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Summary. A generalization of the classical Law of the Iterated Logarithm 
(LIL) is obtained for the weighted i.i.d, case consisting of sequences {o-, Y,} 
where the weights {o-,} are nonzero constants and {Y,} are i.i.d, r a n d o m  
variables. If Y is symmetric but not necessarily square integrable and if the 
weights satisfy a certain growth rate, conditions are given which guarantee 
that {a, Y,} obey a Generalized Law of the Iterated Logarithm (GLIL) in 

the sense that lim sup ~ o-j Y/a,  = 1 almost certainly for some positive con- 
n ~ o o  l 

stants a,. Teicher has shown that such weights entail the classical LIL 
when E y 2 <  oo and Feller has treated the GLIL when 0-,= 1 and E Y  2= oe. 
The main finding here asserts that if {q,} satisfies 2_ q. - nG(%) log log q. 
where G is a specified slowly varying function, asymptotically equivalent to 
the truncated second moment of Y, and if a certain series converges, then 

the GLIL obtains with ~ 2 ~ a j .  a. = (2/n) s~ q. where s n = ' 
1 

1. Introduction 

Independent random variables {X,}, each with mean zero and finite variance, 
obey the Law of the Iterated Logarithm (LIL) if 

rt 

2 2 � 8 9  lira sup ~ X / ( 2 d .  log z d.) = 1 (1) 
n ~ O  1 

n 

almost certainly (a.c.) where d ~ = V a r ~ X j ,  n > l .  (Throughout, in order to 
1 

avoid minor complications, it proves convenient to define for x > 0 

l o g x = l o g l x = l o g m a x { e , x } ;  log. x=log l lOgr_ lX  , r>=2 
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where log x (when x>e)  denotes the natural logarithm.) The celebrated theo- 
rem of Kolmogorov [6] asserts that (1) holds provided each X/1 has mean 0 
and is bounded (say IX/11<B/1, a.c.), d--,oo, and 2 2 B/1 = o(d,/log 2 dZ). 

Attention here is restricted to the so-called weighted i.i.d, case consisting of 
X,'s of the form a,, I1, where {Y,} are independent, identically distributed (i.i.d.) 
random variables and {o',} are nonzero constants. The {Y,} are referred to as 
the underlying random variables and the {a/l} as weights. Clearly the weighted 
i.i.d, case contains the i.i.d, case via 0-,---1 and then by the theorem of Hartman 

2 and Wintrier [3] the conditions EY=O, 0 < E y 2 < ~  entail (1). Setting s, 
/1 /1 

=Eo'~,  n > l ,  and noting EY=O and EY~<oo entail Var~crsY j=s/1zEyz, 
1 1 

{or,, Y,} obeying the LIL (1) is tantamount to 

i1 

lim sup ~ crj YJ(2EY 2 s 2 log 2 s~) ~ = 1, a.c. (2) 
r / ~ o O  1 

Conditions which guarantee the LIL (2) in the weighted i.i.d, case have 
been obtained by Teicher [13, 14] when EY-~-O, EY2< pc. These conditions are 
of a moment nature on Y and on the growth rate of 2 a na,/s,.  Moreover, Teicher 
[13], generalizing the result of Strassen [12] in the i.i.d, case, showed that 

2 _ _  2 2 2 EY z = o0, a, - o(s,/log 2 s,), s, ~ co (3) 
implies /1 yj/( 

lim,_~sup ~ o- s s, ~ log 2 s,a) -~ = c~, a.c. (4) 

The absolute value can of course be removed in (4) if Y is symmetric. It is 
natural to search for ~normalizing" constants a/1 > 0 for which 

lira sup ~ a s Y~/a/1=l, a.c. Then, {a,, Y/l} is said to obey a Generalized Law of 
n ~ t ) O  i 

the Iterated Logarithm (GLIL). 
Feller [21 considered the GLIL question for symmetric i.i.d, random vari- 

ables with infinite variance and obtained a sufficient condition in the form of 
convergence of a certain integral. Despite the brilliance and originality of 
Feller's work, the specific assumptions being made and the proofs are not al- 
ways clear. Kesten [5] has also questioned certain arguments. 

Here, conditions are given for a GLIL to obtain in the weighted i.i.d, case 
where Y is symmetric with infinite variance and the weights satisfy a certain 

Y 

growth rate of Teicher [13]. The function G(y)~2 ~ tP{JYI >t} dt is supposed 
0 

slowly varying at infinity. Under the latter supposition, Theorem 1 includes the 
i.i.d, case of Feller via a,-=l .  The proof (Lemmas 12, 13, 14) follows the general 
pattern outlined by Feller who, however, dealt exclusively with 
H(y)-=E{YZltlyl<=yj} rather than with G(y). The advantage of working with G 
rather than H has been stressed by Professor Teicher. 

According to Lemma 3, slow variation of G is equivalent to the distribu- 
tion of Y belonging to the domain of attraction of the normal law. Heyde [4] 
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has shown that for symmetric i.i.d, random variables {Y,} to obey a GLIL it is 
necessary that the distribution of Y belong to the domain of partial attraction 
of the normal law and Kesten I-5] has proved this to be sufficient (identifying 
the normalizing sequence to within a constant). Heyde's necessity result has 
been generalized to the weighted i.i.d, case by Rosalsky and Teicher [9]. 

2. Preliminaries 

The main results of this paper, namely Theorem 1 and Corollary 1 thereof, 
establish a GLIL. Some preliminaries are needed before even stating these re- 
suits. 

Lemma 1. I f  L is positive and slowly varying (at infinity), then log L(y) 
=o(logy) as y---> oo and hence L(y)=o(y~), all c~>0. 

