1960). This point of view is based on the following important ideas:

(1) The number of craters on the lunar surface is large enough and their distribution is sufficiently even for the establishment of a homogeneous control system of the required density without using any other relief features as reference points. Thus, according to (Arthur *et al.*, 1963, 1964, 1965, 1966) there are more than 17000 craters on the visible hemisphere of the Moon with diameters not less than 3.5 km. The distribution of craters according to their diameters in four quadrants of the near side of the Moon is presented in Table I*.

We can see from Table I, for example, that quadrants I and II, in which craters are least numerous contain respectively 1229 and 1487 craters with the diameters from 3.5 to 14.9 km – a quantity quite sufficient for providing any catalogues necessary for practical requirements of selenodesy.

^{*} The table is compiled by N. G. Merkulova.

Diameter km	I quadrant	II quadrant	III quadrant	IV quadrant	The whole visible hemisphere
3.5- 4.9	344	545	1144	1800	3833
5.0- 9.9	586	758	2036	3136	6516
10.0-14.9	299	184	684	1159	2326
15.0-19.9	190	82	370	538	1180
20.0-24.9	135	41	197	359	732
25.0-29.9	95	42	136	194	467
30.0-49.9	167	99	275	379	920
50.0-99.9	92	67	146	189	494
100.0 and more	15	21	45	37	118
Total:	1923	1839	5033	7791	16586

TABLE I The number of craters of different sizes on the visible side of the Moon

(2) The majority of craters with small diameters have regular forms and thus represent relief features most favourable for astrometric measurements aimed for most pricise determination of the position of their centres.

(3) The character of crater images does not depend on the slope and albedo of the surrounding area and on the scale of photographs; in addition due to comparatively small relative depth ($\sim \frac{1}{10}$ for craters with diameters 1–100 km (Baldwin, 1965)), the errors in measurement resulting from different altitude of the Sun (phase errors) are minimized.

Unfortunately, not one of the existing papers presents a consistent method for the selection of relief details used as reference points. The present paper, taking into consideration the pressing necessity for the creation of a unique lunar fundamental control system proposes a general principle for approach to the selection of features for the development of such system.

The problem of establishing a selenographic co-ordinate system, that is the determination of the position of reference points relative to the lunar equator and to the central meridian, is inseparably linked with the problem of the study of the lunar figure, its orbital elements and libration constants (Koziel, 1962). To make orbital elements and libration constants deduced from the ground based observations more accurate, precise three-axis co-ordinates of a rather limited number of points on the lunar surface are sufficient. For further study of the lunar figure and solving different cartographic problems, much more numerous reference points are needed. Therefore, from the point of view of the expediency of the practical solution of the problem of a lunar fundamental system, its creation may be divided into several stages (Kopal and Finlay, 1960) resulting in the construction of control systems of the first, second and subsequent orders.

Many of the catalogues of lunar features used at present are based on the Franz system (Franz, 1899), consisting of nine points, eight of them having been measured by differential method relative to the ninth one – crater Mösting A. Therefore, generally

speaking, the control selenodetic systems of such a kind are systems of the third order at least. Almost every recently published paper on selenodesy emphasizes the necessity of the creation of a new lunar absolute control system free of the Franz catalogue inaccuracies (or of inaccuracies of Schrutka-Rechtenstamm catalogue (Schrutka-Rechtenstamm, 1958) based on it). It is evident that the new fundamental system of the first order should be given by absolute three-axis co-ordinates of a comparatively small number of points measured with the highest possible accuracy. However their number should be sufficient not only to realize the lunar control system and to make the character of the motion of the Moon in space more exact, but also for further study of the lunar figure and construction of the base for lunar charts of high accuracy.

General methods for the development of works on lunar cartography are considered in detail in the paper by Florensky *et al.* (1971). In accordance with the suggestions proposed in this paper the scale 1:1000000 widely used now should remain the base scale for future lunar charts also. The fundamental control system of the first order should ensure the reliability of the cartographic works of scale 1:1000000. This is based on the fact that maps of that scale for the visible hemisphere may be compiled using mainly Earth-based observations and should serve as a main link between largescaled maps compiled on the basis of extraterrestrial pictures and general smallscale maps compiled by terrestrial methods. An average density of 4 points for each nomenclature sheet of the map should be taken as the necessary minimum density of control system for ensuring the reliability of the cartographic works. This requires that the first order points be distributed evenly on the lunar surface with the density approximately 1 point per $10^{\circ} \times 10^{\circ}$ square transferred to the lunar equator. The same requirements have been already substantiated earlier (Kopal and Goudas, 1967; Marchant, 1963) proceeding from some other ideas.

Since the area of the lunar surface is amounts to ~ 41000 square degrees there should be altogether ~ 410 of the first order reference points on the Moon and about 250 of these on the visible side (the libration zones included). If we exclude marginal zones which are not clearly observable on the ground-based pictures then ~ 200 points will be sufficient.

In accordance with the nomenclature division suggested by Florensky *et al.* (1971) for the maps of 1:1000000 scale and coinciding on the whole with the nomenclature division of American aeronautical charts LAC (ACIC, 1967) the whole lunar surface is covered with 140 sheets of the map, 48 full sheets covering the area of $\pm 70^{\circ}$ along the longitude and latitude. If there are 200 reference points in this area, then every chart sheet of 1:1000000 scale really contains on the average 4 first order reference points.

However as it was mentioned above, the number of points with precise co-ordinate values used for obtaining more accurate parameters of lunar motion in space (which is connected with long and systematic observations) need not be numerous (but not less than three), thus it will be unnecessary in future to use for this purpose the whole complex of the first order points. Moreover, observations for the aims stated above will be carried out in future both with the help of the laser location of cube-corner retro-reflector and with direct astronomical observations carried out from surface of the Moon. Neither method requires a very large number of observational points and therefore it is rational to select a certain sub-group of craters from 200 fundamental first order points evenly distributed on the visible hemisphere of the Moon. The craters will serve like Mösting A as the fundamental points for obtaining with special methods of high precision more accurate parameters of the motion of the Moon and initial geodetic dates. The number of such points should need not be more than twenty.

