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1. Introduction 

Let (X~) be a sequence of random variables taking values in a Banach space E; 
T the collection of bounded stopping times. Call (X,) an asymptotic martingale 
if (~X~)~r converges. It was shown in [1] that an Ll-bounded asymptotic 
real-valued martingale converges almost everywhere. A vector version of this 
theorem is here proved, the convergence holding a.e. in the weak topology of E. 
A simple example shows that the weak topology cannot be replaced by the strong 
topology. Also a new proof of Chatterji's vector-valued martingale convergence 
theorem [6] is given. 

2. Asymptotic Martingales 

Let (f2, ~, P) be a probability space, E a Banach space with norm ] I. Our notation 
and terminology are close to that of [10]. A random variable is a strongly (or 
Bochner) measurable function with values in E. The integral of such a function 
is defined in the Bochner sense. We consider a sequence (X,) of random variables 
and an increasing sequence (~n) of a-fields such that each X, is measurable with 
respect to ~,. We assume, without loss of generality, that ~ is generated by U ~,- 
A stopping time ~ is a random variable taking values in {1, 2 . . . . .  oo} and such 
that for each n, {~ = n} e ~, .  The set of all bounded stopping times is denoted by T, 
the set of bounded stopping times larger than a given stopping time a is T>~. 
(X.) is a martingale if E~"Xn+I =X. for each n. (X.) is a martingale if and only 
if the expression S X~ does not depend upon the choice of ~E T; it seems therefore 
natural to call (32.) an asymptotic martingale if 

lima ~ X~= z exists. (1) 

(1) means that there is a vector zEE with the following property: For each e>0  
there exists a a cT  such that I~X~-z [<e  if z~T>~. A sequence (X.) is called 
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L~-bounded if 

sup j" IX, l< oo. 
n 

(2) 

The following theorem was proved in [1]; see also [5] for a related result. 

Theorem 1 (Austin-Edgar-Tulcea). I f  (X,) is a real-valued Ll-bounded 
asymptotic martingale, then X, converges a.e. 

A Banach space E is said to have the Radon-Nikod,ym property if every 
E-valued measure # on 5, of finite variation and vanishing on P-null sets, can 
be represented as an integral of a random variable X in the sense that 

#(A)=~XdP A6~.  (3) 
A 

Here we prove the following. 

Theorem 2. Assume that E is a Banach space with a separable dual and the 
Radon-Nikod~m property (for instance, a separable and reflexive Banach space). 
I f  (X,) is an E-valued asymptotic martingale such that 

sup ~ I X, I < oo, (4) 
T 

then X, converges a.e. in the weak topology of E. 

Proof We at first prove a 'maximal '  lemma. 

Lemma 1. Let (X,) be a sequence of random variables satisfying (4). Then for 
each positive number a 

n{sup IX.l_>_a} __< 1 sup j" IX, I. (5) 
n a T 

Proof Let N be a fixed positive integer and define 0.ET as follows: If n<N, 
X~ . . . . .  X,_l<a,  X ,>a  (Xo=0), let 0.=n. If sup<uIX, l < a  , set 0.=N. Let AN= 

{1 su_<PN IX, I > a}. Now s~p ~ I X~[ ~ ~ I X~ I > ~Au [X~l > a P(AN). (5) follows on letting 

Nl"oo. 
Lemma 2. Let k be a fixed positive integer, A~q~k. I f  (1) holds then (~AX~)~ET 

converges (in fact, uniformly in A E ~e). 

Proof Given an e>0  find an integer N > k  such that if 0.I,z~T>N then 
[~X,,-~X~I]<e. Now given a,z~T>n, define 0.~,Zl as follows. Let N~ be an 
integer >max  (0., z) and set 0.~ = a  on A, h =z  on A, 0.~ =z~ =N~ on A ~. One has 
{0.1<N}={0.1>N1}=fJ; { a l = n } = { 0 . = n } ~ A ~ ,  for ne[N, N1); {al=N1}= 
A ~ k = ~ N , .  Thus 0" 1 is a stopping time; similarly z~ is a stopping time. Now 

This proves the lemma. 

