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1. Introduction 

In this paper we study weak convergence of a sequence of Markov chains as a 
consequence of convergence of initial distributions and transition kernels. When 
the initial distributions converge weakly and transition kernels converge in a 
particular sense which is weaker than weak convergence in the dual of the set of 
continuous functions on the state space, then the associated sequence of Markov 
chains converges weakly. We establish this first for a state space which is a complete 
separable metric space and then for a separable metrizable Radon space. Under 
somewhat stronger conditions on the transition kernels, convergence of invariant 
measures also occurs. As an application we treat the weak convergence of sequences 
of Markov  renewal processes and semi-Markov processes engendered by con- 
vergence of initial distributions and semi-Markov kernels and weak convergence 
of sequences of regular Markov  processes resulting from convergence of initial 
distributions, jump functions, and transition kernels. 

2. Continuity of Markov Chains 

Our notation and terminology are those of [2]. Let E be a complete separable 
metric space with Borel a-algebra g. On the infinite product space (g?, .J/Z)= (E, g)N 
we define the product topology (so that ~2 is a complete separable metric space) 
and the coordinate stochastic process (X,),~ N. If we are given a probability 
measure e on g and a Markov  kernel K on (E, g) then there exists a probability 
measure P~ on (f2, JC{) such that (X,) is a Markov chain over the probabili ty 
space (~, ~{, P~) with state space E, initial distribution e, and transition kernel K;  
cf. [6, p. 1621 for details. Given probability measures el,  c% . . . .  on g and Markov  
kernels K1, K 2 . . . .  we may form the corresponding measures p,1, P2%-.. on 
(f2, Jr to simplify notation we write P, for P,~" and P for P~. 

We denote by C(E) the Banach space of bounded continuous functions on E 
and by UC(E) the set of functions in C which are uniformly continuous. If g e b g  
(g is bounded and g-measurable) and K is a Markov kernel then by Kg we mean 
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the function on E defined by 

Kg(x) = ~ K (x, d y) g (y). 
E 

If # is a measure on g, #K is the measure defined by 

= . ( d x )  K (x, A). 
E 

Here is our main result. 

(1) Theorem. Let K, K 1, K 2 .. . .  be Markov kernels on (E, g) and let ~, ~1, ~2 .. . .  be 
probability measures on g. I f  

b) g e U C  implies Kg~C;  

c) for every geUC,  K , g ~  Kg uniformly on each compact subset of E, 

then P. ~ P on (~2, JCl). 

We state part of the proof as a Lemma for purposes of future reference. This 
part reduces weak convergence to convergence of finite-dimensional distributions, 
and is essentially contained in the proof of Prohorov's Theorem [1]. We omit 
the proof. 

(2) Lemma. I f  p, #1, ~2 . . . .  are probability measures on (O, ~d) then #, ~ p if 
and only if #,re[ l ~ #rc~ 1 on E k+l for each k, where r~k: ~2 ~ E k+l is the projection 
co -+ ( X o  (co) . . . . .  (co)). 

Proof of Theorem (1). It suffices by Lemma (2) to show that P, rc[ 1 ~ P ~z~ -1 for 
each k, which we prove by induction. 

By (1.a)we have Pn rto 1= an ~ a = P  rCo 1" Make the induction hypothesis that 
Pn rc[-ll ~ P ~k--11, let F a be a closed subset of E k, and let g be a function in UC 
with Ng]] ~ > 0. The indicator function of a set A is denoted by 1A. By the Markov 
property 

Pn ~k~(dY) 1F~ (Yo . . . . .  Yk-1) g(Yk)--~ n 7z[~(dY) 1F~(Yo . . . . .  Yk-1) g(Yk)l 

= [ ~ Pn ~Zk~-l(dz) ~ Kn(Zk-I' dx) g ( x ) -  ~ P 7~k~l(dz) ~ K(Zk_ ~, dx) g(x)[ 
F1 E F~ E 

< f [K n g(zk_,)--K g(zk_0l P, ~;~(dz)  
E k 

+1 ~ K g(z k_~) Pn n;~-~( d z ) -  ~ K g(z k_a) P rc[1-~ (dz)]. 
F1 F1 

Since by (1.b), K g~C, the induction hypothesis implies that the second term 
above goes to zero as n approaches infinity. 