Thus the first order fundamental control system consisting of 200 points can provide simultaneously the solution of three problems:

(1) Obtaining more accurate values of the libration constants, the Moon's orientation in space and its orbital elements. Since the whole period of libration (optical and physical) covers several decades, the solution of this problem requires long and systematic observations of ~ 20 points.

(2) Obtaining more precise figure of the Moon, for which the whole first order system (~ 200 points) should be observed for a short period of time.

(3) Realization both of the control system for cartographic works of 1:1000000 scale and the basis for development of the second and further order systems which will serve as a basis for the compilation of larger-scale maps. Observations pointed out in Section 2 are sufficient.

The next stage consists of building the second order system of reference points, whose co-ordinates are determined with the differential method. Such a point system should serve as a basis for linking ground and space observations of the Moon. For this one needs at least 10 points for $10^{\circ} \times 10^{\circ}$ (Gavrilov, 1969), which means that the second order system should contain about 4100 reference points over the whole lunar surface or about 2000 in the area $\pm 70^{\circ}$ along the longitude and the latitude (of course, all the first order points should be included in that number). Such a number of second order points ensures in the first approach cartographic works of 1:250000 scale, because at least two second order reference points fall on each sheet of the map according to the nomenclature division (Florensky *et al.*, 1971). Besides, they can be widely applied for astronautical aims.

The next stage is the creation of a wide third order control system permitting us to pass to a detailed mapping of the lunar surface and providing the solution of any cartographic problems. This probably requires about 20000 points on the near side of the Moon. During the Bagnères Conference 10000–40000 third order reference points were suggested (Kopal and Finlay, 1960).

So, the following harmonious scheme for the development of different orders control systems on the visible side of the Moon can be traced:

- about 20 points serving for solving scientific problems on the basis of ground astrometric observations and the subsequent installation of cube-corner retro-reflectors and devices for observations from the lunar surface in the same points;

- about 200 first order fundamental points serving for the study of the figure of the Moon and for small scale mapping up to 1:1000000 scale;

- about 2000 second order points serving mainly for linking ground and space pictures of the lunar surface as well as for applied astronautical problems;

- about 20000 third order points providing large scale cartographic works.

It is evident that different requirements in the number of points and the accuracy of their co-ordinates while constructing control systems of I–III orders involve different methods for observations and for the reduction of the initial data. Undoubtedly in future photogrammetric methods will find wide application in selenodesy.

At present the principal methods for building control systems on the lunar surface remain those of photographic astrometry and the best way for determining the first order point co-ordinates remains taking photographs of the Moon together with the stellar background. In this case the size and quality of the lunar image is limited by the possibilities of modern instruments. To obtain accurate measurement it is obviously reasonable to take, as the first order points, craters with a diameter about 10–12 km (that corresponds to $\sim 6''$ geocentric or to the Mösting A crater sizes). Craters of such sizes are easily visible on the illuminated lunar surface, irrespective of the angle of the Sun, and in particular – on ground pictures taken near the full Moon.

While estimating the quality of the selected craters images one should follow the requirements suggested by Franz (1901), which are valid up to the present time:

(1) The diameter of craters as small as possible.

(2) The contrast against the background as large as possible.

(3) The shapes as clear as possible.

(4) The form as near to a circle as possible.

All these requirements remain valid when constructing the second order system. As the second order craters will be used for linking ground and space pictures of the Moon (i.e. they should be clearly distinguished on the ground photographs), their diameter should amount to 3–5 km. But it is necessary to remember that the visibility of small craters depends on the angle of the Sun and they can be measured in many cases at a distance of some degrees from the terminator only.

Thus, the following scheme of crater selection is suggested for constructing a new lunar fundamental system:

(1) The first order fundamental system including about 200 craters of as regular circular form as possible evenly distributed through the lunar surface, the diameter being about 10-12 km (approximately from 7 to 15 km with the approach to the marginal zones).

Co-ordinates of these points are determined simultaneously by the absolute method from Earth-based pictures of the Moon against a stellar background. The co-ordinates for approximately one tenth of these points are constantly made more accurate during many years both with ground methods and – in the future – with the aid of the laser location of cube-corner retro-reflectors as well as with derect observations from the Moon.

(2) The second order system including about 2000 craters with diameters of 3–5 km. Their co-ordinates are determined by differential methods relating to the first order points using ground and space pictures.

(3) The third order system including about 20000 small craters the co-ordinates of which will be determined by the differential method relatively to the second order points on space pictures by the use of photogrammetry.

Appendix I contains the list proposed by the authors of 192 craters which in general meet the demands formulated in the present paper in conformity with the first order fundamental control system.

Crater distribution according to their diameters in four quadrants of the lunar disc (between the limits $\pm 70^{\circ}$ along the latitude and longitude) is presented in Table II.

Diameter km	I	П	Ш	IV	The whole visible hemisphere
7.1- 7.9	4	5	_	1	10
8.0- 8.9	6	5	3	4	18
9.0- 9.9	8	9	4	2	23
10.0-10.9	5	11	15	10	41
11.0-11.9	8	3	10	8	29
12.0-12.9	8	10	5	17	40
13.0-13.9	6	4	10	7	27
14.0-14.7	2	-	1	1	4
Total:	47	47	48	50	192

TABLE II The distribution of craters proposed for the first order fundamental system realization

Table III shows the number of points common to the proposed system and each of the following systems: Schrutka-Rechtenstamm, 1958; Meyer and Ruffin, 1965; Marchant *et al.*, 1967; Gavrilov *et al.*, 1967; Arthur and Bates, 1968; Moutsoulas, 1970.

