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1. Introduction

The notion of stable probability measures on the real line R as introduced by
Lévy [1] generalizes in a natural way to probability measures on R", v= 1, which
are stable under a fixed subgroup of the general linear group GL(v,IR) on R".
The ultimate aim of a theory of stable measures on R" is to find a method which
assigns to every subgroup 4 < GL(v, R) the set of all those probability measures
on IR’ which are stable under A. Once this has been achieved one can proceed to
study the domains of attraction of these measures and related questions. For v=1
the classification of stable measures is classical (see e.g. [2], p. 227). For higher
dimensions the papers by Sharpe and Michalicek ([ 3, 4] and [7]) have investigated
probability measures which are stable under a one parameter subgroup of GL(v, R).
A first result concerning stable measures under a bigger group is contained in [6]:
There it is shown that the probability measures on R” which are stable under the
full group GL(v, R) are precisely the nonsingular Gaussian and the degenerate
probability measures. The main question left open in [6] in this context was how
to find the stable measures for a subgroup 4 of GL(v, R) which has only a small
compact part. Here we try to solve this problem in some special cases. The contents
of this paper are as follows: §2 gives a short introduction to the terminology and
some earlier results. § 3 is concerned with the supports of stable measures. § 4 shows
that any measure which is stable under a subgroup A of GL(v, R) is also stable
under the closure of 4 in GL(v, R). Furthermore the measure is stable under a one
parameter subgroup of GL(v, R) which may be assumed to lic in 4. So every
stable measure in our sense is also “operator stable” in the sense of Sharpe and
Michalicek. §5 contains the Lévy-Hinéin formula for all stable measures on R”.
Some results of this section have been obtained earlier in [7], but it seemed
natural to include the proofs. One consequence of this section is that every proba-
bility measure on IR” which is stable under a subgroup of SL(v, R), may be trans-
lated onto a proper subspace of IR*. Another result is an easily checked condition
for a group A to have no stable nonsingular Gaussian measures. § 6 deals with an
example: We determine all stable probability measures for the group of lower
triangular matrices on R". In § 7 we find all probability measures which are stable
under the group of diagonal matrices on IR”.
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2. Some Basic Facts about Stable Probability Measures

Let R” denote the v-dimensional real Euclidean space with inner product (-, <>
and norm | - |. We write M, (IR”) for the set of probability measures on R* and
w=vfor the convolution of any p, ve M, (R"). The Fourier transform (or characteris-
tic function) /i of pe M, (R") is defined as fi(v)=[expi{v, w) du(w) for any veR".
Let P(R")={a:peM,(R")} be the set of characteristic functions on IR*. An
element pe M, (IR") is called infinitely divisible if, for any n=2, 3, ... there exists a
p,eM, (R”) such that p*"=p. p is infinitely divisible if and only if i =expy where
Y is given by the Lévy-Hin¢in formula

W)= i<, @)+, (0)+ ¥, (0) 2.1)
with
¥, ()= —3{Pv,v), (2.2)
. iv,w)
= | (expt(v, wy—1 —W) dF(w). (2.3)

RY—{0}

Here a is an element of R”, P a real symmetric positive definite v x v matrix,
and F is a o-finite measure on R* — {0} such that

[ (1 —cos (v, wp) dF(w)< oo (2.4)

for all veIR”. If P=0, u is called a Poisson measure, and if F =0, p is called Gaussian.
¥, and y, are called the Gaussian and Poisson part of i respectively, and corre-
spondingly we can decompose u as p=gy, * u, * p, where ji, =expy,, k=1,2, and
where p, denotes the probability measure concentrated in the point aeR". p; and
U, are called the Gaussian and Poisson part of u respectively. p,, p, and a are
uniquely determined by p. For later use we define a kernel K associated with the
infinitely divisible measure p by

K(u, v)=yu—v)— ) —y(—v)
={Pu, vy + [ (expilu, wy—1)(expilv, w) — 1) dF (w) (2.5)

for all u, veIR”. Clearly K determines p up to translation —that is, if two infinitely
divisible probability measures u and y’ give rise to the same K, then u= '+ p, for
some acR”. Consider now a fixed pe M, (R") and an element xe GL(v, R), the set
of nonsingular real vxv matrices. We define a measure ya on IR” by setting
woE)= p(eE) for any Borel set EcR". Following [6] we have

Definition 2.1. Let A be a subgroup of GL(v, R). A measure pe M, (IR"} is called
stable under A if, for any o, o, € A there exists an oy A and an xeR" such that

O % LLOL, = [0ty % .. (2.6)
The following lemma contains some elementary facts about stable probability
measures which are proved in [6].

