Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 33-39 (1975) © by Springer-Verlag 1975

Best Approximants in L¹ Space

T. Shintani¹ and T. Ando²

¹ Department of Mathematics, Tomakomai Technical College, Tomakomai, Hokkaido, Japan

² Division of Applied Mathematics, Research Institute of Applied Electricity,

Hokkaido University, Sapporo, Japan

1. Introduction

Consider the Banach space L^1 of real-valued integrable functions on a probability space (Ω, \mathcal{A}, P) . Given a σ -subalgebra \mathcal{B} of the σ -algebra \mathcal{A} , let $L^1(\mathcal{B})$ stand for the subspace of all \mathcal{B} -measurable functions. This paper concerns the best approximation of a function f in L^1 by functions in $L^1(\mathcal{B})$. A function in $L^1(\mathcal{B})$ that has the minimum distance from f is called a *best approximant* of f. The existence of a best approximant is not trivial.

In the next section best approximants are characterized as \mathscr{B} -conditional medians of f. The existence of the maximum $U_{\mathscr{R}}f$ and the minimum $V_{\mathscr{R}}f$ of all best approximants are guaranteed and the distance from f to $L^1(\mathscr{B})$ is provided with a convenient expression. Further every sequence in $L^1(\mathscr{B})$ that minimizes asymptotically the distance to f is shown to be relatively weakly compact.

In the final section convergence of a sequence $\{\mathscr{B}_n\}$ of σ -subalgebras to a σ -subalgebra \mathscr{B}_{∞} is taken into consideration. Two kinds of convergence, strong convergence and almost everywhere one, are defined in connection with the corresponding convergences of conditional expectations. If \mathscr{B}_n converges strongly to \mathscr{B}_{∞} and if each g_n is a best approximant in $L^1(\mathscr{B}_n)$ of f, then the sequence $\{g_n\}$ is shown to be relatively weakly compact and every weak limiting function of the sequence becomes a best approximant in $L^1(\mathscr{B}_{\infty})$. Further the inequalities

 $V_{\mathscr{B}_{\infty}} f \leq \liminf_{n \to \infty} g_n \leq \limsup_{n \to \infty} g_n \leq U_{\mathscr{B}_{\infty}} f$

are proved under the almost everywhere convergence of the sequence $\{\mathscr{B}_n\}$.

2. Best Approximants

Given measurable functions g, h, let us use the following notations:

 $g \lor h = \max(g, h), \quad g \land h = \min(g, h)$

and

 $g^+ = g \lor 0, \quad g^- = (-g) \lor 0.$

If g coincides with h almost everywhere, then they are identified. A constant function with value α is denoted by the same letter α , while the indicator of a set A is denoted by I_A .

In this section \mathscr{B} is a fixed σ -subalgebra and f is a fixed integrable function. The distance from f to the subspace $L^1(\mathscr{B})$ is denoted by $d(f, \mathscr{B})$, that is,

$$d(f, \mathscr{B}) = \inf \{ \int |f-g| dP; g \in L^1(\mathscr{B}) \}.$$

Then a function g in $L^1(\mathcal{B})$ is, by definition, a best approximant of f if

$$\int |f-g| \, dP = d(f, \mathscr{B}).$$

In the study of best approximants a crucial role will be played by the \mathscr{B} -conditional expectation operator $E_{\mathscr{B}}$. For convenience, the \mathscr{B} -conditional expectation of the indicator of the set $\{f \leq g\}$ (resp. $\{f < g\}$) will be denoted by $P_{\mathscr{B}}(f \leq g)$ (resp. $P_{\mathscr{B}}(f < g)$).

Observe first that the distance from f to the space of constant functions is attained by a constant (function) α if and only if α is a *median* of f in the sense that

 $P(f < \alpha) \leq \frac{1}{2}$ and $P(\alpha < f) \leq \frac{1}{2}$.

Motivated by this fact, let us consider \mathscr{B} -conditional medians (cf. [5, §29]); a \mathscr{B} -measurable function g is called a \mathscr{B} -conditional median of f if

 $P_{\mathcal{B}}(f < g) \leq \frac{1}{2}$ and $P_{\mathcal{B}}(g < f) \leq \frac{1}{2}$.