The number of points common and some other systems u	to the proposed list sed at present
Catalogue	The number of common points
Schrutka-Rechtenstamm (1958)	26
Meyer and Ruffin (1965)	45
Marchant et al. (1967)	120
Gavrilov et al. (1967)	83
Arthur and Bates (1968)	154
Moutsoulas (1970)	18

TABLE III

To have the distribution of the chosen fundamental points on the lunar surface sufficiently even, 13 craters absent in all indicated catalogues are also included in the system. The distribution of craters from the proposed list along the visible hemisphere of the Moon is illustrated by the Figure 1.

Fig. 1. Distribution of the craters from the proposed list on the near side of the Moon.

Of course the proposed list of points for a fundamental control system is of a preliminary character since the final version can be prepared as a result of thorough discussion only.

Acknowledgement

The authors should like to express their sincere gratitude to Dr K. P. Florensky, Chief of Department in the Institute for Space Research, USSR Academy of Sciences, for his help and support during the preparation of the present work.

Appendix I. List of craters

proposed for the development of a first order fundamental selenodetic system The appendix contains the following data:

- Column 1 ordinal number;
- Column 2 crater designation according to Arthur et al. (1963, 1964, 1965, 1966);
- Column 3 crater number according to the nomenclature of the IAU (Blagg and Müller, 1935) and to the system of lunar craters by Arthur *et al.* (1963, 1964, 1965, 1966);

- Column 4–5 approximate selenographic co-ordinates λ , β according to Arthur *et al.* (1963, 1964, 1965, 1966);
- Column 6 crater diameter according to Arthur et al. (1963, 1964, 1965, 1966);
- Column 7-8 data concerning the presence of a certain object in the catalogues listed in Table III. The following abbreviations were accepted:

Schrutka 58 (Schrutka-Rechtenstamm, 1958)

Meyer 65 (Meyer and Ruffin, 1965)

Marchant 66 (Marchant et al., 1967)

Gavrilov 67 (Gavrilov et al., 1967)

Arthur 68 (Arthur and Bates, 1968)

Moutsoulas 70 (Moutsoulas, 1970)

The craters number according to these catalogues are also included; since Rechtenstamn (1958) and Marchand *et al.*, (1967) have no their own numbering the crater numbers according to the IAU nomenclature and to the system of lunar craters (Arthur; 1963, 1964, 1965, 1966) respectively are repeated in Column 8;

- Column 9 number of the corresponding sheet of the Lunar Aeronautical Chart (ACIC, 1967);
- Column 10 notes.

	IAU Nrs. and	Selenograph co-ordinates	ic	Q	Presence in catalogues		LAC	Notes
No. Designation	Arthur 1966 No.	r	в	km	Catalogue	No.	No.	
1 2	Э	4	5	6	L	8	6	10
1. Hevelius A	1959	- 68.1	+ 2.8	13.6	Marchant 66	29024 538	56	
2. Dechem	29024 1728 2721	— 67.7	+ 46.0	11.8	Marchant 66	26741	22	
3. Piazzi A	26/41 2230	- 66.6	39.4	13.3			109	
4. Lagrange H	37603 2222B 27460	- 66.3	29.5	10.6	Gavrilov 67 Arthur 68	381 864	92	
5. Galilei A	28270 28270	62.9	+ 11.7	11.2	Meyer 65 Marchant 66	132 28270	56	
					Gavrilov 67 Arthur 68	251 536		
6. Lohrmann A	1977 38081	- 62.6	- 0.7	12.0	Meyer 65 Marchant 66 Gavrilov 67 Arthur 68	138 38081 387 869	74	
7. De Vico C	2062	- 62.3	-20.0	11.7	Arthur 68	874	92	
8. Schiaparelli A	58525 1812 20210	- 62.0	+ 23.0	7.2	Moutsoulas 70 Arthur 68	42 537	38	
9. Wargentin C		- 61.2	- 47.4	11.7			110	
10. Naumann B	1877 1877	-60.4	+ 37.4	10.4	Gavrilov 67 A #thur 68	233 514	23	
11. Sirsalis F	20090 2088 38243	-60.1	— 13.6	12.2	Schrutka 58 Gavrilov 67	2088 389 371	74	
12. Marcow E	1725	— 59.9	+ 50.5	11.9	ALIJUL 00	1/0	10	
13. Damoiseau E	25/4/ 1992 38049	58.3	- 5.2	13.5	Schrutka 58 Meyer 65 Marchant 66	1992 139 38049	74	
14. Lacroix H	2325A	- 57.7	- 38.7	12.5	Gavrilov 67 Arthur 68 Gavrilov 67	385 867 373	110	

A. A. GURSHTEIN AND N. P. SLOVOKHOTOVA

	36662				Arthur 68	850	
15. Marius L	-	- 55.6	+15.8	7.6			56
16. Cavendish B		-55.1	- 23.3	10.1	Arthur 68	861	92
17. De Gasparis B	37405	- 52.6	- 27.1	10.6	Meyer 65 Marchant 66 Arthur 68 Montsoulas 70	158 37405 863 96	92
18. Herodotus A	1806 27336	- 52.1	+21.5	9.8	Meyer 65 Marchant 66 Gavrilov 67 Arthur 68	130 27336 241 528	38
19. Wollaston C	1739 26562	- 51.7	+31.7	9.7	Marchant 66 Gavrilov 67 Arthur 68	26562 231 512	38
20. Liouville DA	- 25732A	- 51.6	+ 46.6	10.5			23
21. Reiner A	1833 27078	- 51.4	+ 5.1	10.1	Schrutka 58 Meyer 65 Marchant 66 Gavrilov 67 Arthur 68	1833 1 27078 235 521	56
22. Phocylides G	2277A 34787	50.7	-51.2	13.6	Gavrilov 67	332	124
23. Palmiery J	- 36535	49.3	- 33.6	10.4			110
24. Billy D	2138A 37225	- 48.3	14.8	10.3	Arthur 68	857	75
25. Marius C	1816 27214	-47.5	+13.9	12.1	Arthur 68	525	57
26. Noggerath M	- 35629	46.6	44.0	11.3	Moutsoulas 70	127	110
27. Flamsteed C	2446 37019	- 46.2	- 5.5	9.4	Marchant 66 Gavrilov 67 Arthur 68	37019 374 853	75
28. Mersenius C	2151 36373	- 45.9	- 19.8	14.0	Schrutka 58 Gavrilov 67 Arthur 68	2151 362 841	93
29. Liebig F	2154 36451	- 45.7	- 24.6	8.9	Gavrilov 67 Arthur 68	366 843	93
30. Mairan D	1613	-45.4	+40.9	10.1	Arthur 68	501	23