Lemma 2.2. Let A be a subgroup of GL(v, R) and let u be a probability measure
on RY which is stable under A. Then the following conditions are satisfied:
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1. wis infinitely divisible. If K is given by (2.1)~(2.5) then there exists, for any o,
o, €A, an aye 4 with

Ko u, ol v)+ K (@ u, o v)=K(al u, aXv) (2.7)

for all u, veR”, where o™ denotes the transpose of o for any ae A.
2. Let B< A be the subgroup of all elements fe A for which

K(B"u, BT v)=c(p) K(u, v) (2.8)

for all u, veR”, and for some constant c(B)> 0. Then the map c(*) is a homomorphism
from B onto a subgroup of R™ =(0, o) which contains all positive rational numbers.

3. Let u=p, * u, * p, be the decomposition of y into its Gaussian part p; and its
Poisson part pt,. Then both p, and p, are stable under A.

3. Full Stable Measures
Let A be a fixed subgroup of GL(v, R) and let ue M, (R”) be stable under A.
Definition 3.1. p is called full if |i(v)] % 1 whenever v=0.

In this section we shall show that any stable measure is the translate of a
measure which is full on some subspace of R*. We define K by (2.5) and put
N={ueclR’; K(u, u)=0}. Clearly N is a closed subgroup of IR*, and K is constant
on the cosets of N x N in R”x R". K induces therefore a continuous map K of
X x X (where X =R’/N) given by

K(x, y)=K(u,v)
forall x=u+ N, y=v+NeX.

Lemma 3.2. N is a subspace of R® which is invariant under every B*, BeB.
(B is defined in Lemma 2.2.)

Proof. That N is invariant under BT ={8”: fe B} is an immediate consequence
of (2.8). To show that N is a subspace, we denote by f the automorphism 7
induces on X. By structure theory, X is of the form R” x C where ¢ < v and where C
is compact. Clearly every f must leave C invariant so that, for any xe C,

supR(Bx, Bx)<supK(y, y)< 0,

BeB yeC
which together with (2.8) implies that K (x, x)=0 whenever xe C. So C={0}, and
X =1R’. Consequently N=IR""°, and the lemma is proved.

Lemma 3.3. N is invariant under AT ={a": 0c A}.
Proof. Assume there exist o, €4 and vyeN such that o, v,¢N. Choose «,
such that

K@ u, ol u)+ K (u, u)=K(«Xu, o] u)

for all uelR". This equation implies ol "' N=Nnaf "' N where the right hand
side has dimension <v— 1. As «, is nonsingular, this leads to a contradiction and
the lemma is proved.
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Lemma 3.4. There exists an element acIR” such that

Y (v)=i{v, a) +¥(v)
is constant on the cosets of N in IR”.

Proof. This is a standard argument.

We obtain

Theorem 3.5, Let A be a subgroup of GL(v, R) and let u be aprobability measure
on IR* which is stable under A. Then there exists a subspace R* of R which is
invariant under A, and an element aeR® such that

(1) w'=p=p, is concentrated on R”,

(2) 1’ considered as a probability measure on R", is full.

Proof. Put R" equal to the orthogonal complement of N=IR” in R”. Defining
/' by Lemma 3.4 and p' by ji’ =expy/’ we have proved the theorem.

Remark 3.6. As a consequence of Theorem 3.5 it is no loss of generality to
assume that a stable probability measure u is full. Otherwise we can replace y
by a translate y' concentrated on a subspace of lower dimension in R” which is
invariant under A. i’ will then be full on this subspace and stable under the
restriction of A there.

4. Stability under Closed Subgroups and under One Parameter
Subgroups of GL(v, R)

Theorem 4.1. Let A be any subgroup of GL(v, R) and let u be a probability measure
on R” which is stable under A. Then p is stable under the closure A of A in GL(v, R).