Moreover, the induction hypothesis also implies that (Pn nk--t~)n>_-~ is tight. 
Hence for any prescribed e > 0 there is a compact set A~ such that 

Pn ~/--1~ (A~) > 1 -e/(4 Ilgll +) 
for all n. The projection A'~ of A~ onto the last factor space of E k, being the continuous 
image of a compact set, is compact and therefore 
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[Kn g(Zg_l)-- K g(Zk_l)[ d(Pn~k_ l) 
Ek 

=(  ~ + ~)[K.g(zk_~)--Kg(Zk_~) ] d(P. 7rk_~) 
A~ A c 

sup P. n k_l (A~) < sup JK. g (x ) -  K g(x)] + 2 ]lg]]~ -~ 
xeA:s n 

_< sup ]K, g(x) -Kg(x)]  +z/2.  
x~A~ 

By (1. c) this last quanti ty is less than e for all sufficiently large n, so we have shown 
that  

(3) !irn ~ 1pl(y o . . . . .  Yk-O g(Yk) P. ~ffl(dY) 

=S l~l(Yo . . . . .  Y k - 1 )  g ( Y k )  P 7~k 1 ( d y ) .  

If F 2 is a closed subset of E there exists a sequence (gt) in UC such that  g~+ lr2 
pointwise as ( --* oo. For  each n and 

P. 7r; 1 (V 1 x F2) __< ~ P. 7Z; 1 (dy) 1El (Yo . . . . .  Yk -1) gt (Yk); 

fixing f and letting n ~ 0% we infer from (3) that  

lim sup P. Zrk - I (F  1 X F2)__< ~ P zr~ 1 (dy) lvl (Yo . . . . .  Yk-1) gt (Yk)" 
n~oo  

Hence by the Bounded Convergence Theorem 

lira sup P, ~ ; l ( F  a x F2)<P 7~k-1 (El • V2) , 

from which P, rCk -1 ~ P rc~ -1 follows; cf. [1, p. 11 and p. 20]. [7 

Next we give an equivalent set of sufficient conditions for the conclusion of 
Theorem (1). 

(4) Theorem. The conditions (1.a, b, c) are equivalent to 

a) ~ , ~ ;  

b) I f  x,  ~ x in E and ge UC, then K,  g(x,) ~ K g(x). 

Proof. It suffices to show the equivalence of (1.b, c) and (4.b). Assume (1. b, c) 
hold. If g is bounded and uniformly continuous,  then since {x, x~, x 2 . . . .  } is a 
compact  subset of E we have by (1.c) that  

lim [K, g(x , ) -Kg(x , )]  = 0 ;  
n~oo 

this together with (1.b) implies that K , g ( x , ) ~  K g(x). Conversely, if (4.b) holds 
then (1. b) clearly holds, while if (1.c) fails then there is a compact set A such that  

lim sup [K, g (x) - K g (x)[ = 3 > 0; 
n x ~ A  

we may then construct a convergent sequence x,  ~ x in A such that  

lim IKn g(x~)- K g(x)l = 6, 
o 
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which contradicts (4.b). D 

Remark. Condition (4. b) is equivalent to the assertion that if x, ~ x in E, then 

K,(x , ,  " ) ~  K(x, "). Condition (1.b) is a version of the Feller property: if x , ~ x ,  
then K(x. ,  ") ~ K(x, "). 

The conclusion of Theorem (1) remains valid for somewhat more general 
state spaces. By a Radon space we mean a Hausdorff space on which every Borel 
probability measure is tight. 

(5) Theorem. Theorem (1) is true if E is a separable metrizable Radon space. 

