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Summary. Solutions to minimax test problems between neighbourhoods 
generated by specially defined capacities are discussed. The capacities are 
superpositions of probability measures and concave functions, so the paper 
covers most of the earlier results of Huber and Rieder concerning minimax 
testing between e-contamination and total variation neighbourhoods. It is 
shown that the Neyman-Pearson lemma for 2-alternating capacities, proved 
by Huber and Strassen, can be applied to test problems between noncom- 
pact neighbourhoods of probability measures. It turns out that the Radon- 
Nikodym derivative between the special capacities is usually a nondecreas- 
ing function of the truncated likelihood ratio of some probability measures. 

1. Introduction 

Strassen (1964, 1965) generalized the classical Neyman-Pearson lemma to 2- 
alternating Choquet's capacities defined on finite spaces. The well known ex- 
tension of this result to polish spaces was given by Huber and Strassen (1973). 
In spite of its generality the result does not cover the important cases of e- 
contamination, total variation and Prokhorov neighbourhoods if the probabili- 
ty space is not compact. Minimax problems of testing between e-contamination 
and between total variation neighbourhoods were solved by Huber (1965, 1968) 
and then generalized by Rieder (1977). Huber states the solutions to his mi- 
nimax test problems justifying their correctness. Proceeding in a more con- 
structive way Rieder first finds a Radon-Nikodym derivative between his spe- 
cial capacities and then constructs least favourable pairs of distributions. This 
second step would be unnecessary if we knew that such pairs, as in Theo- 
rem4.1 of Huber and Strassen (1973), exist. One should notice however that 
characterizations of least favourable pairs of distributions may be useful in 
certain problems, see Rieder (1980). 
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The aim of this paper is to show that both the construction of the de- 
rivative and the existence of the least favourable pair of distributions can ac- 
tually be inferred from Huber and Strassen (1973) results. We consider a large 
class of set functions, called here special capacities, which are superpositions 
of probability measures and concave functions. The combination of e-contami- 
nation and total variation neighbourhoods is therefore covered. Only the pure 
e-contamination case is not covered by our technique. Assumptions about ca- 
pacities and probability measures we make are not restrictive from the practi- 
cal point of view. 

In Sect. 3 we define our special capacities and show that they are upper 
probabilities of some convex sets of probability measures. The Neyman-Pear- 
son lemma for special capacities is proved in Sect. 4. It turnes out that usually 
the Radon-Nikodym derivative between special capacities is a nondecreasing 
function of truncated likelihood ratio of probability measures. This result is 
proved in Sect. 5. The fact may be of practical importance. A large class of 
neighbourhoods of probability measures considered in this paper varies in to- 
pological and measure theoretic properties while there is no essential difference 
between the structure of minimax solutions. This suggests that the technical 
convenience is a well justified factor in defining departures from hypothetical 
parametric models, at least as far as testing is concerned. The last section ex- 
tends this statement and gives examples. One of them corresponds to Rieder's 
model. 

2. Basic Facts and Definitions 

In the sequel we shall always assume that ~2 is a polish space, ~ is its Borel a- 
field and ~ '  is the set of all probability measures on N. For  two sets of proba- 
bility measures ~o ~ -/~ and N~ c jC{ we define their upper probabilities by 

vi(A)=su p {P(A): P e ~ } ,  i=0,  1. 

Following Huber and Strassen (1973) we shall say that a measurable function 
n is a Radon-Nikodym derivative between v 1 and v o if for every t > 0  we have 

tVo(~ > t) + vl (rc < t)= inf {tvo(A) + vl (AC): A e N}. 