Proof. According to Remark 3.6 it will be sufficient to prove the theorem under
the additional assumption that p is full. Under this hypothesis, let (o), i=1, 2, be
two sequences in 47 which converge to &, i=1,2, in GL(v,IR) respectively.
Hence a®v converges to af'v for all i=1,2, veR”. By Lemma 2.2 there exists a
sequence (o!*) = A such that

1 QT )T »HT 3)T
K@D Tu, a7 o)+ K@ u, o7 v)= K (P u, o’ T v)
for every u, veR”. The continuity of K implies the convergence of K(«*Tu, et p),
and, since g is full,

lim log K(4¥ 7w, o7 u)=1lim log(—2y/(«¥" )

exists for all u#0. Lemma 5.3 in [6] can now be applied to show that («() is
relatively compact in GL(v, R). Choosing a convergent subsequence of (o) with
limit o) say, we have «§”e 4 and

K@ Tu, a7 o)+ K@@ Tu, 0P Tv)= K (a5 Tu, aP T v)

for all u, veR". Since o and a?’ can be chosen arbitrarily in A4, the theorem is
proved. :
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Lemma 4.2. If p is stable under a closed subgroup A<=GL(v, R), then the sub-
group B of A defined in Lemma 2.2 is closed.

Proof. See Lemma 2.6 in [6].

Lemma 4.3. Let u be stable under a closed subgroup A of GL(v, R) and assume
that p is full. Then the map ¢: B—R™* is surjective.

Proof. The proof uses the same idea as the proof of Theorem 4.1 and will be
omitted.

Lemma 4.4. Under the assumptions of Lemma 4.3, By={feB:c(f)=1} is a
maximal compact subgroup of A.

Proof. Apply Lemma 6.4 and Lemma 6.5 in [6].

Lemma 4.5. Under the assumptions of Lemma 4.3, we have

1. lim sup sup ||Bx||=0.
n—=0 {xeRv:||x|[=1} {BeB:c(B)=n}
2, lim inf inf  ||fx]=o00.

n—o {(xeR¥: | x|l =1} {BeB:c(B2n}

Proof. Let C be any compact subset of IR”. Since  is continuous, we have
0, =sup |Rey(v)j<oo and inf |Rey(v)|=4J,>0. For any feB with ¢(f)=26,/3,,
veC il

v||=1
and for any v with ||v]| =1, we get

[Rey/ (" v)l =c(B) [Rey(v)| 224,

which implies that 8T v¢ C. Hence

lim inf inf  [|BTx|=o0.
q— o0 {xeR¥:[[x|f=1} {feB:c(f)zn}

But this implies

lim sup sup BT x||=0
N (xeRY,[|x[| =1} {BeBic(p) <)

which in turn implies (1). (2) follows from (1) in a straightforward way, and the
proof is complete.

Lemma 4.6. There exists a Borel subset S <IR¥— {0} which intersects each orbit
of Bin R”—{0} in exactly one point.

Proof. Let || || denote a norm on IR” which is invariant under the compact
group B,< B. The maps B—|[|8x]|l, xeIR", are constant on the cosets of B, in B
and can thus be considered as continuous maps on B/B,, which is isomorphic
to R* by Lemma 5.3 in [6] and by Lemma4.4 in this paper. Together with
Lemma 4.5 this implies that any orbit of B intersects the set F={x:]|x[|=1}
in R". Furthermore, for any xeF, the set B,={feB: fxcF} is compact. We define,
for any xeF, [x] to be the set {fx: feBx} and denote by ¢ the collection
{[x], xe F}. 0 is a Hausdorff space in the quotient topology defined by the map
x—[x] from F onto @. A theorem of Kuratowski (see [5], p. 23) shows that there
exists a Borel subset S of F such that S intersects each [x] in exactly one point.
Clearly S is then a cross section for the orbits of B. The proof is complete.
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Remark 4.7. We can in fact choose S in such a way that the closure § of S in R”
does not contain 0. The section S constructed in Lemma 4.6 certainly has this
property.