Proof. The second statement is an immediate consequence of the first which, in 
turn, follows directly from the following well-known representation of a posi- 
tive slowly varying function: 

L(y)=b(y) exp{ i ~(t)/tdt} (5) 

where b(y)~b in (0, oo) and e(y)=o(1) as y ~ o o .  (For a proof see [1, p. 274] or 
[10, p. 2].) [] 

Lemma 2. Let Y be a nondegenerate random variable and define 
Y 

O(y) -2  S tP{lYl>t} dr, y>O, (6) 
0 

H(y)=-E{Y2I[irl<sj}, y>O. (7) 

Then G is nondecreasing (strictly increasing if Y is unbounded), continuous, and 

G(y)=H(y)+yZP{[Y[>y}, y>0 ,  (8) 

G(y)/y2$O as 0<yToo. (9) 

Proof Integration by parts yields (8), and the rest is straightforward. [] 

Condition (14) of the next lemma is the assertion that Y belongs to the 
domain of attraction of the normal law. Moreover, for all p in (0, 2), (14) and 
Lemma 1 entail that y"-1 p{[y[ >y} is Lebesgue integrable over [0, oo) which 
is tantamount to Y~5r 

Lemma 3. The following are equivalent: 

G is slowly varying, (10) 

H is slowly varying, (i 1) 

G(y)~H(y), (12) 

lim yZ p {] Y J > y}/G(y) = 0, (13) 
y ~ o o  

lira yZ P {I Y[ > y}/H(y)=0. (14) 
y~oO 



354 A. Rosalsky 

Proof. To show that (10) implies (11), note that for arbitrary (3 in (07 1), via (8) 
Y 

G(y)-G(6y) = S 2tP{lYI > t} dt>(1 - (32) y2 P{[YI >Y} =(1 - 62)(G(y)-H(y)). 
~y 

Thus, 

< 1 - H(y) < (1 - 62) -1 -(1 - G(ay) ] _- o (11, 0 
- a (y )  = G (y )  ] 

whence for arbitrary t > 0 

H(ty)/H(y) = (1 + o(1)) G(ty)/G(y) = 1 + o(1). 

It is proved in [1] that (11) implies (14). (See the proof of Theorem2, 
p. 275.) 

That (14) implies (13) and (13) implies (12) follow directly from (8). 
To show that (12) implies (10), note that for arbitrary (3 in (0, 1) 

yielding 

Y 
O<=G(y)-G((3y)= j 2 tP{lY[>t}  dt<=(1-(32) yZ P{IYl>(3y} 

6y 

=(1-(32) (3 2(6((3y)_/~r(6y)) 

o<_ G(y) _ 1 <=(1 -(321 (3_2 (1 _I-i((3y)] ~0(1 )~  -a((3y) \ a((3y)! 

and it only need be shown that G(y)~G(ty) for t>1. Setting 6=t 1 by the 
portion already proved, 

G(ty)/G(y) =- G(ty)/G(6 ty) = 1 + o(1). [] 

The function (2 of the next lemma or more specifically, it's inverse, plays a 
crucial role in determining the normalizing constants for a GLIL. Thus it is 
only the tail behavior of (2 that is important and the definition of Q(y) for 
small y is irrelevant. 

Lemma 4. I f  G is slowly varying, then for some Yo > ee 

~y 2/(G(Y) logz Y), Y >= Yo 

Q(Y)=-r yoy/(G(yo)logzyo), O<y<=y o (15) 

is continuous and strictly increasing over I-0, oo) with lim Q(y)= ~.  
y ~ o 0  

Proof The continuity of Q follows from that of G and since the denominator 
of Q is slowly varying, Lemma 1 ensures that Q(y)~ oo. It suffices to show that 
there exists yo>e e such that y o < X < Z < x + l  implies Q(z)>Q(x). Let c5>0 be 
such that 1 - 2 6 - c 5 2 > 0 .  Now Lemma3 ensures for ee<yo sufficiently large 
that 

y2p{IYl>y}/G(y)<=(3, log2 y>=(1 + (3) -1 log2(y + 1), 

(log 2 y -- (2 log y)- 1)/(1og2 y)2 ~ (1 -- (3)/log 2 y (16) 
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for Y>Yo" Then for Yo<X<Z<x+l ,  

Z2 X 2 

G(x) G(z)(Q(z)-Q(x))=G(x) lo72 z l~g2x ) - -  

Z2 X 2 

>G(x) l o ~ z  log2x 

X2 z 

l ~  

355 

or since 1 is increasing 

Taking u = ( 1 -  c5)t and then u = (1 + c~)t, it follows that for all u > 0 

U \l/y ( u ~l/7 
~ )  l(y)<=l(uy)<= \ l -g)!  l(y). 

Thus, l(uy)/I(y)~u 1/~ which is tantamount to slow variation of y-,/7 l(y). 

Consequently, via (17), (16), the choice of ~, and the Mean Value Theorem, for 
some 0 in (x 2, z z) 

( log  2 0~}) 2 (Z2 - x2) G(x) log 2 x ] 

[] 
= G(z) lo~gzz log2z 

Let qy, y>_0, denote the inverse function of Q where G is slowly varying. 
Clearly 0 < qy ]" oo. 

Lemma 5. The function qy satisfies 

qf =yG(qy) log 2 qy, all large y, (18) 

log 2 qy ~log  2 y. (19) 

Proof Assertion (18) follows by definition of inverse function, whence for all 
large y 

log q2 = log y + log G(qy) + log 3 % 
implying 

logqZ~logy (20) 

via Lemma 1 and yielding (19). [] 

Lemma 6. I f  l(y) is the inverse of the continuous increasing function y~ L(y), 
y >0, where L is slowly varying and 7 > O, then y-1/~ l(y) is slowly varying. 

Proof If R(y)=y~L(y), then for any t > 0  

R ( t '/' l (y) ) = t F (y) L( t ~/7 l (y) )~ t l' (y) L( l (y) ) = t y. 

Thus, for all ~ in (0, 1) and large y 

(1 - a) t y  < R ( t l / '  l(y)) < (1 + c5) t y  

l((1 - ~) ty) <= t 1/~ l(y) <~ l((1 + c5) ty). 

[]  

x ~ P {I YI > ~} (z 2 - ~2)~ 
(17) 



356 A. Rosalsky 

Corollary. The function qy satisfies for all t > 0  

q,y..~t~qy as y--,oo; u ~ t v . ~ o o  implies q .~ t~qv ,  as n--*oo. (21) 

Proof The first assertion of (21), which is t an tamount  to slow variation of 
y - }  qr, follows from L e m m a  6. Moreover,  this assertion and slow variat ion and 
monotonic i ty  of y-}qy (see (18)) entail 

u,~ -~ q~ ~ (t v,)- ~ q~v~ ~ u~- ~ t ~ qv. 

yielding the second port ion of (21). []  

L e m m a  7. I f  O<u(y)--* or, O < v ( y ) ~  m, and L is positive, nondecreasing, and 
slowly varying, then 

log L(u(y) v(y)) = o(log v(y)) as y ~ oo. (22) 
L(u(y)) 

Proof The lemma follows from the representation (5). []  

Corollary. The function qy satisfies for arbitrary 6, r > 0 and all large n 

G(q.(tdog2n)"]+ 1)) ~ (1og2 n) ~ G(q.) (23) 

where [y] denotes the greatest integer in y. 