If in addition there exist a pair of distributions (Qo ,Q1)~oxP1  such that 
~=dQ1/dQo and Q.o(r~>t)=Vo(rC>O, Ql(~z<t)=vl(Tc<t), it is called least 
favourable. Usually ~ cannot be uniquely determined via the pair (Qo, Q1). The 
existence of ~ and (Q0,Q1) in particular ensures that Neyman-Pearson tests 
for Q0 against Q~ are minimax for ~0 against ~ with the same level and mini- 
mum power. In the case %, c~ are 2-alternating capacities then ~ and (Q0, Q1) 
always exist (Huber and Strassen (1973)). Bednarski (1978) proves that the 
pair (Qo,Q1) forms then the least informative binary experiment in ~ 0 x ~ l  
and the existence of least informative binary experiments is sufficient for a set 
of probability measures to be generated by a 2-alternating capacity. The 2-alter- 
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nating capacity is a set function v from N to [0, 1], which satisfies the following 
conditions: 

i) O=v(O)<v(A)<v(B)<=v(~2)=l for AcB,  
ii) A,'FA~v(A,,)Tv(A) for {A ,}c~ ,  

iii) F,$F~v(F,)+v(F) for F, closed, 

iv) v(AwB)+v(Ac~B)<v(A)+v(B) for all A, B. 

Basic properties of v are described in Choquet (1953/54), Huber and Strassen 
(1973) and in Bednarski (1978). The upper probability of total variation and e- 
contamination neighbourhoods considered by Rieder (1977) satisfies in general 
all the conditions of 2-alternating capacity except iii). This fact precludes the 
possibility of direct application of Huber and Strassen (1973) main results. 

3. Special Capacities 

For a probability measure P Rieder (1977) defines his special capacity by the 
formula uo(A)=E(1-e)P(A)+g+6 ]/x 1 if A ~ 0  and Uo(0)=0, where e, 6>0,  e 
+ 6 < 1. The set function u o is therefore given by the superposition of P and a 
particular concave function. As we shall see the superposition of probability 
measures and concave functions gives set functions which are upper probabili- 
ties of sets of probability measures. Moreover many interesting minimax test 
problems between two such sets can be solved via the Neyman-Pearson lemma 
for 2-alternating capacities. 

Let f be a concave function f:  [0, 1] ~ [0, 1] such that f ( 1 ) =  1. Denote by 
the class of all such functions and by ~o the subclass of ~- which con- 

tains all continuous functions on [0, 1~ vanishing in 0. 

Definition 3.1. A set function v: N ~ [ 0 ,  1], v(0)=0 is said to be a special ca- 
pacity if there is f ~  and P c  J / s o  that v(A)=f[P(A)] for all Ae~ ,  A+0.  

The concavity of f implies (Theorem 10.1 of Rockafellar (1970)) that f is 
continuous on (0, 1). Since f ( l ) = l  we infere f (x)>x for all x~[0, l], f is non- 
decreasing and it is continuous in 1. Thus the special capacity always satisfies 
the conditions i) and ii), and by concavity of f also iv) is fulfilled. Rieder 
(1977) point out for his u o that it has all the properties of 2-alternating capa- 
cities except iii). This is also the case with our special capacities. The property 
iii) would require either a compact f2 and continuity o f f  on [0, 1] or f~Yo.  

Lemma 3.1. Let g: [0, 11410, 1]. For P~Jg and A~=r define vg~(A)=g[P(A)] 
and put Vge(0)=0. Then vgp satisfies the conditions i), ii), iv) for every polish ~2 
and every P~d{ iff g ~ .  

Proof The sufficiency was explained above. For the necessity take ~2=[0, 1] 
and P = 2 ,  the Lebesque measure on (2. By i) and ii) we have g(1)=l ,  g is 
nondecreasing and left continuous. Applying iv) to the sets A = [0, (x +y)/2], B 
= [0, y] w [(x + y)/2, x], where x, y ~ E0, 1], x > y, we obtain [-g(x) + g(y)]/2 =< g [(x 
+ y)/2]. Therefore g is concave. 
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Similarly we prove, 

Lemma 3.2. The set function Vg v is Choquet's 2-ahernating capacity for every 
polish f2 and every P ~ d4 iff g ~ ~o. 

Now we shall consider sets of probability measures majorized by the spe- 
cial capacities. Further if necessary we shall index special capacities by func- 
tions from Y and probability measures defining them. 

