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1. Introduction 

The Poisson approximation for sums of independent Bernoulli random variables 
has been of considerable interest in the literature [see Prohorov (1953), Hodges 
and LeCam (1960), LeCam (1960), Kerstan (1964) and Vervaat (1969)]. The 
problem was generalised by Chen (1975) to include certain classes of dependent 
Bernoulli random variables. In this paper a similar approximation theorem is 

n 

proved for the distribution of ~ Xi~(i), where Xij , i , j= 1, 2 . . . .  , n, are independent 
i = l  

Bernoulli random variables and (n(1),n(2), ..., n(n)) a random permutation of 
(1,2, . . . ,n)  independent of the Xi]s. The nature of the dependence among 
X1~(1 ), . . . ,  X n ~(,) differs from that considered in [2]. 

A number of corollaries are derived from the main theorem. These include 
results of LeCam (1960), but with larger absolute constants in the bounds. The 
largeness of the absolute constants can be attributed to the greater generality of 
the present problem. One of the corollaries is a Poisson counterpart of a theorem 
of Wald and Wolfowitz (1944), where the latter is actually a limit theorem. [See 
also Noether (1949), Hoeffding (1951) and Robinson (1972).] Another corollary is 
an approximation theorem for the hypergeometric distribution. 

Throughout this paper, all summations will be from 1 to n unless otherwise 
stated. 

2. The Main Theorem 

We first state the theorem as follows: 

Theorem 2.1. Let Xij , i , j= 1, 2, ..., n be independent Bernoulli random variables 
with P(Xi~=l )=l -P(Xi~=O)=pi  j and let (n(1),n(2), ...,n(n)) be a random per- 
pemutation of (1, 2, ..., n) independent of the Xij's. Then for n>5 and every real- 
valued function h defined on the non-negative integers such that Ihl < 1, we have 

IEh(2 Xi~.))-~hl <= 15.75 min (2 ~, 1){ Z p/z+ + Z ~2+j} 
i i j 

(2.1) 
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and 
- 2  [Eh(ZXi,~(i))--9~h [ _--<45.252 -1 {Zp2+ + ~, p+ j} (2.2) 

i i j 
where 

.~zh=e -z ~ h(k)2k/k ! , 
k = O  

~+ =Zp,/", P+j=ZpJ". 
j i 

) .=Zpi+=Zfi+j=Z 2pii/n. 
i j i j 

The proof of the theorem is based on the derivation of an identity similar to that in 
[-2] and a few lemmas. (An interesting application of a special case of these identities 
is in [1].) 

Let I, J, K, L, M be random variables, each uniformly distributed on { 1, 2, . . . ,  n} 
and let zc =(~(1), ~z(2), ..., z~(n)), ~ = (~(1), ~(2), ..., ~(n)) and ~ = (~(1), k(2), ..., ~(n)) 
be random permutations of (1, 2 . . . .  , n) such that 

{I, J, K, L, M, ~, ~, ~} is independent of {Xij: i,j= 1, 2, . . . ,  n}, (2.3) 

(I, K) and (L, M) are uniformly distributed on {(i, k): i:#k; i, k= 1, 2, ..., n}, 
(2.4) 

J, (I, K), (L, M) and 7~ are mutually independent, (2.5) 

J, (I, K) and ~ are mutually independent, (2.6) 

I and n are independent, (2.7) 

~(ct), a+I,K,~-~(L),~-~(M) 
L, a = I  

~(~)= M, ~ = K  (2.8) 

~(I), ~ = ~ - I ( L )  

~(K), ~ = ~ - I ( M )  
and 

[~(a), ~-I, '~-l(J) 
n(a )=] J ,  0~=I (2.9) 

L~(I), 0r =/~-1 (J), 

where ~(~-l(a)) = ~ and ~(~- 1(~)) = ~. 
The consistency of the conditions (2.3)-(2.9) can easily be verified. 
Now let (~2, ~ ,  P) be a common probability space on which all the above 

random vectors are defined and let 

= the a-algebra generated by n and the Xij's, 

w = 2 x , ~ . .  r162 = 2 x,.<~,, ~ = Z x,~<,~, 
i i i 

w * =  Zx,~.>, r162 Z xi~.~, W** = Z x,~.~. 
i * I  i * I  i * l , K  
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Also define the operator A by A f ( w ) = f ( w + l ) - f ( w ) .  Then, using the basic 
properties of conditional expectations, the fact that each X~j takes on 0 and 1, 
the conditional independence of Xr~m and W* given (I, re) and the independence 
of I and W, we obtain, for every real-valued function f defined on {0, 1, 2, ... }. 