Proof For  all large n, (22) entails 

G (q. (log 2 q.)~(r + a))/G (q.) < (log2 q.)-~ a- (24) 

Hence, by definition of Q, (19), (24), and (18), for all large n 

Q (q,,(log 2 q,,)�89 + a)) ~ n([(log 2 n)~] + 1), 
whence 

qn([0og2 n)q+ 1)-------qn(1Og2 qn) ~(~+ ~) 

implying (23) via (24) and (19). []  
n 

2 2 Lemma 8. I f  s . - ~  0-j, n> l, where {a.} are constants satisfying 0<0-2"[ and 
1 

- -  2 2 7.=n%/s,  = O((log 2 n)t~), some ~ in [0, 1), then 

2 2 (25) Sn ~ S n +  1, 

log 2 s 2 ~ l o g  2 n, (26) 
2 O 2 2 a .  = (s./log 2s.). (27) 

2 2 n Proof Note that  0-./s.=G/ =o(1) which is t an tamount  to (25). Hence, for all 
large j, 

2 2 '  Z y j  
Sj = 1 4 -  S j J G j  _<1+2-_. 
2 ~ - - 2  . 2 - -  

S j _  1 S j _  1J Sj  y 

Thus, for all large m and n > m, 

2 2 1 s./s~< (1 + 2 7 f i -  1)<exp <exp  {(log2 n) log n } . (28) 
m + i  
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Hence, for all large n, log s 2 ~(log 2 n) 2 log n implying 

log 2 s~ =< 2 log 3 n + log 2 n ~ log 2 n, 

and (26) obtains since 2 2 s, >no- 1. Assertion (27) is a direct consequence of (26) 
and 2 2 a,/s, =O((log 2 n)~)/n. [] 

Define monotone sequences {e,} and {c,} by 

eo=0, e,=infTi lG(qi) log2 i, n > l ;  c,=(ne,,) ~, n>O. 
i > n  

Lemma 9. I f  G is slowly varying and {a,} satisfies the assumptions of Lemma 8, 
then {c,} satisfies 

c,+ 1 =O(c,); c~/nT oo (29) 

(1 + o(1)) qZ/(K(log2 q,)~) 
< 2 =c ,  <(1 +o(1))q~ where K is such that 7,<K(log2n)P, (30) 

2 c ~ _ _ < ( 1 + o ( 1 ) )  2 2 log 2 C n ~log 2 q, ~]og 2 n; (y, s, q,/n. (31) 

Proof When e ,=e ,+ l ,  clearly c,+~<2c,. Alternatively, if e,<e,,+z, then e, 
=7~ 1 G(q,) log2n and so 

2 , / ( n + l )  2 Cn+ 1 a, G(q,+ 1) l~ (n + 1) =o(1) 2 ~ 2 cn ~n+ 1 s, G(q,) log 2 n 

by (25),  slow variation of G, and (21). Moreover, cZ,/n>K-1G(q,) 
( l o g 2 n ) l - ~ o o  and clearly c2/n'F, establishing (29). Next, recalling (18) 
and (19) 

2 2 2 2 c~=<(1 +o(1)) s, q,/(na,)<=(1 +o(1)) qn 

yielding the last half of (31) and the second inequality of (30). On the other 
hand, 2 - l c , > n K  G(q,)(logzn) l-p, and (30) follows via (19) and (18). The first 
half of (31) follows immediately from (30) and (19). [] 

Lemma 10. I f  O<tJn~T for some ~ > 0  and if Y is any random variable, then 
oo 

P {J u > 2t,} either converges for all 2 > 0 or else it diverges for all 2 > O. 
1 

Proof This result is well known. (See, for example, [11, p. 131].) [] 

Lemma 11. I f  C(y)=-y2/c-~(y), y>0 ,  where c(y)=(ye(y)) ~ for y>O and e(y) is 
the continuous extension of {e,} defined by linear interpolation between integers, 
that is, 

e ( y ) = ( e , + l - e , ) ( y - n ) + e  . for O<_n<_y<n+l, 
then 

C(y)T ; c(y) is a continuous strictly increasing extension of {c,} with c(y)~  oo 

(32) 
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and moreover 
Yz/C(lyl)dF(y)< ~ 

[lyl > o] 

(where F is the distribution of Y) iff 

(33) 

oo 

P {I YI > 2G} < ~ (34) 
1 

for some (and hence all) 2 > O. 

Proof. The proof of (32) is straightforward. Next, convergence in (34) for some 
2 > 0  is equivalent to convergence for all 2 > 0  by Lemma 10. Moreover, con- 

vergence in (34) with 2=1  is tantamount to ~ P { c  l ( IY[)>n}<c~ which is 
equivalent to g{c-~(IYI)}<oo. [] 

For 0 < u < v < o o ,  define J(u, v]= ~ y2/C([yl)df(y). 
[u < lYl < v] 

3. Mainstream 

With these preliminaries accounted for, it becomes possible to discuss and es- 
tablish a GLIL for weighted sums of nondegenerate symmetric i.i.d, random 
variables with 0-2=-Ey2< o0. Recall Teicher's theorem that (3) implies (4). Con- 
sequently if 0-2= c~, then under the proviso (3) a GLIL with normalizing con- 
stants {a,} requires lim sup G/(s 2 log 2 s,2) ~ = c~. 

n -+ (3o 

Note that if ~ 0-2 a n-(2/n)-  s, q, and = oo where G is slowly varying and {G,} 
satisfy the conditions of Lemma 8, then by Lemmas 8, 5, and 3, (3) holds and 

2 2 2 2 G/(Sn l o g  2 sn) = (2G (qn) log 2 G)/log2 s n ~ 2H(G ) ~ o0. 

Moreover, 0-2], entails a,],cz~. It will be demonstrated that, under appropriate 
conditions, {an} is a proper choice of normalizing constants for a GLIL. 

An alternative approach is to define 

, 1 e~: 2G(y/l@)log2y <_1 a, = 2 ~ sup y > y 0-i 

and this is closer in spirit to that of Feller [2] (in the special case a n~ 1) and 
to condition (4) of Theorem 1 of [8]. When yn=O(1), the author has shown 
that G~a',,. Another contrast with [2] is the emphasis now on G rather then 
H, the former having advantages such as continuity, (9), etc. 