Lemma 3.3. Assume v is a special capacity defined by f E ~ and P ~ Md. Then for 
every B e N  there is Po~JC/ such that Po(A)<=v(A) for all A ~ N  and Po(B)=v(B). 

Proof If f e ~ o  then v is a 2-alternating capacity and the lemma is a con- 
sequence of Lemma 2.5 of Huber and Strassen (1973). Assume then f ~ o -  In 
the case P(B)=0 and B=~0 take any 6OoeB and define 

,, ( f [P (B) ]  if A={coo} 
Po(A~ 

='[(1 - f [n (u ) - l ) .  P(A) if A ~ ~2\ {COo}, 
J 

which has the required property. If P(B)>0 take f o ~ o  defined by the formula 

( f ( x )  if x~[P(U), 1-] 
fo(x) 

= ( x f [ n ( s ) ] / P ( S )  ~ if xe[O,n(B)].  

Then Vzp>Vyop and vze(B)=Vlop(B). Since Ufo n is 2-alternating capacity, 
Lemma 2.5 of Huber and Strassen (1973) completes the proof. 

Using again Lemma2.4 of Huber and Strassen and arguing as above we 
obtain, 

Lemma 3.4. Let Vj p be a special capacity and let F~ c F 2 ~ ... ~ F, be closed sets 
such that P(F0>0.  Then there is a probability measure Po <__Vfp such that Po(Fi) 
= vfp(Fi) for i = 1, 2 . . . .  , n. 

4. The Neyman-Pearson Lemma for Special Capacities 

Every special capacity defines a set ~ of all probability measures majorized by 
V, 

= {Peal/l: P(A) < v(A) for all A~N}. 

We shall say ~ is generated by v. By Lemma 3.3 the upper probability of 
coincides with v. In this section we shall consider minimax test problems be- 
tween sets generated by special capacities. Let No c Jg and Nt c d d  be generat- 
ed by VioPo and vy~p, respectively. 

Theorem 4.1. Assume Po, P1 ~dd are mutually absolutely continuous and let )Co, 
f l  e ~ \ ~ o  be such that there is 0 < x o < l  so that fo(Xo)= fl(Xo)= l. Then there 
exist Radon-Nikodym derivative ~=dvslel/dVloPo and a pair of probability mea- 
sures ((2o, Q 1 ) ~ o  x ~1 such that for all t >O 

and ~ is a version o f  dQ~/dQo. 
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and 

Define 

Remarks. The absolute continuity requirement is not restrictive from the 
practical point of view for the commonly used parametric models have this 
property. The same corresponds to the second assumption which is fulfilled in 
particular by the combination of e-contamination and total variation neigh- 
bourhoods. 

Proof The absolute continuity of Po, PI implies that there is ~, X o > e > 0  such 
that 

Po(A)<-_~ ~ Pl(AC)>=Xo 

PI(A)<~ ~ Po(Ag>xo. 

ffi(x) if xe[e, 1] 
gi(x)=(xfi(~)/~ if xe[0 ,  e) 

and consider the following expressions, crucial for the construction of minimax 
solutions (see Huber and Strassen (1973)): 

T o (t) = inf [tfo [Po (A)J +Jl  [P1 (AC)]J, 
Ae~3 

T 1 (t) = inf [t g0 [Po (A)] + g l [/)1 (AC)] J. 
AeN' 

By the definition of gi we always have To(t)>_Tl(t ) for t>0 .  In fact there is 
equality. 

Suppose, by contradiction, that for a fixed t, To(t)>Tl(t ). Since Vgoeo, Vgle 1 
are 2-alternating capacities, Lemma 3.1 of Huber and Strassen (1973) implies 
that there is A t ~  for which the infimum in Tl(t) is attained. The sharp in- 
equality implies that either Po(At)<e or PI(A~)<e. If Po(At)<e then gl[PI(A~)] 
--1 and we infer Po(At)=O. Thus taking At=O we obtain the equality 7o(t ) 
= Tl(t ) which is contradictory to our previous assumption. The same argument 
applies if P1 (At) < e. 