	IAU Nrs.	Selenograp	hic		Presence in		-	
No. Designation	and	co-ordinate	SS	h k	catalogues		LAC No.	Notes
	1966 No.	ч	в		Catalogue	No.	2	
1 2	3	4	S	9	7	8	6	10
	25635							
31. Harpalus C	1666 24802	- 45.1	+55.5	10.4	Moutsoulas 70 Arthur 68	139 484	11	
32. Kircher B	2677	- 42.9	- 65.0	11.4	Arthur 68	747	136	
	32980						ļ	
33. Kepler C	1557 26157	-41.8	+10.0	12.2	Meyer 65 Marchant 66	135 26157	57	
					Gavrilov 67 Arthur 68	223 506		
34 Researion D	1576	-41.7	+ 19.8	9.1	Gavrilov 67	226	39	
DT. DOSMION	26323		-		Arthur 68	510		
35. Weigel C	2629	-41.6	59.4	10.0	Arthur 68	783	125	
	33836	:		0	Cambra 67	.10	30	
36. Angström	1737	41.6	4.42+	9.8	GaVriloV 6/ Arthur 68	617 798	<u> </u>	
37 Schiller M	6/ +67	- 41.0	-48.2	8.7	Moutsoulas 70	162	125	
	34734							
38. Encke E	1540	40.2	+ 0.3	8.6	Meyer 65	142	57	
	26040				Marchant 66	26040		
					Gavrilov 6/ Arthur 68	203		
39. J. Herschel C	1679 22898	- 39.8	+ 62.3	12.2	Arthur 68	436	11	
40. Gruithuisen B	1606 25508	- 38.7	+ 35.6	6.6	Arthur 68	499	23	
41. Wichmann	2457 36113	- 38.0	- 7.5	10.6	Marchant 66 Gavrilov 67	36113 353	75	
	CITOC				Arthur 68	830		
42. Gassendi J.	2419	- 37.0	-21.6	9.0	Schrutka 58	2419	93	
	35356				Meyer 65 Marchant 66	22256		
					Gavrilov 67	340		
					Arthur 68	816		
43. Diophantus A	1590 25426	36.6	+ 27.6	8.6	Arthur 68	497	39	

A. A. GURSHTEIN AND N. P. SLOVOKHOTOVA

44. Vitello B	2355 34591	-35.4	-31.2	10.7	Arthur 68	803	93
45. Brayley B	1579 25325	- 34.3	+20.7	10.2	Marchant 66 Gavrilov 67 Arthur 68	25325 211 493	39
46. Bayer L	2614A 33773	- 33.6	47.5	13.6	Gavrilov 67 Arthur 68	310 780	111
47. Milichius A	1530 25126	32.0	+ 9.3	9.1	Marchant 66 Gavrilov 67	25126 208	57
48. Ramsden G	2566 34527	-31.6	-35.3	11.0	Arthur 68 Gavrilov 67 Arthur 68	489 323 800	111
49. Anaximenes E	1359C 22901	31.4	+ 66.5	9.5	Marchant 66 Arthur 68	22901 438	ю
50. C. Herschel	1602 24526	-31.2	+ 34.5	13.4	Marchant 66 Arthur 68	24526 478	24
51. Hortensius A	1520 25007	- 30.7	+ 4.4	10.2	Meyer 65 Marchant 66	145 25007	57
					Gavrilov 67 Arthur 68	204 485	
52. Lansberg D	2483 35005	-30.6	- 3.0	11.4	Marchant 66 Arthur 68	35005 810	75
53. Euclides B	2462 34290	- 30.3	- 11.8	10.3	Marchant 66 Gavrilov 67 Arthur 68	34290 320 797	75
54. La Condamine C	1368B 23709	- 30,2	+ 52.4	10.6	Arthur 68	458	11
55. Campanus A	2526 34433	- 28.6	-26.0	11.4	Arthur 68	796	94
56. Scheiner G	2699A 32818	- 28.3	- 62.6	13.6	Meyer 65 Marchant 66 Arthur 68	163 32818 744	125
57. Laplace A	1315 23629	26.9	+ 43.7	8.7	Meyer 65 Marchant 66 Gavrilov 67 Arthur 68	120 23629 185 456	24
58. Tobias Mayer D	1419 24241		+ 12.2	8.6	Marchant 66 Arthur 68	24241 470	58
59. Darney C	2832 34224	- 26.0	- 14.1	13.3	Gavrilov 67	318	76
60. Longomontanus M	2716A 32764	23.1	— 48.4	10.3	Arthur 68	739	125