Of course, if o-2<oo, then slow variation of H and G is automatic and 
under the assumptions of Lemma 8, 

2 _ _  2 2 _ _  2 2 2 2 a,, -2s,,  qn /n -2G G(q,) log2qn~20- s, log2s . 

yields the normalization for the classical LIL (2) (Theorem 3 of [13]). 
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~ c~ 2, n> l, where {a,,} are constants satisfying 0<G2]  " and Theorem 1. Let s,,2 = 
1 

- -  2 2 7,,=nG/s, =O((logzn)~ ) for some fi in [0, 1). I f  {Y,, Y,,} are nondegenerate, sym- 
metric i.i.d, random variables with Ey2<oo such that the function G of (6) is 
slowly varying and if the series of (34) converges for some 2 > O, then 

1 - 1 ,  a.c. (35) lim,,~oosup (2/n)~ sn qn 

Proof Let  p > l  and 0 < r / < ( 1 - f i ) / 8 .  Define for n > l ,  

Xn = YnI[IY~l<-c,,/(logzc~)p], Zn = ~,IHY, I > o,,/(~og~ ~,,),,l, 

Then, it suffices to show 

G = L - x . - z . .  

l i r a  1 - -  0 ,  
~ co s~ q jn  �89 

lira sup 1 - 2  ~-, a.c. (38) 
n ~ ~ S n qn/n ~ 

a.c. (37) 

and this will be done in the ensuing three lemmas. 

L e m m a  12. (36) holds. 

Proof Set b, = G/(log2 c,) ", n > 1. It will first be shown that there exists a con- 
stant C < m such that if 0 < c5 < 1 and 

Y,'=-Y, Irv,<lg, l<=oc,~, S',==_~ajYj', n>l ,  
1 

then 
Is;I 

lim,~osup s-q,/n~ < C6, a.c. (39) 

for k > 2 .  If 

Set no=0 .  Recalling (29), a constant  M > I  and an integer n 1 may  be chosen 
such that n > n~ implies 

G+ 1/G < M < (log 2 c,+ 1)". (40) 

Given nk_ 1 for some k > 2 ,  let nk=max{n: b ,<c ..... }. Then {n k, k>0}  is strictly 
increasing and 

b,,,, < c  . . . .  < b  . . . .  (41) 

Ak= U [Y/*0 and Yf=#0], k > l  
n k -  l < i , j < - - n k  

i t j  

~ a j Z j  

lim a =0,  a.c. (36) 
~ o0 s~ qn/n ~ 
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then 

P {G} = ( 
nk~ 

Now, for all large k, using 

~, P {Y; =#=0} 
nk- l <n<=nk 

Z ~ 2 P { Y i ,  0}) . (42) 
iKn~<nk 

Lemma 11, (41), and (31) 

<= ~ bn2E{y2I[bn<LYl<=c,d } 
nk- t <n<=nk 

< nk = 2 ~ y2dF(y) (43) 
bnk-1 [bnk_ l <lyl <Cnk] 

< nk 
=b2 C(c,~) J(b . . . .  , c j  

nk- 1 

= O(1) (log 2 q,~)4nd(G ~ 3, G~]. (44) 

Next, (30) and slow variation of G ensure for all large n that H(G)<(1  
+o(1)) G(q,). Hence, from (43), (18), (30), (41), and (31), for all large k 

P{Yd*O}<=2GG(q.~)/b2~-, = 0  2 c.~ 
bn~_ (log2 q.k) 1-p nk- 1<tl~ nk 1 

= 0 (-(l~ c"~)2" c"z~-I -~ = O((log 2 q,~)a + *" 1). (45) 
\b2k_ 1 (log2 q.k) 2 -~]  

Thus, from (42), (44), (45), the choice of t/, (34), and Lemma 11 
oo 

P {Ak} < oo. (46) 
1 

Define the random integer ~c by ~c=min{k>2:  (G* 2, nk*] contains at most 
one nonzero term a. I7.' for all k*> k} (=  co, otherwise). According to (46) and 
the Borel-Cantelli Lemma, K < oo, a.c. Thus, with probability one, each block 
(G-1,  nk] with k >  ~: contains at most one nonzero term a.Y.' whose absolute 
value is at most la.16c.<61a.~lc.k. Then, with probability one, for all 
n,~<=n k l <n<nk 

k -  1 ( k ~ 2  ) 

IS'.l<__lS'.~_~l+6 y~ I%l%+Ol~.lr %+c. .  (47) 
r~/r \ 2 

But  
k - 1  

C.r<2(C.k_~+C.k_3+...+G1 or c.2 ) (48) 
1 

according to whether k is even or odd. Now (41) and (40) entail 
c.k_~-<_M-1 c.~+ 1, k>2 ,  and applying this repeatedly j times to c.~_~2j+ ~, in (48) 

k - 1  
yields c .~_~j+l<M-;c  . . . .  < M - ; c .  and consequently ~ c n r < 2 M G / ( M - 1  ). 

1 
Hence, from (47) and (31), with probability one for all large k and all n in 
(nk- 1, nk] 

IS'.] < IS'.~_, 1+ 6 La.[ c . (3  M - 1) / (M - 1) < 1S'~._1 [ + C 6s.  q. /n ~- 

where  C = ( 6 M -  2 ) / ( M -  1), and (39) follows. 



Generalization of Log Log Law 361 

Next, by (34) and the Boret-Cantelli Lemma for all 6>0,  with probability 
o n e ,  

as YJ Itlr~l >o~A = 0(1). (49) 
1 

Thus, from (39) and (49), limsup ~ c r i Z  J (s,,q,/n-~)<C6, a.c. and (36) then 
n~oo 1 

follows from the arbitrariness of c5. [] 

Lemma 13. (37) holds. 