E [Wf(W)] = n E {[E ~ X~a)] f (W)}  = nE [X,~a)f(W)] = nE [pica)f (W* + 1)] 

= n E  [ (PI~( I ) -  PI+)f(W* + 1)] + nE {pi+ [ f (W* + 1 ) - f ( W  + 1)] } 

+ 2 E f ( W +  1) 

= nE [(PrJ-f)x+)f( W* + 1)] - nE [PI+ PxJAf( W* + 1)] 
+ 2 E f ( W  + 1), (2.10) 

where E ~ denotes conditional expectation given the a-algebra ~-. Using again the 
fact that each X~j takes on 0 and 1, the conditional independence of p~j and W* 
given I and the conditional independence of 

(X~_,<j),~<I>,X~_,<j),j) and ~, X:~<:) 
a*I,-~-l(J) 

given (I, J, ~), we obtain 

nE [(PlJ-PI+)f( W* + 1)] 

= n E { ( P z s -  Pz+) If(W* + 1 ) -  f(I7r * + 1)]} 
=nE{(pH-PI+)(X~-~(J),~a)-X~-I(J),J)Af( Z X~,(~)+ 1)} 

a*I,~c-l(Y) 

=nE{(pH-P,+)(Pe-~(J),e<,)-Pe-'(J),J)Af( Z X~(=)+ 1)} 
a , l , ~ - l ( j )  

= n ( n -  1) E { (P,M--p, + )(pt(r--PKM) Z(J= M) A f(ITV** + 1)} (2.11) 

where z(A) is the indicator function of the set A. Now, as in [2], we choosefsuch  
that 

wf(w) - )~f(w + 1) = h (w) - ~z h (2.12) 

where h is another real-valued and bounded function defined on {0, 1, 2 . . . .  }, 
and let Szh(w) denote the solution of the difference equation (2.12) for w > 1 (the 
solution is unique except at w=0). Then (2.10) and (2.11) yield 

E h ( W)= ~ h + n(n - 1)E [(px M --Px + )(P~cL -- PKM) Z(J=M) A S~h (17V** + 1) 

- nE [fi~+ PzsA Szh(W* + 1)]. (2.13) 

In order to bound the error terms on the right hand side of (2.13), we need a few 
lemmas. 

Lemma 2.1 [2]. For [hi < 1 and w >= 1, 

]A Szh(w)] < 6 min (2 -~, 1). 

Lemma 2.2. [2] For Ihl < 1 and w >= 1, 

IAS~h(w)l<=2 -x {2+41w-21 min (2 -~, 1)}. 

Lemma 2.3. For Z = VV or 17V, 

E ( Z -  2) 2 __< 2. 
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Proof Direct computations yield 

E ( Z -  2) 2 = 2 + 22/(n- 1) - n ~ ~+/ (n-  1) -  n ~ ~2 J(n - 1) 
i j 

+ Z Z p /n(n- 1). 
i j 

This together with the inequalities A2an E p 2 and E ~ = < ( E p i j )  2 proves the 
lemma, i ~ 

Lemma 2.4. 

n(n-  1) EI(PxM--P,+)(PKL--PKM) Z(J=M)I <(3 n - 2 )  22/n(n - 1)-}- Z p2j. 
J 

Proof By direct computations. 