 \mathscr{B} -conditional medians are conveniently treated by introducing the \mathscr{B} -conditional distribution function $F(\omega, \lambda)$ of f (cf. [5, §27]); $F(\omega, \lambda)$ is defined as the jointly measurable function on $\Omega \times (-\infty, \infty)$ such that for λ fixed, $F(\cdot, \lambda) = P_{\mathscr{B}}(f \leq \lambda)$ and for ω fixed, $F(\omega, \cdot)$ is increasing and right-continuous with

$$\lim_{\lambda \to -\infty} F(\omega, \lambda) = 0 \quad \text{and} \quad \lim_{\lambda \to +\infty} F(\omega, \lambda) = 1.$$

Define the \mathscr{B} -measurable functions $U_{\mathscr{B}}f$ and $V_{\mathscr{B}}f$ by the formulas:

$$U_{\mathscr{R}}f(\omega) = \inf \left\{ \lambda; \frac{1}{2} < F(\omega, \lambda) \right\}$$

and

$$V_{\mathscr{R}}f(\omega) = \sup \{\lambda; \frac{1}{2} > F(\omega, \lambda)\}.$$

Then it is immediate that $U_{\mathscr{B}}f$ (resp. $V_{\mathscr{B}}f$) is the maximum (resp. minimum) of all \mathscr{B} -measurable functions g such that

 $P_{\mathcal{B}}(f < g) \leq \frac{1}{2} \quad (\text{resp. } P_{\mathcal{B}}(g < f) \leq \frac{1}{2}).$

In particular, $U_{\mathscr{B}}f$ and $V_{\mathscr{B}}f$ are the maximum and the minimum \mathscr{B} -conditional median of f respectively.

Lemma 1. The non-linear operators $U_{\mathscr{B}}$ and $V_{\mathscr{B}}$ have the following properties.

- (a) $V_{\mathscr{B}}(-f) = -U_{\mathscr{B}}f$ and $V_{\mathscr{B}}f \leq U_{\mathscr{B}}f$.
- (b) $|U_{\mathscr{B}}f| \leq 2 E_{\mathscr{B}}|f|$ and $|V_{\mathscr{B}}f| \leq 2 E_{\mathscr{B}}|f|$.

Best Approximants in L^1 Space

Proof. (a) is immediate from definition. To prove (b), suppose first $f \ge 0$, hence obviously $U_{\mathscr{B}} f \ge 0$ by definition. The inclusion

 $\{\lambda < U_{\mathscr{B}}f\} \subseteq \{\frac{1}{2} \leq P_{\mathscr{B}}(\lambda < f)\}$

implies

 $P(\lambda < U_{\mathscr{B}}f) \leq 2 P(\lambda < f),$

and consequently

$$\int U_{\mathscr{B}} f \, dP = \int_{0}^{\infty} P\left(\lambda < U_{\mathscr{B}} f\right) d\lambda$$
$$\leq 2 \int_{0}^{\infty} P\left(\lambda < f\right) d\lambda = 2 \int f \, dP.$$

Since the definition of $U_{\mathcal{B}}$ shows

 $U_{\mathscr{B}}(I_{A} \cdot f) \!=\! I_{A} \cdot U_{\mathscr{B}}f \quad \text{whenever } A \!\in\! \mathscr{B}$

the above consideration yields

$$\int_{A} U_{\mathscr{B}} f \, dP \leq 2 \int_{A} f \, dP \quad \text{for all } A \in \mathscr{B}$$

which is equivalent to

 $U_{\mathcal{R}}f \leq 2E_{\mathcal{R}}f.$

Now the proof for general f can be derived on the basis of the relation:

 $(U_{\mathcal{R}}f)^+ \leq U_{\mathcal{R}}f^+.$

In fact,

$$(U_{\mathscr{B}}f)^{+} \leq U_{\mathscr{B}}f^{+} \leq 2E_{\mathscr{B}}f^{+} \leq 2E_{\mathscr{B}}|f|$$

and by (a)

$$(U_{\mathscr{B}}f)^{-} = (V_{\mathscr{B}}(-f))^{+} \leq (U_{\mathscr{B}}(-f))^{+} \leq 2E_{\mathscr{B}}|f|.$$

The assertion with $V_{\mathscr{R}}$ instead of $U_{\mathscr{R}}$ follows from (a).