Proof  Set no=0 and define n k to be the smallest integer n such that 2 S n > e k, 

k_>l._ Then, via (25), s,~2 ~ e  k and nk<nk+l for all large k. Since a~T, 
s ~  > 3 s~ > e k+ 1 implying 

n~ < nk+ 1 < 3 n k (50) 

for all large k. Thus, via (18), (21), and slow variation of G 

nk  S2k: + l 2 El S 2 2 q . . . .  /( k+l .kq.k) ~e" 

In view of the Almost Sure Stability Criterion [7, p. 252], setting U k 
= Uk/(s,~q,Jnk)=O, a.c. and so as W~, k > 1, it suffices to show that lim 

nk_ l < j < n k  k~oo  

it suffices to verify that 

~ F t2 E ~ U4~. .$4  4 ,  (51) 
1 

Set Vk=Var{Uk}= ~ E{a}Wj2}, k=>l. By the multinomial expansion, 
n k -  1 < j < n k  

independence, and symmetry, for some positive integer A and all large k 

E W? } + A V? <(an cn~(log a cn~)- 2" +AVk) ~ .  (52) 
n k -  1 < j < n k  

Now, employing (30), (12), (18), and (19) 

U(q.)=(1 2 = q. j (nk log2 nk), 

whence from (52) and (31) for all large k 

E { U 4} <= 2s~ %2 Vk/(nk(log 2 nk)an). (53) 

An alternative upper bound for V k is obtained as follows: Now 
1 <7.=<K(log2 n) a yields K -  1G(q.) (log 2 n ) l - P < e . < G ( q . )  log 2 n and so by mo- 
notonicity and the definition of c. and employing (50), (21), slow variation of 
G, and (31), it follows for all large k and nk_ 1 < j < n  k that 

c~ . (log 2 c.~)2p+ 1 > c2.~- 1 l~ c.~ 
2 - -  C 2 (l~ Cj) 2p  Cn k nk 

>nk-  1G(q . . . .  ) (log 2 n k_ l) ~ -~ log 2 c,~ ~ co 
Kn k G(q,~) log 2 n~ 
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implying for u = p + � 8 9  and n k 1 <J<=nk that  cj./(log 2 cj)V>=c,j(log2 c,~) ~. Thus, for 
all large k 

Vk < s2 ~ yZ dF(y). (54) n k 
[cnk/(log2 Cnk)U < ]y] ~ Cn k] 

Hence, to prove (51), it suffices to show, in view of (53) and (54), that 

nk S y: de(y)< (55) 
~q~k (l~ r/k) 2n [cnk/(log2 Cnk)U < kyl < cm,] 1 

For given k >= 1, let j(k) be the smallest integer j>= 1 for which 

c,,j(log 2 cn~)" <= cnj. (56) 

For  given j>=l, let k(j) be the largest integer k>=l for which j>=j(k) or, equiva- 
lently, for which (56) holds. Via (32), (18), and (19), the series of (55) is domi- 
nated by 

k 

nk/(q2 (log2 n~)2~) ~ ~ y2 dF(y) 
k = l  j ~ j ( k )  [Cnj ~<lyl<cn~l 

k (j) 
= ~ ~ y2dF(y) • nk/(q2~(log2 nk) 2") 

j = l  [cnj_1<[yI~cnj  ] k = j  

e,j(k(j) - j  + 1) (57) 
< O(1) ~a S(c,j_l, c,,j] G(q,,~) (log 2 @1 + 2," 

Claim. For all c5>0, if j is sufficiemly large 

k(j) < j  + 2 + [G(q,j) (log 2 nj) 1 + 6/e,j] ~ to(j, 6) ~ ~c. (58) 

Proof of Claim. Via (26), 

log 2 nj~log 2 s,Zj ~ l o g  z e j = logj.  

Thus, using the definition of ~c and e,, logj  ~ l o g  ~c implying 

log 2 n K ~ l o g  2 nj. (59) 

To substantiate (58), it suffices by the definition of k(j) and the monotonic i ty  of 
c,/(log 2 c,)" to show that  

cnj(log 2 c,,~) u > c~j 

for all large j. Now, by (29), (31), and (59) 

c~j((log 2 c,~) 2" c2j) > (1 + o(1)) nj(nj(log 2 n~) 2") 

and thus it suffices to show that  

n~ > nj([-(log z nj) 3"] + 1) -- Nj 

for all large j. Recalling the definition of n k, it is enough to verify for all large j 
that  ~2 <~ _~c and this will be true if it can be shown that  ~SNj ~_ 

s2N//s2,,j <= exp {G (q,,j) (log 2 nj) 1 + d/e,,~ }. (60) 
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#~ 

Dn> = 
[~n] + 1 

B u t  
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To this end, note that by (23) eventually 

G(qN) < G(q.) (log 2 n) ~.  (61) 

Let v(]') be the largest value of v, nj+l<_v<_Nj, which maximizes 7v in that 
interval. Then, noting that log 2 Nj~log 2 n: and employing (61) 

e,,j <= G(qv(d) ) (log 2 v(j))/Tv(j ) =< (1 + o(1)) G(q.) (log 2 nj) 1 + ~6/y~(j). (62) 

Then, recalling (28), for all large j 

2 2 { Nj } sNj/s.j<=exp 27~(j)~ 12-1 ~exp{7uy~(j) log3ni} 
nj+l 

and (60) follows via (62) establishing the claim. 
Now 7n > 1 ensures that e n < G(q.) log 2 n and so, in view of (58), 

enj(k(j)-j + 1 ) 3 1 +0 
G(q,,) (log 2 n) 1 + 2, < (log 2 nj)2, q (log 2 n)2,-6 

as j ~ ~ provided 0<  c~ <2t/. Thus, from (57) the series of (55) is dominated by 
oo 

O(1) ~ J(c.j_l, c ~  which converges by (34) and Lemma 11. [] 
1 

Lemma 14. (38) holds. 

Proof. Let 6 be an arbitrary number in (0, 1). Now l < 7 . < K ( l o g z n )  p entails 
K-~G(q.)(log2n)J-~<=e.<G(q.)log2 n and so by definition of c., (21), slow 
variation of G, and (31) 

z KnG(q.) log 2 n 
c,, < --O(1)(log 2 c,y, 

c~.~ = [bn] G [q[~n]) (l~ [bn]) 1- r 

whence c,,/cc~.~<log z c. for all large n. Setting D .=Var  ~ ajXj, n > l ,  it follows 
1 

a2 H(q~./(log2 c,,)P) > ~, a~ H(c.l(log2 c.) p+ ~). 
[~n]+ 1 

/'• o-/___< (1-6) S n 

/[0nJ+ 1 

Thus via Lemmas 3 and 9, for all large n 

D >(1--c$)s~H(cj(log2c.)P+~)>(1--3)2s2G(q,,/(log2q,,)P+2). (63) 