Let then {A~}~a o be a decreasing family of measurable sets for which the 
infima in Tl(t ) are attained. Such a family, by Lemmas 3.1 and 3.2 of Huber 
and Strassen (1973), exists. Put At=f2 for all t for which Po(At)=I and At=O 
for all t for which P0(At)=0. This modification gives again a decreasing mi- 
nimizing family which is also good for Vfoeo, vf~el. Therefore the variable u(x) 
=inf{t :  x(sAt} and an arbitrary least favourable pair (Qo, Q1) for v~oeo, Vg~p~ 
satisfies, by Theorem4.1 of Huber and Strassen (1973), the statement of our 
theorem. 

The above proof gives, 

Corollary 4.1. Under the assumption of Theorem 4.1 there exist 2-alternating 
capacities V'o<Vfo~o and v'1<vf~p~ and a variable ~z=dv'i/dv' o such that ~z 
=dvi~e~/dvloPo. Moreover every least favourable pair of distributions (Qo, Q1) 
for sets generated by v'o, v'l is least favourable for the sets generated by VZofo and 
Vyle . Every Radon-Nikodym derivative dvy~eJdfoeo equals dv'l/dv'o. 

One should notice that the minimax test problems between sets of proba- 
bility measures generated by special capacities can always, under the assump- 
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tions of Theorem 4.1, be "reduced" to some minimax test problems between 
weakly compact sets of probability measures. The set ~ ,  must be weakly 
compact only if f E  go. 

The statement of Theorem 4.1 is trivially satisfied if the sets of probability 
measures generated by the special capacities Vz0~o and vl~p~ are not disjoint. 
Once the theorem is used for the purpose of minimax testing we would like to 
know whether the sets are disjoint or not. The following lemma gives a neces- 
sary and sufficient condition for this. 

Lemma 4.1. Let Po, Pt, fo, f i  fulfill the conditions of Theorem 4.1 and let ~o 
and ~l be generated by the special capacities Vo=Vj%eo and vx=vI,p~ respec- 
tively. Then r c~14=0 if and only if vo(A)> 1 -v l (A  c) for every AsN.  

Proof To prove the necessity let us, by contradiction, assume that there exist 
B e N  so that vo(B)<l-vl(BC). Then for every Psr and Qe:~l we obtain 
P(B)<Q(B) which contradicts N 0 c ~ + r  On the other hand it is easily seen 
that the statement of Theorem 4.1 implies 

inf [vo(A ) + v i (A~)] = inf [Qo(A) + Q1 (A~)], 
Ac~ A ~  

where (Qo, Q1) is the least favourable pair of distributions. By the assumption 
the above expression equals 1 therefore Qo = Q1. 

Using the Neyman-Pearson lemma for 2-alternating capacities and arguing 
as above we can see that the lemma holds for 2-alternating capacities without 
the additional assumptions needed for the special capacities. 

5. The Radon-Nikodym Derivative for the Special Capacities 

The construction of the derivative is important when one considers minimax 
test problems between sets of probability measures generated by capacities, see 
Huber (1965, 1968) and Rieder (1977, 1978). For the total variation and ~- 
contamination model the derivative is equal to the truncated likelihood ratio 
between the central probability measures. The result proved below describes 
the relation between the Radon-Nikodym derivative for special capacities 
Vsd, o, rsvp, and their central probability measures Po and P,. As in Theorem 4.1 
we assume the mutual absolute continuity of Po and P1 and the existence of 
Xo~(0, 1) so that fo(Xo)=fl(Xo)= 1. Take v0=VSoPo and v 1 =rsvp1. 

Theorem 5.1. Assume that for every significance level c~(0, 1) there is a non- 
randomized Neyman-Pearson test for testing Po against P~. Then there is a non- 
decreasing function h > 0 such that dye~dr o = h(dP1/dPo). 