Theorem 2. A function g in $L^1(\mathscr{B})$ is a best approximant of f if and only if $V_{\mathscr{B}} f \leq g \leq U_{\mathscr{B}} f$.

In particular, $U_{\mathscr{B}}f$ and $V_{\mathscr{B}}f$ are the maximum and the minimum best approximant respectively.

Proof. Remark the obvious relation for $h_1, h_2 \in L^1$:

$$|f-h_2| - |f-h_1| = \int_{h_1(\cdot)}^{h_2(\cdot)} \{2I_{[f(\cdot),\infty)}(\lambda) - 1\} d\lambda$$
 a.e. on $\{h_1 \le h_2\}$.

If both h_1 and h_2 are *B*-measurable, the *B*-conditioning of the above relation yields $h_2(\cdot)$

$$E_{\mathscr{B}}|f-h_{2}|-E_{\mathscr{B}}|f-h_{1}| = \int_{h_{1}(\cdot)}^{h_{1}} \{2F(\cdot,\lambda)-1\} d\lambda \quad \text{ a.e. on } \{h_{1} \leq h_{2}\},$$

where $F(\omega, \lambda)$ is the \mathscr{B} -conditional distribution function of f. Since the definition of $U_{\mathscr{B}}f$ and $V_{\mathscr{B}}f$ implies that

$$2F(\cdot, \lambda) - 1 \begin{cases} > 0 & \text{a.e. on } \{U_{\mathscr{B}}f < \lambda\}, \\ = 0 & \text{a.e. on } \{V_{\mathscr{B}}f < \lambda < U_{\mathscr{B}}f\}, \\ < 0 & \text{a.e. on } \{\lambda < V_{\mathscr{B}}f\} \end{cases}$$

and since $U_{\mathscr{B}}f$ and $V_{\mathscr{B}}f$ belong to $L^1(\mathscr{B})$ by Lemma 1, it follows that for g in $L^1(\mathscr{B})$

$$E_{\mathscr{B}}|f-g| = E_{\mathscr{B}}|f-U_{\mathscr{B}}f| \quad \text{a.e. on } \{V_{\mathscr{B}}f \leq g \leq U_{\mathscr{B}}f\}$$

and

$$E_{\mathscr{B}}|f-g| > E_{\mathscr{B}}|f-U_{\mathscr{B}}f| \quad \text{ a.e. on } \{U_{\mathscr{B}}f < g\} \cup \{g < V_{\mathscr{B}}f\},$$

which implies obviously the assertion.

Corollary 3. A function g in $L^1(\mathcal{B})$ is a best approximant of f if and only if it is a \mathcal{B} -conditional median of f.

In an unpublished paper [4] Kudo constructed a \mathcal{B} -conditional median of f which is a best approximant. The following corollary was also established by Kudo [3,4] in its primitive form.

Corollary 4. The distance from f to $L^1(\mathcal{B})$ is explicitly given by $d(f, \mathcal{B}) = \int_{-\infty}^{\infty} \{\frac{1}{2} - \int |\frac{1}{2} - P_{\mathcal{B}}(f \leq \lambda)| dP\} d\lambda.$

Proof. Since $U_{\mathscr{R}}f$ is a best approximant by Theorem 2,

 $d(f, \mathscr{B}) = \int |f - U_{\mathscr{B}}f| dP.$

Now the obvious relation

$$|f - U_{\mathscr{B}}f| = \int_{-\infty}^{\infty} |I_{[f(\cdot),\infty)}(\lambda) - I_{[U_{\mathscr{B}}f(\cdot),\infty)}(\lambda)| d\lambda$$

yields through the *B*-conditioning and the Fubini theorem

$$\int |f - U_{\mathscr{B}}f| \, dP = \int E_{\mathscr{B}} |f - U_{\mathscr{B}}f| \, dP = \int_{\infty}^{\infty} \int |P_{\mathscr{B}}(f \leq \lambda) - I_{\{U_{\mathscr{B}}f \leq \lambda\}}| \, dP \, d\lambda.$$

Then the assertion follows from the relation

$$|P_{\mathcal{B}}(f \leq \lambda) - I_{\{U_{\mathcal{B}}f \leq \lambda\}}| = \frac{1}{2} - |\frac{1}{2} - P_{\mathcal{B}}(f \leq \lambda)|$$

which is an immediate consequence of the definition of $U_{\mathcal{B}}f$.

