Corrigendum

Diels-Alder Transition State Geometry

Luke A. Burke and Georges Leroy
Laboratoire de Chimie Quantique, Bâtiment Lavoisier, Place Louis Pasteur, 1, B-1348 Louvain-la-Neuve, Belgium

Key words: Diels-Alder reaction, transition state geometry of \sim

Our original surface for this concerted reaction [1] was constructed using a single determinant, ab initio, minimal basis set (STO-3G) LCAO method. The procedure consisted in optimizing first the bond lengths and then the bond angles for selected distances of the ethylene carbons to the terminal butadiene carbons (parameter, R_{16}). Our failure to reoptimize the bond lengths after finding a set of angles led to our being trapped in a false minimum.

The cause of this trap is the dependence of the bond lengths on the lowering of the internal butadiene hydrogens (parameters μ and ν). Inspection of the molecular orbital coefficients shows that this lowering causes a concentration of the butadiene π system on the central CC bond and a weakening of the ethylene π system.

A straightforward way to account for this dependence is to form a grid of points for a certain R_{16} where the angle μ is plotted against various sets of bond lengths (R_{12}, R_{23} and R_{56}). Fig. 1 is an isoenergetic contour diagram constructed from this grid wherein the set of bond lengths is represented by the ethylene bond length R_{56} (any of the three lengths could be used). After the best μ and set of bond lengths were found for various values of R_{16}, the other angles were optimized. After each parameter was optimized, μ was checked to see if there was an interdependence with another parameter. It was found that the only interdependence was that between μ (or ν) and the bond lengths.
Table 1 gives the values of the geometric parameters and the total energies for the chosen values of $R_{16}\left(R_{45}\right)$. It is to be noted that the transition state is now at $R_{16}=2.26 \pm$ $0.02 \AA$ and that its geometric parameters are more intermediate between product- and reactant-like structures than previously reported. The electronic properties remain similar to those found in the original study. For example, the centroids of charge [2] for points VI, VII and VIII retain their reactant-like aspect, and the charge transfer to ethylene, $t_{\text {eth. }}$ (Table 1), increases until just before the transition state. The activation energy, calculated as the energy difference between points VII and I (Table 1), is now $40.3 \mathrm{kcal} /$ mole as opposed to $44.6 \mathrm{kcal} /$ mole found in the original study (STO-3G results).
Table 1. Geometric parameters (defined in Ref. [1]) for several points along the reaction path

State	$R_{16}=R_{45}(\AA)$	$R_{12}(\AA)$	$R_{23}(\AA)$	$R_{56}(\mathrm{~A})$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$\epsilon\left({ }^{\circ}\right)$	$\delta\left({ }^{\circ}\right)$	$\mu\left({ }^{\circ}\right)$	$\nu\left({ }^{\circ}\right)$	E_{T} (a.u.)	$t_{\text {eth. }}$
I	5.000	1.314	1.497	1.310	72	0	126	0	0	0	0	-230.088419	0.0000
II	3.167	1.314	1.497	1.310	72	0	126	0	0	0	0	-230.087223	0.0002
III	2.867	1.314	1.497	1.310	72	0	126	0	0	0	0	-230.077537	-0.0040
IV	2.567	1.314	1.497	1.310	72	0	123	0	0	0	0	-230.058055	0.0000
V	2.367	1.330	1.465	1.330	70	0	123	5	5	15	15	-230.038375	-0.0207
VI	2.300	1.350	1.455	1.350	66	5	120	12	8	22	25	-230.024376	-0.0207
VII	2.240	1.375	1.410	1.380	62	5	120	17	13	30	32	-230.024174	-0.0119
VIII	2.200	1.375	1.410	1.380	62	5	120	17	13	35	37	-230.026651	0.0016
IX	2.167	1.400	1.360	1.410	62	5	120	17	13	35	37	-230.031781	0.0119
X	1.504	1.504	1.325	1.542	0	15	122	0	120	105	135	-230.255489	-

Fig. 1. An isoenergetic contour diagram comparing angle μ with the ethylenic bond length, $R_{56}(\AA)$ at $R_{16}=R_{45}=2.240 \AA$. Each line represents a change of $2.5 \mathrm{kcal} /$ mole. The numbers indicated are the differences in energy ($\mathrm{kcal} / \mathrm{mole}$) between a particular point and the supermolecule at $R_{16}=5.0 \mathrm{~A}$.

In a similar study of the Diels-Alder reaction Salem and coworkers [3] found the concerted transition state to be geometrically similar to product cyclohexene with $R_{16}=$ $2.21 \AA$. The reason for this discrepancy may be in part due to the difference in methods employed for constructing the hypersurfaces, theirs being an SCF (STO-3G) plus a (3×3) configuration interaction method and ours being only an SCF (STO-3G) method. We are at present investigating the influence of various limited configuration interactions on the geometry of the transition state and on the value of the activation energy.

References

1. Burke, L. A., Leroy, G., Sana, M.: Theoret. Chim. Acta (Berl.) 40, 313 (1975)
2. Boys, S. J.: Rev. Mod. Phys. 32, 296 (1960)
3. Townshend, R. E., Ramunni, G., Segal, G., Hehre, W. J., Salem, L.: J. Am. Chem. Soc. 98, 2190 (1976)