Proof The existence of the derivative ~z =dVl/dV o is guarantied by Theorem 4.1, 
By the same theorem for every t > 0  the set {~r>t} minimizes 

tfo [-Po(')] + f l  [P~ (.c)]. (5.1) 

This expression is also minimized by the critical region of every Neyman-Pear- 
son test of the level Po(~Z>t) for Po against Pt. Let {Bt}t_>o denote a family of 
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such critical regions and denote by D the set of all t > 0  for which fo[Po(Bt)] < 1 
and f l [PI (B~) ]<I .  Then for t~D we have {~z>t}=B t Po+P1 a.e. and so for 
such t's {rc>t}={dP1/dPo>w(t)} Po+P1 a.e. for a function w. Therefore for 
t , ,  t 2 e D, t 1 < t2, the condition Po + P1 {t2 > rc > tl} > 0 yields w(t~) < w(t2). This 
implies that w can be modified to a nondecreasing function w o so that 

{~>t}={dP1/dPo>wo(t)} Po+P1 a.e. for every t~D 

and every version dP1/dP o. 
Let us take Wo(t)=0 iffo[Po(rC>t)]=l and Wo(t)--oe i f f l [ P l ( r C < t ) ] = l .  

Then if dP1/dP o is an arbitrary everywhere finite version one can easily see that 
A t = {dP1/dP o > w0(t)} minimizes (5.1) for every t > 0  and the family is decreas- 
ing. Hence the function ~0(co)=inf{t: co(~At} is equal dvl/dV o. Since w o is non- 
decreasing we infere that ~o is a nondecreasing function of dP1/dP o. 

Remarks. Since ~o and rc can be approximated from below by simple functions 
equal Po+P1 a.e. we obtain ~z0=rc P0+P1 a.e. However  the equality re, 
=dvl/dv o Po+P~ a.e. does not in general imply that rot is the derivative of v t 
with respect to v o (compare Rieder (1977) p. 918). 

From the proof  of the last theorem one can notice that the variable dvi/dv o 
is usually a nondecreasing function of truncated likelihood ratio dP~/dP o. In the 
particular case when the functions fo,f~ are linear for these x a [0, 1] for which 
f ( x )  < 1, the derivative is proportional  to the truncated likelihood ratio. This is 
seen with the models considered by Huber  and Rieder. Truncation of the like- 
lihood ratio is connected with the shape of fo and f l -  If there is x o e(0, 1) such 
that fo(Xo)=fl (Xo)= 1 then the derivative between the capacities is the function 
of the truncation of dP1/dP o. 

In the very "regular" cases when fo,f~ are differentiable and the distribu- 
tion functions G(t)=Pl(dP1/dPo <_t), F(t)=Po(dP1/dP o <=t) are also differentiable 
the solution w o can be constructed by differentiation of t f o [ 1 - F ( s ) ]  +f~ [G(s)J 
with respect to s. 

6. Examples, Discussion 

First it will be demonstrated how the results of the previous sections can be 
applied to the e-contamination and total variation model explored by Rieder 
(1977). For  this we take f (x )=[(1-e l )x+ei+61] /x  1, where i=0 ,  1, ei>0, 3 f>0  
and e~ + 3~ < 1. 

Theorem 6.1. Assume v o =Vsovo and v 1 = V f lp1  generate disjoint sets of probabili- 
ty measures ~o and ~1 and let Po, P1 be mutually absolutely continuous. Then." 

1) for some uniquely determined constants Ao<A 1 and arbitrary version 
dP1/dP o we have 

dv x/dvo = A o v (1 - e~)/(1 - eo) dP1/dPo/x A 1, 
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2) there exists a pair (Qo,Q1)e~oX~l  such that dvi/dv o is a version of 
dQ1/dQ, o and Qo(dvl/dvo > t) = vo(dvl/dvo > t), 

Ql(dvt/dvo <=t)=vl(dvl/dvo <=t) for all t>O. 