On the other hand, by Lemmas 9 and 2, for all large n 

D,, < s2. H (q.) < sJ G(q,,). (64) 

Next, recalling Lemma 7, 

G(%)/G(qj(log 2 q.)p+ 2) = (log 2 q.)O(~). (65) 
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Now for all large n, L e m m a  1 ensures G(n)<n ~ and so Q(n)>n implying q < n  
whence employing (64) and nalz <s.,2 

log 2 D. _-< log 2 (s~ G (q.)) < log 2 (s 2 G (n)) < log 2 (s. 2 n~) < log 2 (s2/I 0 1 [) ~ l o g  2 Sn 2' 

On the other hand  from (63), log 2 D. >(1 + o(1))log 2 s,Z,. Thus, recalling (26) and 
(19) 

log 2 D, ~ l o g  2 s 2 ~ l o g  2 n ~ l o g  2 q,. (66) 

Now, via (31), (63), (18), (65), and (66) 

a ,  2 c2/(log2 c,) 2v = o(DJlog 2 D,) (67) 

and so by the Kolmogorov  LIL  [-6] 

 jxj 
1 = lim sup I - 2 ~, a.c. (68) 

limsuP(Dnlog2D.)~.~ .~oo (D, logzD.)  ~ 

+o(1)) s.q./n whence (68) entails But from (66), (64), and (18), D, log2D,~(1  2 2 
(38) with equality replaced by < and it remains to prove that  (38) holds with 
equality replaced by > .  

Let  6' be an arbitrary number  in (0,6) and choose 7 > 0  so that  (1+7) 
( 1 - 6 ' ) =  1. Select C >  1 large enough so that  (1 - 6')(1 - C-2)  ~ - 2 C  -1 > 1 - &  Let 
n o = 0  and let n k be the smallest integer n such that  On>C 2k, k>=_l. NOW (67) 
entails E(a, Xn) 2 =o(D,)  or, equivalently, D,~D,_ 1 implying 

D,~ ~ C 2k. (69) 

Suppose, initially, that  

(k G(q . ) )  -1 y: dF (y) < o0. (70) 
1 [Cnk/(log2 Cnk)P + t <]Yl--< qnk] 

Then for k' sufficiently large recalling (12) 

Let 

k 1 (1 H(c"J(l~ (71) 
k=k" H(q.k) ] 

X = .Yf (6) = {k: H (c,~/(log2 c,~) p + t) < (1 - c5) H (q,~)}. 

k-  1 < oe and consequently 
ke;g{" 

k - l = o O  
ke,:C' 

Thus (71) ensures 

where Y '  denotes the complement  of .J('. Define 

A k = [  ~, ajXj>(1-a')gkhk], k>l ,  
n k -  t <j<=nk 

(72) 
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where recalling (69) 

g 2-=Var 2 aJXj=D,~-D,~ - ,~ (1 -C-2 )D ,~  ' (73) 
n k -  1 <j<=nk 

h2k--= 2 log 2 g~ ~ 2 log 2 D , .  (74) 

Thus, via (69), h~ <2(1 + 7)log k for all large k. 
Now, recalling (67), by the Exponential Bounds Lemma [11, p. 262], for all 

large k 
P {Ak} > exp { -- �89 + 7) (1 -- 6') 2 h 2} >= k -1 

Thus, via (72) and the Borel-Cantelli Lemma 

P{A k i.o. (k~Y')} = 1. (75) 

Set 

B~= crjXj <2(2D . . . .  log2D . . . .  ~ , k>2 .  

Now, via (73), (74), (69), and the choice of C 

(1 - 6') gk hk -- 2 (2D,~_~ log 2 D,~_ ~)~ > (1 - c~) (2 D,~ log 2 D,~) ~ 

for all large k. Consequently 

P{AkBk i.o. (k~.~')} <=p { ~  a jX j>( l -~ ) (2D ,  log2D~)~ i.o. (k~.~')}. (76) 

Now, via (68), P{B k occurs for all large k~.xr =1 and so, recalling (75), both 
sides of (76) are equal to 1. Thus, 

n k  

lim sup a ~ > ( 1 _  c~) 2~ 
k~co (O,~ log 2 D . y  
ke~" 

a.c. (77) 

However, for all large k in .3if', recalling (63), (66), and Lemmas 3 and 5 

2 2 C ~P+ 1~ 10 D~klogeDnk>(1-c5) s~kH(%J(log2 ~ ) g2q,~ 
~ ( 1  3 2 - (~) s.~ H(q.~)  l o g  2 q .k  > (1 - 6)  ~ 2 2 s, k q,Jnk 

whence (77) entails 

Ilk 

l imsup 1 __>limsup 1 >(1_6)323,  
n~oo s,,q,/n ~ -  k~oo s,kqnJn~ 

k~YF" 

a.c. 

and (38), with equality replaced by >,  follows from the arbitrariness of c5. 
The prior argument was predicated on (70) which will now be verified. By 

(30) and (31) letting v=p +2, for all large n, c,/(log 2 c~) p+~ >qn/(log2 qn) ~ and so 
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the series of (70) is dominated by 

oo 

0(1) E (kG(qnk)) -1 ~ y2 dF(y). (78) 
1 [qnk/(log2 qnk) v < [Yl <= qnk] 

Now for all large y, choosing n such that n - 1  <XQ(y)< n, by (21) and (30) 

y=qQ(y)>=(l +o(1)) 26 q .>( l  +o(1)) 2~-c.>c(�89 

whence 
Q(y)<__2c l(y)=2y2/C(y). (79) 

For given k>__ 1, let j(k) be the smallest integer j >  1 for which 

q,,ff(log 2 qn~) ~ <= q,,j. (80) 

For given j >  1, let k(j) be the largest integer k > 1 for which j> j (k )  or, equiva- 
lently, for which (80) holds. Then by (78), the definition of Q, (79), (66), and (69), 
the series of (70) is dominated by 

k (j) 

0(1) ~ ]" y2dF(y) ~ (kG(q.k)) -~ 
j = l  [q~Tj l < ] Y l ~ q n j ]  k = j  

o~ dF(y) k(j) __<0(1)~ ~ Q(lyl)G(lyl)logzly I - - j + l  
1 [q,~,- i <lyl <=qnA jG(q,)  
93 

<0(1)  ~ J(q.j_ 1, q J j - ~ ( k ( j ) - j +  1) logj. (81) 
1 

Claim. For all ~ in (0, 1), if j is sufficiently large 

k(j) < j  + 2 + [j']-= ~c(j, z ) -  to. (82) 