The dual of the Banach space L^1 is canonically realized by the space L^{∞} of essentially bounded measurable functions (cf. [6; § 4.2]). The weak topology is always understood with respect to the pairing (L^1, L^{∞}) .

Since the unit ball of the Banach space L^1 is not weakly compact, the following theorem is not trivial in contrast to L^p -approximation (1 (cf. [1]).

Theorem 5. Every sequence $\{g_n\}$ in $L^1(\mathscr{B})$ such that $\lim_{n \to \infty} \int |f - g_n| dP = d(f, \mathscr{B})$

Best Approximants in L^1 Space

is relatively weakly compact and every weak limiting function is a best approximant of f.

Proof. Since the subspace $L^1(\mathcal{B})$ is isometric to the Banach space $L^1(\Omega, \mathcal{B}, P)$ in the canonical way and since the sequence $\{g_n\}$ is bounded in norm, the relative weak compactness will follow from its *equi-continuity* in $L^1(\Omega, \mathcal{B}, P)$ (cf. [6, §4.2]):

 $\lim_{n\to\infty}\int_{A_n} |g_n| \, dP = 0 \quad \text{whenever } A_n \in \mathscr{B} \quad \text{and} \quad \lim_{n\to\infty} P(A_n) = 0.$

The equi-continuity in question is proved as follows. Since

$$\int_{A_n} |g_n| \, dP + \int |f - I_{A_n^c} \cdot g_n| \, dP \leq \int |f - g_n| \, dP + 2 \int_{A_n} |f| \, dP$$

and

 $\lim_{n\to\infty}\int_{A_n}|f|\,dP=0,$

the hypothesis on $\{g_n\}$ implies

$$\limsup_{n\to\infty}\int_{A_n} |g_n| dP + \inf_n \int |f - I_{A_n^s} \cdot g_n| dP \leq d(f, \mathscr{B}).$$

On the other hand, since each $I_{A_n} \cdot g_n$ is \mathscr{B} -measurable, the definition of the distance $d(f, \mathscr{B})$ implies

 $\inf_{n} \int |f - I_{A_{n}^{c}} \cdot g_{n}| dP \ge d(f, \mathscr{B}).$

These together yield the convergence of $\int_{A_n} |g_n| dP$ to 0, as expected. Finally each weak limiting function g of the sequence belongs to $L^1(\mathscr{B})$ and

$$d(f, \mathscr{B}) \leq \int |f-g| dP \leq \limsup_{n \to \infty} \int |f-g| dP = d(f, \mathscr{B}).$$

Corollary 6. If $g_n \in L^1(\mathcal{B})$ and

 $\lim_{n\to\infty}\int |f-g_n|\,dP=d\,(f,\mathscr{B})$

then the sequence $\{g_n \lor U_{\mathscr{B}}f\}$ (resp. $\{g_n \land V_{\mathscr{B}}f\}$) converges to $U_{\mathscr{B}}f$ (resp. $V_{\mathscr{B}}f$) in L^1 -norm.