We are thus led to

Theorem 4.8. Let A be a subgroup of GL(v, R) and let u be a probability measure
on IR” which is stable under A. Then there exists a one parameter subgroup G=
{B,.teR} of GL(v,R) such that p is stable under G. Furthermore, there exists a
Borel subset of R”— {0} which intersects each orbit of G in R —{0} in exactly one
point. If A is closed and if pis full, then G can be chosen as a one-parameter subgroup
of A.

Proof. Again we may assume A to be closed and u to be full, by Remark 3.6
and Theorem 4.1. The subgroup B of A defined in Lemma 2.2 is then closed and
the homomorphism ¢(+) from B to R* is surjective, by the Lemmas 4.2 and 4.3.
Lemma 2.2 also implies that p is stable under B. Let B’ be the connected component
of the identity in B. It is easy to see that ¢(B)=IR* and that there exists a one
parameter subgroup G in B’ with ¢(G)=IR". So u is stable under G, and we can
apply Lemma 4.6 to the case A=B =G to complete the proof.

5. The Lévy-Hin¢in Formula for Stable Measures on R”

Let y be a real v x v matrix which is a direct sum of kj x k; matrices ¢;,j=1,...,n,
and of 21, x 21j matrices £, j=1,...,n,, of the form

bj
1 b 0
=l 1 . beR (5.1)
U b,
and .
4,
0 0
L
. 0
R A ¢ deR,d+0, (52
PGl '
0 ¢ 0
1 I
. f
0 -
—dJ 1 ¢

such that Z k+2 Z I.=v. If we assume that there exists a full probability measure
J_
1 stable under the group {expty, teR} then Lemma 4.5 implies (without loss of
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generality) that
lim(exp—ty)v=0
t—= oo

for all veR”, and hence that
inf{b; c;}>0. (5.3)
J

If 4 is in addition Gaussian, then fi(v)=exp(i{v, a) —3{Pv,v)) where acR” and

where P is a positive definite nonsingular real symmetric matrix. Lemma 2.2
then implies that

expty- P-expty’ =expir- P
for all teR, where 4+ 0. Multiplying both sides by P~*/* from the left and from

the right we see that exp ¢y is similar to a scalar multiple of a rotation. The uniqueness
of the Jordan form (5.1) and (5.2) implies that

c d
—d,
¢ d,
y= ' . d, (5.4)
c
—-d, c
0 c. 0
0 .0
0 ¢

where ¢>0 and where d,, ..., d,eR. Since both expty and P~'* expiyP'/? are
scalar multiples of rotations, P must commute with y. Note that in this case the
map c¢(+) from {expty, teR} to R™* is given by

clexpty)=exp 2ct. (5.5)

Theorem 5.1. Let G={exptJ,tcR} be a one parameter group in GL(v, R).
A necessary and sufficient condition for the existence of a full Gaussian probability
measure y which is stable under G is the following:

1. There exists an ac GL(v, R) such that y=ado "' is of the form (5.4),

2. If f(v)=exp(i{v, ay —L{Pv,v)), then P commutes with §.

Proof. For any e GL(v, R) there exists an aeGL(v, R) such that y=ada™?
is of the form

&
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where the ; and ¢; are matrices given by (5.1) and (5.2). If p is full, (5.3) must also
be satisfied, and the discussion preceding the.statement of the theorem shows
that y is of the form (5.4) and commutes with «Pa~!. The theorem is proved.
Turning now to the case where p is purely Poisson, full, and stable under {expty}
with y given by (5.1)-(5.3), we can apply Theorem 3.4 in [6] and Theorem 4.8 in
this paper to show that ji=expy with

i{v,exptysy

mm) exp(—lt) dt dp(S) (56)

Yywy={ | (expi(v, exptysy—1—

where S is a Borel cross section of the orbits of {exp ty} in R”— {0}, p is a o-finite
measure on S, and A is a real number such that, for all veR”,

| f(1—cos<v, exptys))exp(—At) dt dp(s)< co. (5.7
$ R

(5.7) is equivalent to

lexptys]®

———————exp(—At) dt dp(s) < 0 5.8

T Tespryspp P20 41400 58)
which in turn implies

| sl _dp(s)< oo (5.9)

s 1+l
and

0<i<2min{b,,...,b,,¢c; ... ¢, } :2._1}1in k{Reli} (5.10)
where 4, , ..., 4, denotes the eigenvalues of y. If we choose S in such a way that 0¢S