Proof. Existence of the pair and the Radon-Nikodym derivative is guarantied 
by Theorem 4.1. To construct dvl/dv o we shall use Corollary 4.1, 

Consider the Bayes test problems between ~o and ~ and denote T~(vo,v,) 
= i n f ~ v o ( A ) + ( l - ~ ) v l ( A O ] ,  c~e[0,1]. Let for every c~e[0,1]A~eN' denote 

Aa~ 
the set for which the infimum is attained. We always have T~(vo,h)<~/,(1 
- c  0. Let D be the set of all these ~z for which Tjvo , v l )<~A( l - - e ) .  Since ~0c~ 
~1=r  by Lemma 4.1 we have that 1/2eD so that D+t3. It is easily seen that D 
is a subinterval of [0, 1] with some endpoints we shall denote by % < e l .  For  
every c~ e D the set A~ defines a Bayes test for testing Po against P1 with priors 

a = c~(1 - So)[~(1 - So) + (1 - c0(1 - el)I, 1 - a .  

Therefore A~ = {(1 - s 1)/(1 - s o) dP1/dPo) e/(1 - ~)} Po + P1 a.e. It is straightforward 
to see that the family {A~} defined by 

A~-  -g t ) / (1 -So)  dP1/dPo>e/(1-c 0 for c~e[~o,~i) 

for 0 ~ < e o  

where dP1/dP o is an arbitrary version of the Radon-Nikodym derivative, 
minimizes evo(A ) + (1 - e) v, (A 0 for every ~ e [0, 1]. Hence 

re(co) = inf {0~/(1 - ~): co r A~} = [A o v (1 - s 1)/(1 - So) dP1/dP o/x A 1] 

is by Corollary 4.1 equal the derivative dh/dv o for which there exists a least 
favourable pair of distributions. 

The constants A~= ~ ] ( 1 -  e~), i =0,  1, are determined by the equations 

C~V0 [(1 --  Sl)/(1 --gO)/r ~> A 0] + ( 1 - 0 0  V 1 [ (1  - -  Sl)/(1 --SO) g ~ A  O] = 1 - ~, 

~v o [(1 - s 1)/(1 - go) zc :> A 1] + (1 - ~) v i [(1 - e 1)/(1 - s 0) rc <= A i] = ~, 

equivalent to those obtained by Rieder (1977). The uniqueness of the solutions 
Ao, A t is provided by the fact that T~(Po,P~) is strictly increasing on the in- 
terval [0, 1/2] and on [1/2, l ]  it is strictly decreasing. 

The neighbourhood generated by v o is not weakly compact if f2 is not com- 
pact and the probability measures majorized by v o need not be absolutely con- 
tinuous with respect to Po. The minimax test problem between ~o and ~ can 
be, by Corollary 4.1, reduced to a test problem between sets generated by 2- 
alternating capacities. These sets are weakly compact and probability measures 
belonging to them are absolutely continuous with respect to the central proba- 
bility measures (see the proof of Theorem 4.l): There is a measurable function 
which is the Radon-Nikodym derivative for both problems. 

Another example of a natural special capacity is given by the fnnction f (x)  
=cx  A l, C>I.  The set of probability measures generated by the 2-alternating 
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capacity v~p(A)=cP(A)A 1 is weakly compact and the probability measures are 
absolutely continuous with respect to P. The neighbourhood ~ ,  can be vie- 
wed as a set of possible departures from P. These departures are all bounded 
by the function vyp directly proportional to P. The construction of the Radon- 
Nikodym derivative for such capacities, carried as in the proof of Theorem 6.1, 
shows that the derivative is the same as in 1), 

It should be noted that proofs to all the theorems given in this paper use as 
the main tool Lemma 3.2 of Huber and Strassen (1977). Considerations similar 
as those given to proofs of Theorems 5.1 and 6.1 can also be found in Rieder 
(1977), pages 916, 917. 

Theorem 5.1 and remarks following it indicate that the effect of truncation 
of the likelihood dP1/dP o is common to all the used capacities. The superpo- 
sition of the " truncat ion" and a nondecreasing function does not seem to be so 
influential, at least for small samples. This may throw some light on a matter 
how to choose departures from postulated parameteric models. The capacities 
considered here do not cover the case of Prohorov neighbourhoods though, in 
the author's view, the approach presented may be helpful to solve minimax test 
problems for Prohorov neighbourhoods. A particular case of minimax testing 
between the Prohorov neighbourhoods of probability measures is considered 
by Osterreicher (1978). 
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