	IAU Nrs. and	Selenographic co-ordinates		D	Presence in catalogues		LAC	Notes
No. Designation	Arthur 1966 No.	7	В	km	Catalogue	No.	No.	
1 2	3	4	5	6	L	8	6	10
61. Fontenelle B	1326	- 22.9	+61.8	13.7	Marchant 66	21888	11	
62. Cichus C	21888 2763 33505	- 21.8	33.6	1.11	Moutsoulas /0 Meyer 65 Marchant 66 Gavrilov 67	204 165 33505 305	111	
63. Draper C	1412 23249	-21.5	+17.0	7.8	Arthur 68 Meyer 65 Marchant 66 Moutsoulas 70	766 128 23249 294	40	
64. Fra Mauro A	2898 33059	-21.0	- 5.5	9.9	Arthur 68 Marchant 66 Gavrilov 67	446 33059 298 750	76	
65. Carlini B	1392 23500	20.8	+ 30.3	7.6	Artnur 08 Marchant 66 Arthur 68	23500 453	40	
66. Fauth	1482 23140	20.1	+ 6.3	12.1	Arthur 68	442	58	
67. Gambart A	23021	- 18.7	+ 1.0	12.0	Meyer 65 Marchant 66 Gavrilov 67 Arthur 68	4 23021 176 439	58	
68. Philolaus E	1346 21913	- 18.7	+ 69.6	12.3	Marchant 66	21913	3	
69. Wilhelm E	27/26	-18.0		13.8	Marchant 66 Arthur 68	32629 727	111	
70. Clavius J	3237 31864	-17.9	- 57.9	12.2	Marchant 66 Arthur 68	31864 679	126	
71. Opelt E	2818 32299		- 17.0	8.0	Meyer 65 Marchant 66 Gavrilov 67	168 32299 288 700	94	
72. Hesiodus B	2778 32465	17.5	-27.1	10.3	Marchant 66 Gavrilov 67	32465 291	94	
73. Plato B	1066	- 17.2	+ 53.0	12.6	Artnur os Marchant 66	21779	12	

A. A. GURSHTEIN AND N. P. SLOVOKHOTOVA

	21779				Arthur 68	386	
74. Carlini D	1394	-16.0	+ 33.0	9.3	Marchant 66	22534	24
	22534				Gavrilov 67	169	
					Arthur 68	415	
75. Gruemberger C	3263A	-15.3	-65.8	13.0	Marchant 66	31901	137
	31901				Arthur 68	683	
76. Timocharis A	1297	-15.3	+24.8	7.4	Meyer 65	116	40
	22441				Marchant 66	22441	
					Gavrilov 67	167	
					Arthur 68	412	
77. Pico B	1121	-15.3	+46.4	11.5	Marchant 66	21782	24
	21782				Arthur 68	387	
78. Turner	2922	-13.2	- 1,4	11.9	Schrutka 58	2922	76
	32022				Marchant 66	32022	
					Gavrilov 67	280	
					Arthur 68	687	
79. Le Verrier D	1302	-12.3	+ 39.7	9.1	Marchant 66	21663	25
	21663				Gavrilov 67	158	
					Arthur 68	377	
80. Gambart C	1500	-11.8	+ 3.3	12.2	Marchant 66	22005	58
	22005				Gavrilov 67	164	
					Arthur 68	399	
81. Guericke C	2856	-11.5	- 11.5	10.9	Schrutka 58	2856	76
	31290				Meyer 65	23	
					Marchant 66	31290	
					Gavrilov 67	276	
					Arthur 68	642	
82. Gauricus D	2748		-35.2	13.2	Marchant 66	31567	112
	31567				Arthur 68	653	
83. Clavius MC	3251D	-10.4	- 54.8	11.7	Marchant 66	31801	126
	31801				Arthur 68	673	
84. Wolf B	1284B	- 8.7	+16.0	9.4	Marchant 66	21247	41
	21247						
85. Schröter A	1250	- 7.7	+ 4.8	10.1	Arthur 68	353	59
	21038						
86. Alpetragius B	3028	- 6.8	-15.1	10.1	Meyer 65	191	77
	31216				Marchant 66	31216	
					Gavrilov 67	273	
					Arthur 68	638	
87. Archimedes A	1145	— 6,4	+ 28.0	13.1	Schrutka 58	1145	41
	20497				Meyer 65	11	
					Marchant 66	20497	

No Designation	IAU Nrs. and	Selenograp co-ordinat	hic es	Q.	Presence in catalogues		LAC	Notes
	Arthur 1966 No.	r	в	КШ	Catalogue	No.	No.	
1 2	3	4	S	6	L	8	6	10
88. Proctor D	3213D	- 6.0	- 46.1	12.1	Gavrilov 67 Arthur 68 Arthur 68	141 324 609	112	
89. Thebit L	30771 3074	- 5.4	- 21.5	10.4	Marchant 66	30386	95	
90. Mösting A	30386 2933 30095	- 5.2	- 3.2	13.1	Schrutka 58 Meyer 65 Marchant 66 Gavrilov 67	2933 5 30095 259	LL	
91. Regiomontanus B	3102	- 3.7	- 29.1	10.0	Arthur 68 Arthur 68	551 583	95	
92. Piazzi Smyth	30458 1125 20646	- 3.2	+41.8	12.8	Marchant 66 Gavrilov 67	20646 144 333	25	
93. Plato H	1073 20822	- 2.0	+ 55.1	10.8	Meyer 65 Meyer 65 Marchant 66 Gavrilov 67	232 105 20822 146	12	
94. Aristillus B	1146 20527	- 1.9	+ 34.8	8.2	Artnur 08 Marchant 66 Arthur 68	20527 326	25	
95. Bode A	1214 20115	- 1.2	+ 9.0	12.3	Schrutka 58 Marchant 66 Gavrilov 67 Arthur 68	1214 20115 130 308	59	
96. Ptolemaeus A	2963 30114	- 0.8	- 8.5	9.4	Schrutka 58 Schrutka 58 Mayer 65 Marchant 66 Gavrilov 67	2963 6 30114 260	12	
97. Walter A	3467	+ 0.8	- 32.3	11.5	Arthur 68	927	112	
98. Curtius A	40215 3356 40913	+ 2.7	- 68.4	12.3	Marchant 66 Arthur 68	40913 967	137	