(see Remark 4.7), then (5.9) implies that p must be totally finite on S. Conversely,
if the closure of S does not contain 0, then (5.9) and (5.10) together imply (5.8).
Note that the homomorphism c¢(+) is now given by

clexpty)=expit. (5.11)
We now recall that any matrix y is similar to one given by direct summands of the
form (5.1) and (5.2) and obtain

Theorem 5.2. Let yeGL(v, R) and let A,, ..., 4, denote the eigenvalues of 7.

1. There exists a full stable probability measure u for the group G = {expty, teR}
onR” if and only if either Re 4,<0 for allior Re A,>0 foralli=1, ..., k.

2. Assume that Re ;>0 for alli=1, ..., k. Let S be a cross section of the orbits
of G in IR*— {0} such that 0¢S. A Poisson measure y on R” is stable under G if and
only if it is if the form

fi=expy
where s is given by

_ ) . ivexptys) _
t//(v)—sjlg(expl(v,exptw} 1 _—__1+l|exptys||2)eXp( At) dt dp(s). (5.12)
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Here p denotes any totally finite measure on S and 1 is a real number with

0<4A<2 min Re4;. (5.13)
12jsk

Theorem 5.3. Let A be a subgroup of GL(v, R). If u is stable under A, and if
U=y * U, * p, is the decomposition of u into its Gaussian part p, and its Poisson
part w,, then yu, and p, are concentrated on subspaces N, and N, of R’ respectively,
which are invariant under A and which have intersection {0}.

Proof. This follows at once from (5.5), (5.10) and (5.11).

Corollary 5.4. Let p be a probability measure on R”. There exists a subgroup A of
GL(v, R) such that u is stable under A if and only if u satisfies the following three
conditions:

1. w is infinitely divisible.

2. If u=p, =, *p, is the decomposition of u into its Gaussian part y, and its
Poisson part u,, then y, and p, are supported on subspaces N, and N, of R respec-
tively with N; n N, ={0}.

3. u, on N, is given by (5.12)~(5.13) for some one parameter group {expty} of
linear transformations of N, such that all the eigenvalues A, ..., 4, of v have positive
real parts.

Corollary 5.5. Let A be a subgroup of SL(v, R). Then there are no full stable
probability measures for A.

Proof. By Theorem 4.7, any full probability measure 1 on IR” which is stable
under A is also stable under a one parameter subgroup which lies in the closure
of A and hence in SL(v, R). But no such one parameter group has a generator y
whose eigenvalues have all nonzero real parts of the same sign.

6. Probability Measures on R¥

which Are Stable under the Group of Lower Triangunlar Matrices

Let A be the group of matrices {(a;,): a,;, €R, a;,%0, a,, =0for i<k, i, k=1, ..., v}.
The invariant subspaces of R* are N, ={(x;,....,x)eR"ix,=x,=--=x,=0},
k=1, ..., v. Accordingly we conclude from Theorem 3.5 and Remark 3.6 that any
probability measure u on IRY which is stable under A" is either full, or it can be
translated onto some N, where it will be stable under A®~%, k>1. From Theo-
rem 5.3 it also follows that any stable probability measure is either purely Gaussian
or purely Poisson.

Lemma 6.1. Any full Gaussian probability measure p on R is stable under A™.

Proof. Let p be a nonsingular Gaussian measure on IR® given by

A)=exp{i{y, ad —3(Py, y>}.

p is stable under A® if and only if, for every o, a,e A", there exists an ;e 4™
such that

T T __ T
oy Poy +o, Poy = a5 Pog
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by Lemma 2.2. Let a,, a,e A” be fixed, and put Q=a, Paf + o, Pal Q is a non-
singular symmetric real positive definite matrix. We set M, ={(x,,...,x)eR":
Xe,1="=x,=0}. Let T be an orthogonal matrix on IR” which maps, for every
k=1, ...,v, the subspace Q"> M, onto the subspace P> M, in R". If ¢, denotes the
i-th unit vector in IR”, we set

a,=P~12TQ" e
a,, ..., a, forms a basis of R” with g, M, and with
(Pajay={P"%a, P'?ay=(T""P"a, T~ ' P'?a)>={Qe, ¢,

for all j, k=1, ..., v. Let a; be the element of A™ whose k-th row is equal to a,,
k=1, ...,v. Clearly we have

T
oy Poy=0,

and the lemma is proved.