Proof Two parts of the argument used to prove (1) need to be checked in the 
more general case; the restriction to finite-dimensional distributions proved in 
Lemma (2) and the fact that weak convergence implies tightness (i.e., Prohorov's 
Theorem). The latter holds because the Radon property implies that each indi- 
vidual probability measure on g is tight, because completeness can be suppressed 
[1, p. 241], and because weak convergence depends only on the topology of E 
so that E need only be metrizable. Since ([2, ~/) is a countable product space it 
inherits the topological properties of E; the Radon property hence implies that 
a probability measure on (Q, d//) is determined by its finite-dimensional distri- 
butions [6, p. 84]. Finally, the fact that a sequence (#,) of probability measures 
on fl is tight if and only if (#, 1r~-1),~1 is tight for each k is easily seen to remain 
true in this case, so the argument of Lemma (2) is valid when E is a separable 
metrizable Radon space, and the Theorem follows. D 

Remark. A complete separable metric space is a separable metrizable Radon 
space; whether the metrizability hypothesis can be suppressed is unknown. 

By an invariant measure for a Markov kernel K we mean a probability 
measure # on g such that # K = #. In the following result we consider the effect 
of the conditions of Theorem (1) on convergence of invariant measures. We 
assume here, and for the remainder of the paper, that E is a complete separable 
metric space; the notation #(g)=y g d# is used below. 

(6) Theorem. Assume that for each n the Markov kernel K,  has an invariant 
measure #,, that (1.b, c) hold, and that the family of probability measures {K,(x, "); 
n> 1, xcE}  is tight. Then (#,) is tight and every limit point of (#,) is an invariant 
measure for K. In particular, there exists at least one invariant measure for K. 

Proof Tightness of (#,) is easy: given e>0  choose a compact set A such that 
K,(x,  A)> 1 - e  for all n and x. Then for each n 

#, (A) = ~ #, (dx) K, (x, A) > (1 - e) ~ #, (dx) = 1 - e, 

proving tightness. 
If # is a limit point of (#,) there is a subsequence (#,,) such that #,, ~ #. Suppose 

that ge UC; then for each n' 

IV (g ) -  # K(g) l < I# (g ) -  #,, (g) l + I#,, (g ) -  #,, (K,, g) l 

+ I#,,(K,, g)-#, , (Kg)] + ]#, , (Kg)-#(Kg)] .  

In this expression the first and fourth terms become zero in the limit as n ' ~  oo 
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since #,, ~ # and g, K g ~ C. The second term is identically zero since #,, K,, = #n, 
and the third goes to zero as n' ~ oo by the argument used in the proof of (1). Thus 
# ( g ) =#  K(g) and hence #=/~ K. 

Corollary. I f  K can have at most one invariant measure then under the conditions 
of the Theorem, there exists an invariant measure # for K and #, ~ #. 

Proof In this case every subsequence of (#,) will contain, by Prohorov's 
Theorem [1, p. 37], a further subsequence which is weakly convergent. The limit 
will be invariant for K by the Theorem and is then the unique invariant measure #. 
That #, ~ # follows by a result in the theory of weak convergence [1, p. 16]. [3 

Remarks. 1. The assertion in (6) that every limit point of (#,) be invariant for 
K is true without the additional tightness hypothesis; the latter insures that the 
set of such limit points be nonempty. 

2. If E is a compact metric space the tightness of (#,) (and of {K,(x, .)}) is 
automatic. In this case (1. b) is known, cf. [8, p. 101], to be sufficient for the existence 
of an invariant measure for K; here we have given an alternative and more intuitive 
way (than that of [-8]) of constructing invariant measures for K. One possible 
choice for the approximating sequence (K,) is the following. For each n let d ,  = 
{A,,1 .... A , , J  be a partition of the state space E into sets of diameter at most 
n -1, guppose that Xn, k~A,,k, and define 

~,,k,j=K(x,,k; A,,~), j = 1 . . . . .  k,. 

We may then construct an approximating sequence (K,) by putting 
k~ 

K,(x, ")= ~ c~,,k, j ex,,j if xEA,, k 
j=l 

Kn(X, ") is then purely atomic and K,g is constant on each set A,,k. One can show 
by straightforward computations that (Kn), K satisfy the hypothesis of (1), and the 
existence of an invariant measure for K,  (concentrated on {x,, 1, . . . ,  x,, k,}) may be 
determined by elementary methods. 