99. Licetus H	3421 40731	+ 3.1	- 45.9	10.4	Meyer 65 Marchant 66	86 40731	112
100. Aratus	895 10470	+ 4.5	+ 23.5	10.6	Artuur os Schrutka 58 Meyer 65 Marchant 66 Gavrilov 67	942 895 10 10470 14	41
101. Hadley B	897A	+ 4.7	+ 27.7	8.7	Arthur 68 Marchant 66	24 10476	41
102. Zach J	104/6 3386B 40844	+ 4.8	- 57.2	10.8	Arthur 68 Meyer 65 Marchant 66 Moutsoulas 70	25 85 40844 465	126
103. Blanchinus K	(3532A) 40471	+ 5.1	24.8	8.9	Arthur 68 Meyer 65 Marchant 66 Moutsoulas 70	958 89 40471 467	95
104. Rhaeticus A	834 10093	+ 5.2	+ 1.7	11.3	Shrutta 58 Marchant 66 Gavrilov 67	834 834 4 8	59
105. Trouvelot	968 10765	+ 5.8	+49.2	0.6	Marchant 66 Arthur 68	。 10765 41	12
106. Albategnius E	3582 41202	+ 6.4	- 12.9	13.7	Marchant 66 Arthur 68	41202 996	77
107. Cassini C	932 11606	+ 7.7	+ 41.6	13.7	Shrutka 58 Gavrilov 67 Arthur 68	932 30 88	25
108. Hipparchus L	3613 41151	+ 9.0	- 6.8	13.5	Marchant 66 Arthur 68	41151 989	<i>LT</i>
109. Kaiser C	3463 41539	+ 9.7	- 36.6	12.4	Marchant 66 Gavrilov 67 Arthur 68	41539 422 1031	112
110. Manilius C	797 11270	+10.3	+12.0	7.1	Marchant 66 Arthur 68	11270 72	60
111. Abulfeda A	3736 41278	+ 10.8		13.9	Shrutka 58 Marchant 66 Gavrilov 67 Arthur 68	3736 41278 418 1005	96
112. Pentland F	3366A 40898	+11.3	- 62.0	12.4	Marchant 66 Arthur 68	40898 966	127

	IAII Nire	Salanoaran	hin		Dracanca in			
No. Designation	and	co-ordinate	S	D m	catalogues		LAC	Notes
ı	AJ UIU 1966 No.	У	В	K III	Catalogue	No.	.0N	
1 2	3	4	5	6	7	æ	6	10
113. Sulpicius Gallus	606 11303	+11.7	+19.6	12.2	Marchant 66	11393 70	42	
114. Pontanus J	3809A	+ 13.2	-30.1	8.9	Marchant 66	41590	96	
115. Archytas DA	06014 48 11900	+ 13.5	+63.8	8.5	Marchant 66	11809	13	
116. Jacobi B	3377 3377	+13.9	- 54.5	13.8	Marchant 66	41841	127	
117. Maurolycus J	41041 3852 41677	+13.9	- 42.4	9.1	Marchant 66	41677	113	
118. Dollond	41077 3722 42148	+ 14.5	- 10.5	11.1	Artnur 68 Marchant 66 Gavrilov 67	42148 42148 429	78	
119. Alfraganus C	3683 43100	+ 18.1	- 6.1	10.8	Arthur 68 Schrutka 58 Meyer 65 Marchant 66	1096 3683 20 43100	78	
120 Socienes A	573	+ 18.4	<u>г</u> г +	0 11	Arthur 68 Schrutte 58	1182 1182 573	VY	
120. Davigarica A	13113	+•or -	+	C111	Gavrilov 67 Arthur 68	53 53 164	00	
121. Sacrobosco HA	- 47309	+18.5	- 23.3	10.3	Gavrilov 67	434	96	
122. Schmidt	552 13071	+18.7	+ 0.9	11.4	Marchant 66 Arthur 68	13021	60	
123. Bessel A	13421	+ 20.9	+ 24.7	7.6	Schrutka 58 Meyer 65 Marchant 66 Gavrilov 67	622 17 13421 61	42	
124. Mitchell E	723 12743	+ 21.6	+ 47.6	8.3	Marchant 66 Moutsoulas 70 Arthur 68	181 12743 586	26	
125. Barocius EB	3865B 42752	+21.7		10.8	Meyer 65 Marchant 66	83 42752	113	

A. A. GURSHTEIN AND N. P. SLOVOKHOTOVA

126. Rabbi Levi L	4033A	+ 23.1	- 34.7	12.6	Arthur 68 Arthur 68	1212	113
127. Ross D	42020 534A	+ 23.2	+ 12.5	9.1	Marchant 66	13281	09
128. Luther	13281 491	+ 24.1	+ 33.1	9.5	Arthur 68 Marchant 66	13544	76
	13544				Gavrilov 67	63	î
129. Galle C	722	+24.4	+57.6	11.4	Gavrilov 67	104 48	13
:	12824				Arthur 68	148	n r
150. Theophilus B	4220 44118	+25.2	-10.6	8.7	Gavrilov 67	458	78
131. Polybius B	4109	+ 25.6	- 25.5	12.8	Schrutka 58	4109	96
	43483				Gavrilov 67	449 1204	
132. Torricelli C	4227	+ 26.0	- 2.7	11.1	Marchant 66	1204 44034	78
	44034				Gavrilov 67	456	
133 Banmant D	41.60				Arthur 68	1248	
a monuou cer	4138 44229	+ 70,2	- 17.1	11.4	Schrutka 58 Gavrilov 67	4158 461	96
					Arthur 68	1254	
134. Plana C	645	+27.1	+42.7	13.8	Marchant 66	13637	26
	1303/				Gavrilov 67	99 ,	
135. Maskelyne B	244 A	+ 28 9	06 +	0 0	Artnur 68 Marchant 66	14082	60
	14083	-	-	<u>1</u>	Gavrilov 67	11	3
					Arthur 68	205	
156. Vitruvius E	270A 14361	+ 29.2	+18.6	11.1	Arthur 68	218	42
137. Pitiscus A	3992 13776 A	+30.8	-50.2	10.3	Arthur 68	1231	127
138. Hommel E	3986F	+31.1	- 59.0	13.8	Moutsoulas 70	644	127
	42865				Arthur 68	1170	
139. Arnold G	689A	+31.4	+67.3	10.7	Gavrilov 67	50	4
140. Sinas	260	918 +	4 8 7	L C1	Arthur 68 Marchant 66	154	13
	15115	0.17	0.0	1.71	Constant 00		10
					Arthur 68	250	
141. Lockyer HA	(4480) 43770	+32.2	45.0	12.8	Meyer 65	80	113
	0/10+				Marchant 66 Arthur 68	43//0 1235	
142. Isidorus A	4292	+ 33.2	- 8.0	11.7	Meyer 65	65	62