Turning now to the Poisson measures, let us assume that u is a full Poisson
measure on IR” which is stable under A®. Let U be the subgroup of orthogonal
matrices in A. U is equal to the set of diagonal matrices with entries +1 along
the diagonal. By Lemma 4.4 we can find an element « in A” such that yo is
invariant under U. We shall assume for the sake of simplicity that u itself is
invariant under U. According to Theorem 4.8, p is-also stable under a one para-
meter subgroup G={expty,teR} in A™. By Theorem 5.2 y does not have 0 as
eigenvalue, so that the sets

S, ={(x;s ..., x,)eR":x; =1} and S  ={(x,...,x):x;=—1}
together intersect each orbit of G in IR —- {0} in at most one point. Let S be a Borel
cross section of the orbits of G in R*— {0} which contains S, and S_,, and such
that 0¢S (see Remark 4.7). By Theorem 5.2 there exists a totally finite measure p -
on S such that p is given by the formulae (5.12) and (5.13). Quite obviously,
p(S; uS_,)>0,since u is full. The invariance of y under U implies further that the
restrictions of p to S, and to S_, define the same measure on R*~*. More precisely,
let us denote by p, and p _, the restriction of p to S; and to S_; respectively. Define
measures v, and v_, on R”~! by setting

dpil((iLXZ: "‘axv)):dvil(x25 "'axv)'

Then v, =v_,. If we write j for the restriction of p to §; US_,, then

~ . iy, exptys) «
o= | (expz<y, expws>—1—m) exp(—Ar)dt dp(s) (6.1)

defines a Poisson measure ji on R by setting ﬁ=e§p . It is easy to see that fi is
again stable under A", We set K(u, v)=¥(u—v)—yu)—y¥(—v), u, ve R, and we
choose and fix an element o« =(a,;) in A™. For any seS, US_,, teRR, the element

S=P_ i rogtan %Bis
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lies again in S, US_,. Consequently we can write

K@ u,aTv)= [ [(expiu,aexprys)—1)

SiuS-1 R

-(expilv,aexptysy—1)exp(— A1) dt dp(s)
= j j(expi<u’ ﬁt+10gla11|§>_1)

SiuS-1 R

(expi<v, By 10g a0 — Dyexp(—At) dt dp(s)
= | (expidu, s> —1)(expiv, f,5)> — 1) exp(—Lit)

R SjuS-g
A -1
“lag | dp1(ﬁ,,06 ﬁ[+log|a11'5) dt.

Using (2.7), the invariance of x4 under U, and denoting by A™ the subgroup of 4%
consisting of all elements a=(q,,) in A® with a,, >0, we get the following relation:
For any o, a,eA* there exists an aye A" such that

(a(l))l dp(B_ (% ! ﬁt-{—loga(l)s)—f—(a(Z))l dp(B_ “2 t+loga§%)s)
= (@) dp(B_ 05" By rogap ) (6.2)
a.e.t, where a‘l"} denotes the top left entry of a,, i=1, 2, 3. But the terms of (6.2) are

all continuous as functions of ¢ in the weak*-topology for totally finite measures
on §,. Hence (6.2) holds for all ¢.

Lemma 6.2. Any totally finite measure § on S, S _, satisfying (6.2) is zero.