3. Conditions entailing unicity of an invariant measure may be found in [7]; 
these are of a recurrence nature. When they are satisfied, the assertion #, ~ # of 
the corollary to (6)justifies the interchange of two limits; namely, if ge C 

lim lim E,[g(Xk) j = lim lim E,[g(Xk) ] = lim E[g(Xk) j .  
n ~ o o  k ~ o o  k ~ o o  n ~ o o  k ~ o o  

Another, and possibly more natural, set of sufficient conditions for the con- 
clusion of (6) is the following. 

(7) Theorem. For each n let #, be an invariant measure for K, ,  assume that (1.b) 
holds, that K,  g ~ K g uniformly whenever ge UC, and that {K(x, "); x~E} is tight. 
Then the conclusion of (6) and the corollary to (6) are valid. 

Proof It suffices to verify the tightness of the sequence (#,). Given ~ > 0 choose 
a compact set A such that K(x, A r <e  for all xeE.  Let g be a continuous function 
which vanishes on A and such that 0 < g < 1. Then for n large enough that 

I IK~g-KgIl~  <e 
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we have 

#. (g) = 5 #. (dx) K.  g (x) < 5 #. (dx) K g (x) + 

< ~ I.t.(dx) K(x,  ac)+ e< 2e, 

from which tightness follows. D 

More generally one defines an invariant measure for K to be any a-finite 
measure # such that # K = p. If we restrict attention to invariant Radon measures 
(a Radon measure is finite on each compact set) then one can easily extend (6) 
to the effect that if for each n #. is an invariant Radon measure for K.,  then any 
vague limit point of (/,.) is invariant for K. 

3. Markov Renewal and Semi-Markov Processes 

As an application of the results of Section 2 we obtain here an analogous result 
for the continuity of a Markov renewal process with respect to its semi-Markov 
kernel, which leads to further results concerning continuity properties of certain 
classes of semi-Markov and regular Markov processes. We again denote by 

�9 (E, ~) a complete separable metric space, only now we are considering Markov 
chains ((X,, T~)),~N with state space (L,~LP)=(E, 8 ) •  so that the ca- 
nonical sample space (f2,d/) becomes (L, AQ N, but remains a complete separable 
metric space. 

Our notation and terminology are those of [3, 4~. Given a semi-Markov 
kernel Q on (E, ~) we define a Markov kernel K on (L, AQ by the relations 

(8) K((y, t); A x B)=Q(y;  A x ( B - t ) ) .  

The Markov chain (f2, d/, (X,, T,), pry,0) with transition kernel K is called the 
Markov renewal process induced by Q. One thinks of 3s as the n th state entered 
by an evolving system which changes state only by jumps and of T~ as the time of the 
n th transition. In particular, given the history generated by the Markov chain X, 
the process T has independent increments. For further details and interpretations 
we refer to [3, 4]. Applied to Markov renewal processes Theorem (1) yields the 
following result; the notation is that of Section 2. 

(9) Theorem. Let v, v 1, v 2 . . . .  be probability measures on (L, ~ )  and let Q, Q1, Q 2 , . . . 
be semi-Markov kernels on (E, 8). I f  

a) v,, ~ v; 

b) whenever f E  C(L) the function 

Q(-, dz, du)f(z,  u) 

is in C (E); 

c) For every uniformly bounded, equicontinuous subset ~ of C(L) and compact 
subset A of E 

lim sup I[. Q,(y;dz, du)g(z,u)-[. Q(y;dz, du)g(z,u)l=O 
n ~  oo y E A ,  g~,Jet ~ 

then P, ~ P on ((2, Jg). 
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Proof Define K, K 1, K 2 . . . .  from Q, Q1, Q2 . . . . .  respectively, by (8); then we 
need only to show that the hypotheses of Theorem (1) are satisfied by K, K 1, 
K 2 . . . . .  Since 