We now prove Theorem 2.1. In the following, we shall take h in (2.13) to be 
such that Ihl < 1. We first bound the second error term on the right hand side of 
(2.13). By Lemma2.1, we obtain 

[nE [ffi+ PIJ A S~h(W* + 1)][< 6 min (2 -~, 1) ~ p~+. (2.14) 
i 

Also, by Lemma2.2, the inequality IW*+ 1-I~V[<2 and the independence of 
I, J and 1~, we obtain 

InE [~+ plsA Szh(W* + 1)] I <2  - 1 [nE~+ P~s] [10+ 4 min(2 -~, 1) E]IYV -2 l ]  

which by Jensen's inequality and Lemma 2.3 

< 142-1 E ~z+. (2.15) 
i 

Next we Consider the first error term on the right hand side of(2.13). By Lemmas 2.1 
and 2.4, we obtain 

In(n- 1)E [(ptM-pI+)(P~:~-p~:M)Z(J=M)A Szh(VV** + 1)][ 
_<6 min (2 -~, 1) {(3 n -  2) 22/n(n - 1 ) + ~  p+~}.-z (2.16) 

3 

Also, by Lemma2.2, the inequality ]IYV**+I-I~V]<3, the independence of 
J, (1, K), (L, M) and 1~, and Lemma 2.4, we obtain as in (2.15) 

]n(n- 1)E [(px~-PI+)(PKL--P~cM) Z(J = M )  A Szh(ITV** + 1)]] 
< 182 -a {(3n-2)22/n(n - 1 ) + Z ~ z j } .  (2.17) 

J 

Finally, noting that n>_ 5, that 22 =<n ~p~+ and that 22__<n ~ p+j,-2 we obtain (2.1) 
i j 

from (2.13), (2.14) and (2.16), and obtain (2.2) from (2.13), (2.15) and (2.17). This 
completes the proof of Theorem 2.1. 

3. Corollaries 

Except for Corollary 3.2, all the corollaries in this section have already been 
mentioned in the Introduction. Corollaries 3.3 and 3.4 are actually corollaries to 
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Corollary 3.2. Unless otherwise stated, all notations are the same as in the preced- 
ing sections. 

Corollary 3.1 (LeCam). Let Xa, X2,. . . ,  Xn be independent Bernoulli random 
variables with P ( X  i = 1) = 1 - P ( X  i = O ) - - p i .  Then for n > 5 and Ihl < 1, we have 

IEh(Z X,)- ~h I <= 31.5 min(2 -�89 1) Z p2 
i i 

and 

IEh(2 X~)--~h]<90.52 -~ 2 p  2 
i i 

w h e r e  

2=~p i .  
i 

Proof Let Pij = Pj for all i and j and observe that  2 2 ~ n 2 p2. 
i 

Corollary 3.2. Let aij  , i , j = l ,  2 , . . . , n ,  be an array of O's and l's and let 
(re(l), re(2), . . . ,  7c(n)) be a random permutation of (1, 2 .... , n). Then for n>5 and 
Ihl < 1, we have 

�9 �89 2 2 IEh(2 a~,(i))-~;h I < 15.75 m m ( 2 - - ,  1) {2  Pi + ~  qj} 
i i j 

and 

iEh( 2 ai~i))_~ahl<45.25 2 1{2p2 + ~ q2} 
i i j 

where 

Pi = ~, aij/n, qj = ~, aJn,  
j i 

2=~ ,P i=Z  q j = ~ Z  aij/n. 
i j i j 

Proof Let Pij = a~j for every i and j. 

Corollary 3.3. Let al, ..., a,, b 1, ..., b n be O's and l's and let (Tz(1) . . . . .  re(n)) 
be a random permutation of (1, . . . ,  n). Then for n > 5 and ]hl < 1, we have 

IEh(Z alb~(i))-@h I < 45.25 (a + b) 
i 

where 

~=2 ajn, b= y,b~/n, 2=n~b. 
i i 

Proof This follows from Corollary 3.2 with a~j= a~bj. 

Corollary 3.4. Let 

{ ! : ) ( n - a ) / ( n )  if max(a+b-n,O)<_r<_a 
h(r;n,a,b)= b - r  b 

otherwise. 
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Then 

~, [h(r; n, a, b)-e-~2r/r![  <45.25(a+b)/n 
r=0  

where 

2 = a b/n. 

Proof This follows from Corollary 3.2 with aii = 1 if 1 ___ i_< a, 1 = j  < b and = 0 
otherwise, and with h(r)= 1 or - 1 according as h(r; n, a, b)> or <e-~2r/r !. 
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