Proof of Claim. Using (66), (69), and the definition of ~c 

log 2 n~ ~ log  ~c ~ l o g j  ~ log  2 nj. (83) 

To substantiate (82), it suffices by the definition of k(j) and the monotonicity of 
v > qy qff(logzq,,) ~ to show that q~ff(logaq~ ) q~j for all large j. Since y ~ 2 

= G(qy) log 2 qy is increasing, by (66) and (83) 

q~j((log2q,~)2~ z > q,,) ___ (1 + o (1)) n~/(nj(log 2 nj) 2~) 

and thus it suffices to show that 

n~ > nj([(log 2 n j) 3~3 + 1) -~ Nj 

for all large j. Recalling the definition of n k, it is enough to verify for all large j 
that Duj < C 2~ and this will be true if it can be shown that 

DN~/D,j < C 2j~. (84) 

To this end, via (9), (66), and (69) 

G(q,v)/G(q,,/(log 2 q,,y+ 2) =< (log 2 q,)2v+ 4 ___ (1 + o(1)) (log j) 2p+ 4. (85) 
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Moreover by (23), (66), and (69) for all large j 

G (qN)/G (q,) < (log j) ~. (86) 

Invoking (28), (66), and (69), for all large j 

Njs,,j=exp 2K(log2NS y. 1/i <j. (87) 
,,+1 

Now (63), (64), (85), (86), and (87) entail (84) for all large j, establishing the 
claim. 

Finally, in view of (82), j - l ( k ( j ) - j + l )  l o g i c 0  as j--+ oo provided 0 < e < l .  

Thus, from (81) the series of (70) is dominated by O(1)~J(q,,j_,, q J  which 
converges by (34) and Lemma 11. [] i 

The series of (34) can be replaced by an integral according to 

Corollary 1. Under the hypotheses of the theorem, if (34) is replaced by 

yZ/(G([yl) (log~ ly]) 1 - ~) dF(y) < c~, (88) 
flY] _-> e e] 

then (35) holds. 

�9 Proof Let Qe(Y) =(l~ y)e Q(y) ILy>_eq(y), y>= O. Then by hypothesis 
E{Qe([ YI)} < o9 implying 

co 

e {2Qp(I YI) > n} < oo. (89) 
1 

Now via (19), (18), slow variation of G, and Q~(y)=y2/(G(y)(log2 y)l-e) 

Q, ((n(log 2 n) 1 -/~ G(q,,)) ~) ~ Qp(q,,/(log 2 q,)-~') >= n 

and it follows for all large n that 

{1 y[ > (n(log z n) 1 - ~ G (q,))-~} c {2Qe([ u > n}. (90) 

Next, noting that KcZ>n(log2n)l-PG(q,), it follows from (90) and (89) that 
(34) holds with 2 = K  ~. [] 

Remark 1. Since H(y)~G(y), G may be replaced by H in (88) (where e e is 
replaced by any constant a >  e e such that H(a)>0). 

Remark 2. When o-,-= 1, fi may be taken as 0 and Corollary 1 is essentially the 
theorem of Feller [-2]. 

Remark 3. Convergence of the integral of (88) is not necessary for convergence 
of the series of (34) as will be seen via an example. 

Remark 4. As already noted when a2=-EY2<c~, slow variation of G is auto- 
matic and s,2 q,/n~a2 ; Sn21og2s~. Since E y 2 <  oo ensures (88), {% !7,,,} obeys the 
classical LIL (2). This is a special case of Theorem 3 of Teicher [13]. 
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Corollary 2. Under the hypotheses of the theorem (or Corollary 1) 

l iminf 1 i - - - 1  a.c. and " I1 I , hmsup  ~ - -  - 1 ,  a.c. 
. . . .  (2/n)~ s, q, , ~  (2/n)- s, q, 

Corollary 3. Under the hypotheses of the theorem (or Corollary 1) 

~ O'j Yj inf ~ ajYj 1 n ~0 and lim - 0 ,  a.c. 
S~qn/n ~ .~oo Gq,/n~ 

2 0 2 Proof. Since (25) is tantamount to o-, = (G), the first statement follows from 
the GLIL of Theorem 1 (or Corollary 1) and Theorem 2 of [9]. The second 
statement is then a consequence of the fact that convergence in probability 
implies some subsequence converges almost certainly. []  

Remark. The first half of Corollary 3 also follows readily from Theorem 1 with- 
out reference to [9]. For by (64) and (18), 

nD,/(s 2 q2) <= nG(G)/q2 = (log 2 G) - I  = o(1), 

so by Cebygev's inequality 
�89 e 

~ aj X / ( s ,  q,/n-) -----, O. 
1 

The Corollary is evident in view of (36) and (37). 

Theorem 2. Under the hypotheses of Theorem 1, if (34) is replaced by 

or by 

then 

oo 
~P{IYl>Xq./7~.}=oo, all 2 > 0  (91) 
1 

Y2/(G(JYl) logz lyl) dF(y)=  oo 
[]Yl >_-eel 

1 
lim,~sup s,,~/%/n ~ oo, a.c. 

Proof. Since (91) entails limsupn~la,,Y,[/(s,q,)=oo, a.c., (93) follows 
n~x3 

[a, Y,[ _-< aj + aj Yj, the monotonicity of G q,/n ~, and symmetry. 

Next, (92) is tantamount to E{Q(IYI)} = oo and so 

(92) 

(93) 

via 

o o  

~ P { I Y [ > q , } = ~  P{Q([YI)>n}= oo. 
1 1 

However, q,/n "F, whence for all )~>0, recalling that 7~>__1, (91) holds via 
Lemma 10. []  
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4. An Interes t ing  E x a m p l e  

Let 0<c~(1)< 1, c~(3)- 1 >~(2 )>0 ,  

a~ = (log 2 n)~(1)(log 3 n) ~(2) 11 (l~176 

= n-  1 (log 2 n)~(1)(log3 n)~2) exp {(log n)(log 2 n)~r 3 n) ~z)} 

2 = 1 for 1 ~ n < N. Let Y have density for n > N ~ [exp {e e} ] + 1 and let 0-. 

f(y) = c(2 lyl3(log [yl) (log 2 [y])~(X)(log 3 [y])~(3))- 1 

�9 exp {(log z [y{)l- ~(1)/(log 3 [y[)~(3)} itl, I au~(Y) (94) 

where c is some constant. It can easily he verified that 

s,2 ~ exp {(log n) (log 2 n)~(1)(log3 n)=(2)}. (95) 
Hence, 

=~[c~(1), 1), if c~(2)=0 
B-{fl~[-0, 1): yn=0((log2n)r [(c~(1), 1), if c~(2)>0. 