Proof. For each *n* the set $A_n = \{g_n > U_{\mathscr{B}}f\}$ belongs to the σ -subalgebra \mathscr{B} and $g_n \vee U_{\mathscr{B}}f = I_{A_n} \cdot g_n + I_{A_n} \cdot U_{\mathscr{B}}f$

and

 $g_n \wedge U_{\mathscr{B}} f = I_{A_n^c} \cdot g_n + I_{A_n} \cdot U_{\mathscr{B}_n} f.$

Then the relation

$$\begin{split} \int_{A_n} |f - U_{\mathscr{B}} f| \, dP + \int_{A_n^c} |f - U_{\mathscr{B}} f| \, dP = \int |f - U_{\mathscr{B}} f| \, dP = d \, (f, \, \mathscr{B}) \\ & \leq \int |f - g_n \wedge U_{\mathscr{B}} f| \, dP = \int_{A_n} |f - U_{\mathscr{B}} f| \, dP + \int_{A_n^c} |f - g_n| \, dP, \end{split}$$

implies

$$\int_{4\mathfrak{f}_n} |f - U_{\mathfrak{B}}f| \, dP \leq \int_{A\mathfrak{f}_n} |f - g_n| \, dP$$

and consequently

$$d(f,\mathscr{B}) \leq \int |f - g_n \vee U_{\mathscr{B}} f| dP \leq \int |f - g_n| dP.$$

Therefore the hypothesis on $\{g_n\}$ implies

 $\lim_{n\to\infty}\int |f-g_n\vee U_{\mathscr{B}}f|\,dP=d\,(f,\mathscr{B}).$

Now in view of Theorem 5 and Theorem 2 the sequence $\{g_n \lor U_{\mathscr{B}} f\}$ is relatively weakly compact and every weak limiting function is majorated by $U_{\mathscr{B}} f$. This leads to the conclusion:

$$0 \leq \limsup_{n \to \infty} \int |g_n \vee U_{\mathscr{B}} f - U_{\mathscr{B}} f| dP = \limsup_{n \to \infty} \int (g_n \vee U_{\mathscr{B}} f) dP - \int U_{\mathscr{B}} f dP \leq 0.$$

The assertion on $\{g_n \wedge V_{\mathscr{B}}f\}$ is proved similarly.

3. Convergence

In this section $\mathscr{B}_1, \mathscr{B}_2, \ldots, \mathscr{B}_{\infty}$ are σ -subalgebras. The sequence $\{\mathscr{B}_n\}$ is said to converge strongly (resp. almost everywhere) to \mathscr{B}_{∞} if for every function f in L^1 the sequence $\{E_{\mathscr{B}_n}f\}$ converges in L^1 -norm (resp. almost everywhere) to $E_{\mathscr{B}_{\infty}}f$. Strong convergence results from less restrictive conditions. Indeed, Kudo [3] proved that $\{\mathscr{B}_n\}$ converges strongly to \mathscr{B}_{∞} if for every f in L^1

 $\lim_{n \to \infty} \int |E_{\mathscr{B}_n} f| dP = \int |E_{\mathscr{B}_{\infty}} f| dP$

while Becker [2] pointed out that the strong convergence is a consequence of the condition that for every f in L^1 the sequence $\{E_{\mathscr{B}_n}f\}$ converges weakly to $E_{\mathscr{B}_n}f$.

Almost everywhere convergence implies strong convergence. In view of the Martingale theorem (cf. [6; § 4.5]) every monotone sequence of σ -subalgebras is almost everywhere convergent.

Convergence problems of best approximants in L^p-version (1 were discussed in a previous paper [1].

Theorem 7. Suppose that the sequence $\{\mathscr{B}_n\}$ converges strongly to \mathscr{B}_{∞} . If each g_n is a best approximant in $L^1(\mathscr{B}_n)$ of one and the same function f, then the sequence $\{g_n\}$ is relatively weakly compact and the sequence $\{g_n \lor U_{\mathscr{B}_{\infty}} f\}$ (resp. $\{g_n \land V_{\mathscr{B}_{\infty}} f\}$) converges to $U_{\mathscr{B}_{\infty}} f$ (resp. $V_{\mathscr{B}_{\infty}} f$) in L^1 -norm. Further every weak limiting function of the sequence $\{g_n\}$ is a best approximant in $L^1(\mathscr{B}_{\infty})$ of f.

Proof. Since in view of Theorem 2 and Lemma 1

 $|g_n| \leq U_{\mathscr{B}_n} f \vee (-V_{\mathscr{B}_n} f) \leq 2 E_{\mathscr{B}_n} |f|,$

the boundedness and the equi-continuity of the sequence $\{g_n\}$ follow from the convergence of $E_{\mathscr{B}_n}|f|$ in L^1 -norm. Therefore the sequence $\{g_n\}$ is relatively weakly compact (cf. [6, §4.2]).