We now reduce the problem of convergence of an asymptotic martingale 
satisfying (4) to that of convergence of an asymptotic martingale such that 
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sup [X, IEL 1 . A similar device was used in the case of real martingales in [.8] 
n 

and [.9]. Let a be a positive constant. Define a stopping time o- as follows: a = co 
if I x.I < a for all n; otherwise a is the first n such that [X,[ > a. Let Y= sup IX, A ~ [, 

n 

we assert that ~ Y< oo. Indeed, Y<a on {o-= ~}.  On A d ~{ a<  oo}, [X, A ~[ ~ [X~[, 
hence 

X~ Nlim inf~ [X. ^ ~1Nlim inf~ IX. ,, ~,1N sup ~ IX~l = M <  oo (6) 
A n A n T 

by Fatou's lemma and the observation that the infimum of two stopping times 
is a stopping time. Clearly [X,^~I<[X,[ on A, hence ~ Y < a + M .  

Since 

(X. ^ ~) is an asymptotic martingale. 
Now, by the maximal Lemma 1, (X. A ~) coincides with (X.) except on a set the 

measure of which is small if a is large. Thus we may and do assume without loss 
of generality that (X,) itself is such that sup IX.I = Y6L1. 

n 

Define a generalized sequence of E-valued measures #~, -c ~ T, by 

#~(A)=[.AX~dP A e ~ .  (7) 

By Lemma 2, lira #~ (A) = # (A) exists for each A ~ ~) ~, .  If A e ~ then for each 
r 

e > 0  there exists a set A ' ~ ,  such that P(AAA')<e. Since [X~[<Y for all 
r, [SAX~--[.A,X~[<e~Y This implies that #(A)=lirm#~(A ) exists for all A ~ .  

Clearly # is a finitely additive measure of finite (bounded by ~ Y) variation. We 
now state a well-known result: 

Theorem of Vitali-Hahn-Saks. Let #, be a sequence of E-valued finite measures 
on ~ such that lim#,(A)=t~(A ) exists for each A ~ .  Then # is a measure. 

n 

A proof of this theorem is given in [.7], p. 321. An elementary proof of a 
stronger result was published in [-43. 

Applying the Vitali-Hahn-Saks theorem and the Radon-Nikod~m property 
of E, we obtain that there exists a random variable X~ such that 

lim ~ X~dP= ~ X ~ d P  A ~ .  (8) 
T A A 

Let E' be the dual of the space E, and let (xl, i= 1, 2 . . . .  ) be a sequence dense 
in the unit ball of E'. Fix i; applying x'~ to (8) we obtain 

lira ~ x;(X~)= [. x;(X~) Ace .  (9) 
T A A 

Therefore by Theorem 1 lim xi(X,) exists a.e., and, because of (9), this limit 
n 

must be a.e. x'i (X~), say lira x'i (X,)= x'i ( X j  except on a null set f2 i. The argument 
n 

is valid for all i; hence X, converges weakly to X ~  outside of the null set U f2~. 
Indeed, sup IX, IEL1 implies that X,(co) is bounded in n for each co outside of a 

n 

set of arbitrarily small measure. This proves the theorem. 
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We now give an example showing that strong convergence in Theorem 2 
need not hold. Let E be an 1 v space ( l<p<c~) ,  with the usual basis (e,): each 
vector e, is a sequence of real numbers with all terms equal 0 except for the n-th 
term which is 1. Let X, be independent E-valued random variables defined as 
follows: P ( X I = e l ) = I ;  P(Xa=ei)=�89 i=2 ,3 ;  P(X3=ei)=�88 i=4 ,5 ,6 ,7 ;  etc. 
Clearly LX,[ = 1 for each n, and (X,) is not Cauchy hence diverges at each point 
of ~2. But I~X,1=2("-1)(1-P)/v~0, and also (~ X~)~r ~ 0 ,  since v>n  implies 

LSxd__<ISX.I. (10) 

To prove (10), proceed by induction on the number N(~) of values taken on 
by ~. Passing from N(z)=m to N ( ~ ) = m + l ,  we replace in the expression ~X~ a 
vector u by two vectors, say v and w, such that lul=[vl=lw]=l and the mass of 
u is the sum of masses of v and w. This clearly diminishes I~X~[. 