It is also easy to verify that  

H(y) ~ c(1 - ~(1))- 1 exp {(log 2 y)X -~(1)/(log 3 y)~(3)} (96) 

and that  H is slowly varying. Now H(q,)~H(n ~) by (20) and (96) and so recall- 
ing (18), (12), (19), and (95) 

2s~ qZ,/n ~ 2c(1 -~(1) ) -  1 exp {(log n) (log 2 n)~~ n) ~(2) 

+ (log 2 n~-)l -~(J)(log 3 n~)-~(3)} log 2 n 
_ z (97) = a,,. 

Now for any /? in B, it follows from (12), (96), and (94) that convergence of 
the integral of (88) is equivalent to 

oo 

(y(log y)(log 2 y)l -ca-~(a))(log 3 y)~(3))- 1 dy < oo. (98) 
N 

Hence if c~(2)>0, then 1 - ( / 3 - ~ ( 1 ) ) < 1  for fl in B and so the integral of (88) 
diverges. 

Nevertheless, it will now be shown that {a, Y,} obeys the G L I L  of Theo- 
rem 1 if and only if c~(3)-1>c~(2) regardless of whether e (2 )>0  or ~(2)=0. 
Now convergence of the series of (34) for some 2 > 0 is equivalent to that of the 
series of (91) for some 2 > 0  which, in turn, is equivalent to 

~ (y(log y) (log 2 y) (log 3 y)~(3)-~(2))- 1 dy < oo. (99) 
N 

These equivalences are detailed in [8], but need not  be reproduced here. Then 
by Theorems 1 and 2 

lira sup as t ~ aj yj = ~1, a.c. if c~(3)- l >  c~(21 
, ~  1 [o% a.c. if ~ ( 3 ) - I  =c~(2) 
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where {a,} is as in (97). Hence if c~(3)-1>~(2)>0,  then Theorem 1 yields a 
GLIL while nothing can be concluded from Corollary 1. 

Finally, if 7(2)=0, then by choosing fi=c~(1) in B it follows from (98) and 
(99) that the integral of (88) and the series of (34) converge or diverge together 
according as c~(3) > 1 or c~(3) = 1. 

5. Final Remarks 

Remark 1. A version of Theorem 1 obtains without the proviso of symmetry 

provided ~ aj Yj is centered at a median. Specifically, if {Y, Y,, a,,} satisfy the 
1 

hypotheses of Theorem 1 (except for possibly the symmetry condition) then 

n n o j Y j  

0<lim~sup s,,qjn ~ < oe, a.c. (100) 

Proof. Only the case EY 2=c~ need be considered in view of Theorem 3 of 
Teicher [13] and the elementary inequality (see, for example, [7, p. 244]) IEX 
- m e d X l < ( 2 V a r X )  5. Let m be a median of Y and let {Y*=Y-Y ' ,  Y~*=Y, 
-Y,'} be a symmetrized version of {Y,, Y~}. Define for y > 0  

y 

(~(y)=2 J tP{IY-ml>t} dt, fft(y)=E{(Y-m)2 Itlr_ml<=yl}, 
0 

y 

G*(y)=2 ]" tP{IY*[ >t} dr. 
0 

Since G is slowly varying, Lemma 3 and the observation just prior to it ensure 
that E ] Y[ < oo and since 

H(�89 ,,l__<rl} <H(y) for all large y, 

it follows from Lemma 3 that 

/l(y) = E {y2 itlr ml_<-,l} + O(1) ~ H(y) 

and so G is slowly varying and 

G(y) ~ G(y). (101) 

Then, the Weak Symmetrization Inequality [7, p. 245] 

P{LY-ml>y}<2p{lY*l>y}<4P{IY-ct>�89 all c (102) 

yields (take c = m) 

Cr(y)<2G*(y)<=16G(y), y>O (103) 
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and 
y2p{ly,[>y} <2v2p{ly,]>y} 16(�89189 90 

6*(y) C(y) = ~(�89 

by slow variation of d and Lemma 3. Again by Lemma 3, G* is slowly vary- 
ing. 

Next, let Q*(y)=ye/(G*(y)log2y ) and let q* denote the inverse function of 
Q*. Now by (101) and (103) for some finite nonzero constants A and B and all 
large y, Q(y)<AQ*(y)<BQ(y) implying for all large n that q,w<q*/A<q,. 
Then, recalling (21), 

*/ (104) 0 < lim inf q*/qn < lim sup qn qn < ~ .  
n ~ c o  714oo 

It follows from (101), (103), (104), and slow variation of G* that G(q,,) 
=O(G*(q*)), whence (34) and (102) (with c=0) ensure that for some 2" >0  

oo 

P {[ Y*I > 2" (n inf 7( 1 G* (q*) log 2 i)~} < oo. 
1 i>n 

Applying Theorem 1 and Corollary 1 to {11.*} yields 

lira sup ~ = - l i r a  inf 1 
. -  oo s .  q n / n  ,~oo s,q,/n- , ~ = 2  ~, a.c. 

and then (100) follows from (104) and the argument of Kesten [5, Lemma 1]. 
(The only change needed in Kesten's proof is that the Kolmogorov 0 - 1  Law 
is used rather than the Hewitt-Savage 0 - 1  Law.) [] 

Remark 2. Some discussion about the significance of Theorem 2 vis-fi-vis Theo- 
rem 1 is in order. If 

(7, e,)- z G(q,) log 2 n = O(1) (105) 

(afortiori if 7,71 G(q,)logzn 1" or 7,=0(1)) then, recalling (18) and (19), for some 
M < oc and all large n 

1 2 2 2 ~c, <q,/~,< Mc, 

implying via Lemma 10 that the series in (34) and (91) converge (for some and 
hence all 2>0) or diverge (for some and hence all 2>0) together. Therefore, 
under the assumptions of Theorem 1 /f (105) holds, then (34) is both necessary 
and sufficient for (35). This leads to a question: Is (34) (or convergence of the 
series in (91)) always necessary and sufficient for (35)? 
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