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1. Introduction 

The notion of stable probability measures on the real line IR as introduced by 
L6vy [-1] generalizes in a natural way to probability measures on 1R v, v > 1, which 
are stable under a fixed subgroup of the general linear group GL(v, IR) on IR v. 
The ultimate aim of a theory of stable measures on IR v is to find a method which 
assigns to every subgroup A c GL(v, IR) the set of all those probability measures 
on IR v which are stable under A. Once this has been achieved one can proceed to 
study the domains of attraction of these measures and related questions. For v = 1 
the classification of stable measures is classical (see e.g. [2], p. 227). For higher 
dimensions the papers by Sharpe and Michalicek ([3, 4] and [7]) have investigated 
probabili ty measures which are stable under a one parameter  subgroup of GL(v, IR). 
A first result concerning stable measures under a bigger group is contained in [6] : 
There it is shown that the probabili ty measures on 1R v which are stable under the 
full group GL(v, IR) are precisely the nonsingular Gaussian and the degenerate 
probabili ty measures. The main question left open in [-6] in this context was how 
to find the stable measures for a subgroup A of GL(v, 1R) which has only a small 
compact  part. Here we try to solve this problem in some special cases. The contents 
of this paper are as follows: w 2 gives a short introduction to the terminology and 
some earlier results. w 3 is concerned with the supports of stable measures. w 4 shows 
that any measure which is stable under a subgroup A of GL(v, IR) is also stable 
under the closure of A in GL(v, IR). Fur thermore the measure is stable under a one 
parameter  subgroup of GL(v, IR) which may be assumed to lie in A. So every 
stable measure in our sense is also "operator  stable" in the sense of Sharpe and 
Michalicek. w 5 contains the L6vy-Hin~in formula for all stable measures on IR ". 
Some results of this section have been obtained earlier in [7], but it seemed 
natural to include the proofs. One consequence of this section is that every proba- 
bility measure on IR ~ which is stable under a subgroup of SL(v, IR), may be trans- 
lated onto a proper subspace of/R ~. Another  result is an easily checked condition 
for a group A to have no stable nonsingular Gaussian measures. w 6 deals with an 
example: We determine all stable probability measures for the group of lower 
triangular matrices on IR ~. In w 7 we find all probabili ty measures which are stable 
under the group of diagonal matrices on ]R ~. 
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2. Some Basic Facts about Stable Probability Measures 

Let N ~ denote the v-dimensional real Euclidean space with inner product ( ' ,  ") 
and norm II" II. We write MI(IR ~) for the set of probability measures on 1W and 
/~ �9 v for the convolution of any #, v ~ M 1 (IR~). The Fourier transform (or characteris- 
tic function) fi of #~MI(IR ~) is defined as f i (v)=Sexpi(v  , w)d#(w) for any v~IRL 
Let P(IR~)={fi:#EMI(IR~)} be the set of characteristic functions on IRL An 
element #~MI(]R ~) is called infinitely divisible if, for any n=2 ,  3 . . . .  there exists a 
#, e M 1 (JR ~) such that #*"=  #. # is infinitely divisible if and only if fi = exp 0 where 
0 is given by the L6vy-Hin~in formula 

0 (v) = i(v, a)  + 01 (v) + 02 (v) (2.1) 

with 

01(v)= - � 8 9  v>, (2.2) 

i(v, w) 
02(v)= j" e x p i ( v , w ) - I  f T ~ l @ ]  dF(w). (2.3) 

IR v -  {0} 

Here a is an element of 1R ~, P a real symmetric positive definite v x v matrix, 
and F is a a-finite measure on IR ~ - {0} such that 

5(1 - c o s ( v ,  w)) dF(w)< oo (2.4) 

for all v e IRL If P = 0, # is called a Poisson measure, and if F = 0, # is called Gaussian. 
01 and 02 are called the Gaussian and Poisson part of 0 respectively, and corre- 
spondingly we can decompose # as #=#1 * #2 * Pa where fik =exp0k,  k =  1, 2, and 
where pa denotes the probability measure concentrated in the point aelRL #1 and 
#2 are called the Gaussian and Poisson part of # respectively. #1, #2 and a are 
uniquely determined by #. For later use we define a kernel K associated with the 
infinitely divisible measure # by 

K(u,  v) = O(u - v ) -  O(u) - 0 (  - v) 

= (Pu,  v) +5(expi(u,  w) - 1)(exp i(v, w) - 1) dF(w) (2.5) 

for all u, v e IR v. Clearly K determines # up to t rans la t ion-  that is, if two infinitely 
divisible probability measures # and #' give rise to the same K, then # = #' * p, for 
some aelR ~. Consider now a fixed #eMI(IR ~) and an element eeGL(v,  IR), the set 
of nonsingular real v x v matrices. We define a measure #e  on IR ~ by setting 
#cffE) = #(c~E) for any Borel set E c IRL Following [6] we have 

Definition 2.1. Let A be a subgroup of GL(v, IR). A measure #eMI(1R ~) is called 
stable under A if, for any o~1, % ~ A  there exists an ~3 eA  and an xe lR  ~ such that 

#el  * # % = # %  *P~' (2.6) 

The following lemma contains some elementary facts about stable probability 
measures which are proved in [6]. 