	IAU Nrs.	Selenograph	ic	4	Presence in			Motor
No. Designation	Arthur			r my	catalogues		No.	TADICS
	1966 No.	r	в		Catalogue	No.		
1 2	3	4	5	6	7	8	6	10
	45143				Marchant 66	45143		
143. Piccolomini L	4083B 44404	+33.8	-26.1	12.2	Schrutka 58 Maver 65	4083B	97	
	44494				Marchant 66	44494 4666		
					Arthur 68	1269		
144. Hall K	(498)	+34.2	+35.5	8.1	Meyer 65	42	27	
	14558				Marchant 66 Arthur 68	14558 229		
145, Rosse	4143	+ 34.9	-17.9	12.1	Schrutka 58	4143	76	
	45340				Marchant 66	45340		
					Gavrilov 67	473		
	177	1 35 0	50.05	с г	Mouteoulos 70	CICI 193	12	
140. Bally B	001 13767	0.00	0.00 +	c./	Arthur 68	198	CI	
147. Römer K	308	+35.5	+22.5	12.1	Marchant 66	15338	43	
	15338				Arthur 68	259		
148. Stiborius G	4060E	+ 35.9	-37.3	9.5	Meyer 65	62	114	
	44660A				Marchant 66 Arthur 68	44660A 1288		
149. Maraldi B	275A	+36.7	+ 14.3	7.4	Meyer 65	48	61	
	15284				Marchant 66	15284		
					Gavrilov 67	92 756		
150 G Bond A	4954	+ 36 8	+ 31 6	93	Montsonlas 70	685	43	
	15512	-		2	Arthur 68	266	2	
151. Censorinus F	4241	+37.4	- 3.2	12.9	Marchant 66	46005	6L	
	46005				Arthur 68	1335		
152. Gaudibert J	4320	+39.2	-11.2	10.1	Marchant 66	46119	79	
	46119				Arthur 68	1339		
153. Hercules D	457	+39.7	+ 44.7	8.5	Meyer 65	36	27	
	14750				Marchant 66	14750 95		
					Arthur 68	00 243		

6 16049 61 101	6 13845 14	201 66 12970 4	15 157 156 156 156 157 157 157 157 157 157 157 157 157 157	1323 114	70 97	06 46357 47 61 66 16294	277 35 27 6 16504	284 3 391 27 16	56 15645A 7 98 200	2/0 1286 128	484 114	8 4255 79 W.H.Pickering 30 30 47023 W.H.Pickering 6 47023 W.H.Pickering	1345 79	43	
3 Marchant 6 Gavrilov 67	Arthur 68 3 Marchant 6	7 Arthur 68 Gauging 67	Arthur 68 Arthur 68 Meyer 65 Marchant 6	9 Arthur 68	0 Meyer 65	Marchant 6 2 Meyer 65 Marchant 6	Arthur 68 2 Meyer 65 Marchant 6	Arthur 68 6 Schrutka 58 Meyer 65	Marchant 6 Gavrilov 67	Arthur 68 Arthur 68	8 Gavrilov 67	0 Schrutka 58 Meyer 65 Marchant 6 Gavrilov 67	8 Arthur 68	4	
+ 5.5 11.	+ 58.4 12.	+ 65.5 14.	- 28.9 11.	-45.9 11.	- 22.3 11.	+ 14.2 9.	+ 32.8 12.3	+40.9 12.0		54.9 12.	- 33.0 12.1	- 2.0 13.	-13.2 7.8	+ 22.4 11.4	
+ 40.2	+40.7	+ 42.1	+ 42.5	+ 43.4	+ 44.8	+ 45.9	+ 46.0	+46.4		+ 46.5	+ 46.5	+ 46.9	+ 47.7	+ 48.4	
219 16049	429	13845 681 12970	4417 A 45498	-	4387A 4387A	40337 206 16294	312 16504	391 15645A		3965B 44811	4417 4417 46504	(4255) 47023		41222 187 16398	
154. Taruntius E	155. Thales A	156. Schwabe G	157. Reichenbach K	158. Janssen L	159. Santbech E	160. Proclus F	161. Berzelius F	162. Cepheus A		163. Rosenberger H	164. Reichenbach M	165. Messier A	166. Bellot A	67. Macrobius F	