38

Best Approximants in L^1 Space

The convergence of $g_n \vee U_{\mathscr{B}_{\infty}} f$ to $U_{\mathscr{B}_{\infty}} f$ in L^1 -norm will follow from the convergence in measure and the above proved equi-continuity. To prove the convergence in measure, it suffices to show that each sequence of integers contains a subsequence $n(1) < n(2) < \cdots$ such that

 $\limsup_{m\to\infty} U_{\mathscr{B}_n(m)} f \leq U_{\mathscr{B}_\infty} f.$

To this end, consider the \mathscr{B}_n -conditional distribution function $F_n(\omega, \lambda)$ of f. Since

$$F_n(\cdot,\lambda) = P_{\mathscr{B}_n}(f \leq \lambda),$$

the strong convergence of $\{\mathscr{B}_n\}$ implies that for every λ the sequence $\{F_n(\cdot, \lambda)\}$ converges to $F_{\infty}(\cdot, \lambda)$ in L^1 -norm. Therefore it is possible to choose a subsequence $n(1) < n(2) < \cdots$ such that

$$\lim_{m\to\infty}F_{n(m)}(\cdot,\lambda)=F_{\infty}(\cdot,\lambda)$$

for all rational numbers λ . The inspection of the definition of $U_{\mathscr{B}_n} f$ shows that this subsequence meets the requirement. The convergence of $g_n \wedge V_{\mathscr{B}_{\infty}} f$ to $V_{\mathscr{B}_{\infty}} f$ in L^1 -norm is similarly established.

Finally suppose that a subsequence $\{g_{n(m)}\}\$ converges weakly to g_{∞} , say. The above argument yields

 $V_{\mathscr{B}_{\infty}}f \leq g_{\infty} \leq U_{\mathscr{B}_{\infty}}f.$

Since for each function h in L^{∞} the sequence $\{E_{\mathscr{R}_n}h\}$ converges in measure to $E_{\mathscr{R}_m}h$ by hypothesis, the equi-continuity of $\{g_n\}$ implies

$$\int h \cdot g_{\infty} dP = \lim_{m \to \infty} \int h \cdot g_{n(m)} dP = \lim_{m \to \infty} \int E_{\mathscr{R}_{n(m)}} h \cdot g_{n(m)} dP = \int E_{\mathscr{R}_{\infty}} h \cdot g_{\infty} dP$$
$$= \int h \cdot E_{\mathscr{R}_{\infty}} g_{\infty} dP,$$

hence $g_{\infty} = E_{\mathscr{B}_{\infty}}g_{\infty}$, that is, g_{∞} is \mathscr{B}_{∞} -measurable. Now g_{∞} is a best approximant in $L^{1}(\mathscr{B}_{\infty})$ by Theorem 2. This completes the proof.

The inspection of the above proof will show

Corollary 8. If the sequence $\{\mathscr{B}_n\}$ converges almost everywhere to \mathscr{B}_{∞} , then for every function f in L^1

$$V_{\mathscr{B}_{\infty}} f \leq \liminf_{n \to \infty} V_{\mathscr{B}_n} f \leq \limsup_{n \to \infty} U_{\mathscr{B}_n} f \leq U_{\mathscr{B}_{\infty}} f.$$

The authors thank the referee for valuable comments.

References

- Ando, T., Amemiya, I.: Almost everywhere convergence of prediction sequences in L_p. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4, 113-120 (1965)
- Becker, R.: Ensembles compacts de tribus. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 229–234 (1974)
- 3. Kudo, H.: A note on the strong convergence of σ -algebras. Ann. Probability 2, 76–83 (1974)
- 4. Kudo, H.: An appendix to [3] (unpublished)
- 5. Loève, M.: Probability Theory, 2nd ed. Princeton: Van Nostrand 1961
- 6. Neveu, J.: Bases Mathematiques du Calcul des Probabilités, 2ième ed. Paris: Masson et Cie 1970

Received April 4, 1975; in revised form June 15, 1975