K g(y, t)=~ Q(y; dz, du) g(z, t+u) ,  

it is evident that (1. b) holds. Moreover, if ge UC(L) and B c L  is compact then 

sup I/(. g(y, t)-Kg(y, t)l 
(y, t)~B 

= sup I~ Q,(Y; dz, du) g(z, t + u ) - ~  Q(y; dz, du) g(z, t+u)[ 
(y, t)~B 

< sup I~Q,(y;dz, d u ) g t ( z , u ) - y Q ( y ; d z ,  du)gt(z,u)l, 
y~B1, tEB2 

where gt(z, u)=g(z,  t+u)  and B1,B 2 are the (compact) projections of B onto E, 
R+, respectively. Because g s U C ,  {gt: tEB2} is uniformly bounded and equi- 
continuous, so (9.c) implies that K, K 1, K 2 . . . .  satisfy (1.c). [7 

A semi-Markov kernel Q on (E, g) is regular if P(Y' o) { To < T1 <. . . ,  sup T, = + ~ } 
=1 for all y~E; sufficient conditions for this may be found in [4]. The process 
(y~; p(y,O)) defined by 

Yt=X, if tE[T., T,+~) 

is the semi-Markov process induced by Q. The continuous time E-valued process 
(Y t) is a deterministic function 7 j of ((X,, T,)) (here 7J: ~ ~ D (E, R +), the space of 
right continuous functions from R+ to E with limits from the left) and (cf. [5]) it 
is known that 7/is continuous almost surely with respect to each P(Y'~ if Q is 
regular. Hence we may combine this observation, Theorem (9) and the Continuous 
Mapping theorem [1, p. 30] to obtain the following result for the continuity of a 
semi-Markov process with respect to its initial distribution c~ and semi-Markov 
kernel Q. 

(10) Theorem. Let ~, ~1, ~ . . . .  be probability measures on (E, g) and let Q, Q1, 
Q 2 ,  . . .  be regular semi-Markov kernels on (E, g). For each n let P, be the probability 
law on f2 of the Markov renewal process with initial distribution c~ x e o and semi- 
markov kernel Qn and let P be defined analogously from c~, Q. I f  % ~ c~ and if 
(9.b, c) hold, then P, 7 j-1 ~ P 7 ~-1 on D(E, R+). 

A regular Markov process (cf. [2] for definitions and details) is a semi-Markov 
process with regular semi-Markov kernel Q which is of the form 

(11) Q ( x ; A x ( t ,  oo))=e-;~(X)t K(x ,A) ,  

where 2: E---, (0, Qo) is measurable and K is a Markov kernel on (E, g) such that 
K(x, {x})=0 for all xcE.  Boundedness of the jump function 2 is the simplest suf- 
ficient condition for regularity of Q, but is not necessary. Theorem (10) applies 
to yield the following continuity theorem for a regular Markov processes. 

(12) Theorem. Let P, P1, P2 . . . .  be the probability laws on D(E, R+) of the regular 
Markov processes with initial distributions ~, c~1, ~2 . . . . .  jump functions 2, 21,22, 
and transition kernels K, K1, K 2 . . . . .  respectively. I f  
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a) c~. ~ e; 

b) 2 is uniformly continuous; 
c) ~. ~ 2 uniformly on compact subsets of E; 
d) KgEC whenever g~UC; 
e) For every compact subset A of E and uniformly bounded, equicontinuous 

subset ~ of C, 

lim sup [K.g(x)-Kg(x)[=O, 
n~ co xcA, geY(" 

then P~ ~ P on D(E, R+). 

Proof It is a matter only of defining, by (11), semi-Markov kernels Q, Q1, Q2 .... 
from ( ) . , g ) ,  ( .~ l ,Kt) ,  ( .~2,K2) . . . . .  respectively, and verifying that (9.b,c) hold, 
which is entirely straightforward. 

Remarks. 1. A related result, with stronger conditions on 2,-~ 2 and weaker 
conditions on K,  -~ K, may be obtained using infinitesimal generators as described 
in [9]. 

2. A regular Markov process with jump function 2 and transition kernel K 
admitting an invariant measure # has invariant measure ~/given by 

q(A)_~ L #(dx) 

1 

provided the denominator be finite. This observation, Theorem (6) or (7), and 
Theorem (12) can then be combined to yield a convergence theorem for invariant 
measures of regular Markov processes. 

Acknowledgement. The author is indebted to the referee of an earlier version of this paper for 
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