Proof- We can rewrite (6.2) in the following weaker form: for any «,, a,€4™
with a{) =1, i=1,2, and for any c,, ¢,>0 there exists an a;eA” with a{} =
and a c; >0 such that

Cy P10y +Co P, =CyP %y, (6.3)

p, 1is totally finite and hence tight on S;. Choose a compact set C in S; with

9
0,(C)> pll( ) . Now choose elements a,, 2, A" as follows:
1
81 0

1

=19 0 WL

tii) . Yot
with o, CnC=§,i=1,2,and a; Cho, C=@. According to (6.3), there exist
clements oy and o, in A% and constants ¢;, ¢, >0 with
P11 Py 0 =C30; %3,
PLtpPL o+ P8, =Ch Py %y

which immediately leads to a contradiction. The lemma is proved.
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Theorem 6.3. Let A be the group of lower triangular real v x v matrices with
nonzero determinant. If v>1, then a full probability measure p on R” is stable
under A if and only if it is Gaussian and nonsingular. If v=1, the stable probability
measures for A on R are given by the classical formulae

fi=expy
with
y(»=iay—b|y/* ' (6.4)

where acR, b=0, and A€(0, 2].

Proof. That every nonsingular Gaussian probability measure on is stable
under A has been shown in Lemma 6.1. The nonexistence of full stable Poisson
measures for A follows from Lemma 6.2 and the arguments leading up to it. The
case v=1 is classical (see [2], p. 327).

Remark 6.4. If A’ denotes the group of lower diagonal real v x v matrices with
positive determinant (or with positive entries on the diagonal) then the same
argument as before shows that the full stable measures in the case v> 1 are again
the nonsingular Gaussian measures, while for v=1 the stable measures (in both
cases) are given by jfi=expis with

—iav—blyd1+ict tan
Y(y)=iay—>b|y| {1+lcly|tan2/1} (6.5)
or
Y(yy=iay—bly| {1 +z‘c|—;’}-' %IOg Iy%} (6.6)

where aeR, >0, [¢|£1, 4€(0, (L, 2].

7. Probability Measures on R which Are Stable under the Group
of Diagonal Matrices

Theorem 7.1. Let D denote the group of diagonal v X v matrices with positive entries
on the diagonal. A probability measure is stable under A™ if and only if it is of the form

fi=expy
where .
!//(y)=kz Yv)  Jorany y=(y;, ..., ) (7.1)
=1
and where r,: R — C is given by
lﬁk(t)=iakt—bk[tlik{l—}-ickﬁtang}%} (7.2)
or
, .t 2
l//k(t)=lakt—bk|t|{l+lckmglog|tl} (7.3)

with a,eR, b, 20, [¢,[<1, 4,0, 1)u(l,2].
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In other words, every stable probability measure u for A* is a cartesian
product of classical stable probability measures on IR.

Theorem 7.2. Let D denote the group of diagonal v x v matrices with real entries
and nonzero determinant. A probability measure i on R” is stable under A if and

only if i=expiy with
()= Z iakJ/k_bk kalllk (7.4)
k=1

forany y=(y,, ..., y,) and for a,eR, b, =0, ,€(0,2].

Proof of 7.1 and 7.2. The idea of the proof is the same as the one used in the
previous section, so we shall restrict ourselves to an outline. One first checks that
any Gaussian measure u which is stable under A™ is given by

f(y)=exp{i<y, ay —3{Py, y>}

where P is a diagonal matrix. To find the full Poisson measures on R” which are
stable under A%, let us assume that u is full, stable, Poisson, and in addition stable
under a one parameter subgroup G={expty} with yeA* (cf Theorem 4.8).
u will then be given by a totally finite measure p on a suitable Borel cross section
of the orbits of G in R”— {0}, and by a positive number 4 (see (5.12) and (5.13)). We
choose a Borel cross section S containing the sets 9, = {(x,, ..., x,)eR": x,= £ 1}
and such that 0¢S%. Deriving the equations analogous to (6.2) and (6.3) one sees
easily, that the restriction of p to S, must in fact be concentrated in the points
©,...,0,4£1,0,...,0) with +1 in the i-th place. Varying now i between 1 and v we
see that the measure F in (2.1)~(2.3) is concentrated on the axes in R”. The rest of
the proof is a well known computation (see p. 227 in [2]). To obtain the stable
measures for 4, we apply Lemma 4.4 to 4 and u and see that the kernel K asso-
ciated with x4 must be invariant under the subgroup B, of A consisting of all
matrices which have entries +1 along the diagonal. So u must be invariant
under B,, which leads to (7.4). The proof is then complete.
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