Another example, for which we are indebted to W.J. Davis, shows that in 
Theorem 2 the assumption (4) cannot be replaced by (2). Let (f2, ~, P) be the 
interval [0, 1) with Borel sets and Lebesgue measure. E is the Hilbert space 12. 
Let A1 [0,�89 2 1 ~ -  A1 = [3, 1), A~ = [0,�88 ...; in general for each positive integer n, 

k [ k - 1  k ]  2". A , -  [ 2" ' 2"] ' k =  1, 2, ..., For each positive n let 

2 ~ 

y k= ~ aila~ e~ ' k = l , 2 ,  . . . ,2" 
i = 1  

where e~ = 1 for i + k, ~k = n, and the e~, are unit vectors in 12 such that ~ ~" e n J_ e n, unless 
i=  i' and n = n'. Let (X,) be a sequence of random variables considering of the 
Y,k's ordered so that y k is before Y~' if n<n', or if n=n' and k<k'.  Then 
sup ~ [X,[ < o% and X,(co) is at each point c0 unbounded, hence it fails to converge 

weakly. But lima ~ x ,  = 0. To see this, write 

where the %'s are mutually orthogonal unit vectors in E, and if P(Am~)=2 -k, 
then a~ is either 1 or k. Let rc~ =P(A,,,), then ~, r h = 1. Now 

]I X~lZ = [E ", ~, % 12 = E e~ z ,2 < E (logz rh) 2 rc~ 

<maxi (log2 rci) 2 . rc~. 

The last expression converges to zero if k --+ oe and v > 2 k, since then max ~ =< 2 - k. 
g 

3. Martingales 

Chatterji [6] proved the following elegant result. 

Theorem 3 (Chatterji). I f  a Banach space E has the Radon-Nikod~m property, 
then (and, as it is easy to see, only then) every E-valued Ll-bounded martingale 
converges a.e. 
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The proof in [-6] is rather difficult and, as observed in [10], "est plus une 
6tude de decomposition de measures qu'une 6tude de martingales." We sketch 
here a proof of Theorem 3 along the lines of the proof in the previous section. 

If (X,) is a martingale, (] X,  ]) is a submartingale since E~"IX,+ 11 > ] E~" X,+ ii = 
]X,]. First, Lemma 1 is replaced by the maximal lemma for submartingales, due 
to Doob  (see e.g. [10], p. 24); it suffices to assume (2) instead of (4). Lemma 2 
is now a triviality, since if A ~ k  then ~AX,=~AXk for n>k. Since IX,] is a positive 
submartingale, ~IX,^~B<~BX,[ (see e.g. [-10], p. 31); hence the last two in- 
equalities in (6) may be replaced by: l iminf~ IX.^~ i<sup~  IX, l<  oo. The proof 

that if (X,) is a martingale then so is (X, ^ ~) is the same as in the real case (see 
[10], p. 73). Finally, for martingales the relation (8) (in which it suffices to take 
z = n) is more informative than for asymptotic martingales, since it implies that 

X,=E~"Xoo n = l , 2 ,  . . . .  (11) 

To see this, observe that both sides of (11) are measurable with respect to ~ , ,  and 
both sides yield the same integral over a set A in ~ , .  The martingale convergence 
theorem is now reduced to the theorem about convergence of martingales of the 
form (11), for which simple proofs exist (see [6, 10], or [9]). []  
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Added July 29, 1975. Dr. Garling has kindly pointed out to us that the Vitali-Hahn-Saks theorem 
is not needed: The countable additivity of # is an easy direct consequence of the uniform integrability 
of (x,). 