Mo Destimation	IAU Nrs. and	Selenograp co-ordinate	bhic es	a a	Presence in catalogues		LAC	Notes
IND. Designation	Arthur 1966 No.	r	β	kn	Catalogue	No.	No.	
1 2	3	4	5	9	7	8	6	10
	17152				Meyer 65 Marchant 66	31 17152		
					Gavrilov 67 Arthur 68	114 289		
170 Young A		+51.1	-41.1	12.8			114	
171. Biot	43085 4396 47318	+ 51.1	22.6	12.9	Marchant 66 Gavrilov 67	47318 493 788	98	
172. Shellius E		+51.5	- 28.0	12.0	Moutsoulas 70 Moutsoulas 70	792	98	
173. Geminus B	46496 323	+ 52,2	+ 34.1	9.9			27	
174. Lick D	16556 112 1722	+ 52.7	+13.1	13.8	Marchant 66	17272	62	
175. Messier G	1/2/2 4258A 47099	+52.9	- 5.4	12.9	Schrutka 58 Marchant 66	4258A 47099	80	
176. Peirce B	116	+ 53.3	+19.3	10.5	Gavrilov 67 Moutsoulas 70	808 808	44	
177. Endymion G	1/353 409	+ 55.5	+ 56.4	14.5	Marchant 66	14853	14	
178. Cleomedes B	14833 122 17455	+ 55.7	+ 27.1	10.7	Gavrilov 67 Arthur 68	119 119	44	
179. Langrenus D	4691 4691	+ 55.8	-10.4	8.3	Marchant 66	48118	80	
180. Apollonius C	48118 69 18035	+57.0	+ 3.3	8.7	Marchant 66 Gavrilov 67	18035 123 700	62	
181. Furnerius A	4576 17616	+ 59.2		12.3	Marchant 66 Arthur 68	47515 1349	115	
182. Reimarus H	4503A	+ 62.0	- 49.2	10.3	Arthur 68	1333	128	
183. Holden V	- 48331	+ 62.1	- 18.5	10.1	Meyer 65 Marchant 66	69 48331	86	

184 Classifier D.C.				•	Arthur 68	1354	:	
184. Cleoineges DC	- 17560	+ 62.4	+30.3	13.8	Moutsoulas 70	864	44	
185. Hase A	4623 47478	+ 62.8	- 29.0	14.0			98	
186. Mercurius H	397F 15785	+ 63.5	+ 49.2	9.8	Gavrilov 67 Arthur 68	99 271	14	
187. Firmicus D	56A 18190	+ 64.3	+ 5.9	10.6	Marchant 66	18190	62	
188. Bernouilli D	165 17548	+ 66.5	+ 35.8	12.1	Gavrilov 67	122	28	
189. Lamé M	(4699B) 48287	+ 66.6	- 15.8	13.0	Marchant 66 Gavrilov 67 Arthur 68	48287 498 1353	80 Vend	lelinus M
190. Dubiago Q	65C 19013	+67.0	+ 2.2	13.4			62	
191. Eimmart K	– 18364	+ 67.6	+ 20.1	13.2	Moutsoulas 70	886	44	
192. Maclaurin D	4663 49132	+ 69.9	- 7.1	10.0	Marchant 66	49132	80	

References

- ACIC: 1967, Lunar Aeronautical Chart, Publ. ACIC/USAF, St. Louis, Missouri.
- Arthur, D. W. G. and Bates, P.: 1968, 'The Tucson Selenodetic Triangulation', *Commun. LPL*, University of Arizona, 8, 131.
- Arthur, D. W. G., Pellicori, R. H., and Wood, C. A.: 1966, 'The System of Lunar Craters, Quadrant IV', *Commun. LPL*, University of Arizona, 5, 1.
- Arthur, D. W. G., Agnieray, A. P., Horvath, R. A., Wood, C. A., and Chapman, C. R.: 1963, 'The System of Lunar Craters, Quadrant I', Commun. LPL, University of Arizona, 2, 71.
- Arthur, D. W. G., Agnieray, A. P., Horvath, R. A., Wood, C. A., and Chapman, C. R.: 1964, 'The System of Lunar Craters, Quadrant II', *Commun. LPL*, University of Arizona, 3, 1.
- Arthur, D. W. G., Agnieray, A. P., Pellicori, R. H., Wood, C. A., and Weller, T.: 1965, 'The System of Lunar Craters, Quadrant III', Commun. LPL, University of Arizona, 3, 61.
- Baldwin, R.: 1965, The Moon Fundamental Survey, London.
- Blagg, M. A. and Müller, K.: 1935, Named Lunar Formations, Vol. I (Catalogue), Vol. II (Maps), London.
- Florensky, K. P., Gurshtein, A. A., Korablev, V. I., Bougaevsky, L. M., and Shingareva, K. B.: 1971, *The Moon* **3**, 79.
- Franz, J.: 1899, Beob. Univ.-Sternw. Köningsberg 38, No. 5.
- Franz, J.: 1901, Mitteil. Sternw. Breslau, 1, 1.
- Gavrilov, I. V.: 1969, Figure and Dimensions of the Moon from Astronomical Observations, Izd. Naukova Dumka, Kiev.
- Gavrilov, I. V., Duma, A. S., and Kislyuk, V. S.: 1967, in A. A. Yakovkin (ed.), Figure and Motion of the Moon, Izd. Naukova Dumka, Kiev, p. 7.
- Hopmann, J.: 1967, in Z. Kopal and C. L. Goudas (eds.), *Measure of the Moon*, Reidel, Dordrecht, p. 282.
- Kopal, Z.: 1960, Space Res. 1, 1123.
- Kopal, Z. and Finlay, E. B. (eds): 1960, Problems of Lunar Topography, (Proceedings of a Conference held at Bagnères-de-Bigorre, Apr. 19-23, 1960). Astr. Contrib. Univ. of Manchester SIII, No. 90.
- Kopal, Z. and Goudas, C. L. (eds).: 1967, Measure of the Moon, Reidel, Dordrecht, p. 383.
- Koziel, K.: 1962, in Z. Kopal (ed.), *Physics and Astronomy of the Moon*, Academic Press, New York and London.
- Marchant, M. Q.: 1962, in Z. Kopal and Z. K. Mikhailov (eds.), 'The Moon', IAU Symp. 14, Academic Press, London and New York, p. 107.
- Marchant, M. Q., Hathaway, J. D., and Eigen, J. M.: 1967, Department of Defence Selenodetic Control System 1966. Army Map Service.
- Meyer, D. L. and Ruffin, B. W.: 1965, Icarus 4, 513.
- Moutsoulas, M.: 1970, Scientific Report, Contract F 61052-68-C-0002, AFCRL-University of Manchester.
- Schrutka-Rechtenstamm G.: 1958, Mitt. Univ.-Sternw. Wien 9, 251.