Lemma 2.2. Let A be a subgroup of GL(v, IR) and let # be a probability measure 
on IR ~ which is stable under A. Then the following conditions are satisfied: 
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1. # is infinitely divisible. I f  K is given by (2.1)-(2.5) then there exists, for any %, 

o~2 e A , a n  ~3 e A with 

K(~I r u, J v) + K(0{2 r u, a2 r v) = K(~ r u, 0{r v) (2.7) 

for all u, velR ~, where c~ T denotes the transpose of c~ for an), 0{eA. 

2. Let B o A  be the subgroup of all elements f leA for which 

K(p~ u, fi%)= c(fl) K(u, v) (2.8) 

for all u, v e IR ~, and for some constant c(fl) > O. Then the map c(. ) is a homomorphism 
from B onto a subgroup of IR + = (0, o0) which contains all positive rational numbers. 

3. Let # = #1 * #2 * Pa be the decomposition of # into its Gaussian part & and its 
Poisson part #2. Then both #a and #2 are stable under A. 

3. Full Stable Measures 

Let A be a fixed subgroup  of GL(v,  1R) and let # e M  1 (JR v) be stable under A. 

Definition 3.1. # is called full if ]fi(v)[ + 1 whenever v 4 = O. 

In this section we shall show that  any stable measure  is the translate of  a 
measure  which is full on some subspace of IR ~. We define K by (2.5) and put  
N =  {uelR~; K(u, u)=0}. Clearly N is a closed subgroup  of IR ~, and K is constant  
on the cosets of  N x N in R ~ x 1R ~. K induces therefore a cont inuous  m a p  R of 
X x X (where X = IR~/N) given by 

g:(x, y)= K(u, v) 
for all x = u +  N, y = v +  N e X .  

L e m m a  3.2. N is a subspace of IR ~ which is invariant under every fir, fi~B. 
(B is defined in Lemma 2.2.) 

Proof. That  N is invar iant  under  B r =  {fiT:fie B} is an immedia te  consequence 
of (2.8). To  show that  N is a subspace,  we denote by fi the a u t o m o r p h i s m  fit  
induces on X. By structure theory, X is of  the form 1R ~ x C where a < v and where C 
is compact .  Clearly every/~ must  leave C invariant  so that, for any x e C, 

sup/((/~ x, fl x) < sup R (y, y) < 0% 
fleB y~C 

which together  with (2.8) implies t h a t / s  x ) = 0  whenever  x e  C. So C =  {0}, and 
X = IRL Consequent ly  N = IR ~- ~, and the 1emma is proved.  

L e m m a  3.3. N is invariant under AT= {~r: s eA} .  

Proof. A s s u m e  there exist ~IEA and vo~N such that  % roaN. Choose  0{2 
such that  

K(0{~ u, o~ r u) + K(u, u) = K(0{ r u, 0{r u) 

for all u e lR ~. This equat ion implies % r - , N  = N c~ J - ~ N  where the right hand  
side has d imension < v - 1. As 0{ 2 is nonsingular ,  this leads to a contradic t ion and 
the l e m m a  is proved.  
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Lemma 3.4. There exists an element a6 lR ~ such that 

t~'(v) = i(v,  a)  + ~(v) 

is constant on the cosets o f  N in IR L 

Proof  This is a standard argument. 

We obtain 

Theorem 3.5. Let A be a subgroup of  GL(v, IR) and let p be aprobabiIity measure 
on IR ~ which is stable under A. Then there exists a subspace IR ~ of  IR ~ which is 
invariant under A, and an element a6lR ~ such that 

(1) #' = #  * p, is concentrated on IR ~, 

(2) #' considered as a probability measure on IR ~, is full. 

Proof  Put IW equal to the orthogonal complement of N = IR ~ in IRL Defining 
~' by Lemma 3.4 and #' by/Y = exp ~' we have proved the theorem. 

Remark 3.6. As a consequence of Theorem 3.5 it is no loss of generality to 
assume that a stable probability measure # is full. Otherwise we can replace # 
by a translate #' concentrated on a subspace of lower dimension in IR ~ which is 
invariant under A. #' will then be full on this subspace and stable under the 
restriction of A there. 

4. Stability under Closed Subgroups and under One Parameter 
Subgroups of GL(v, IR) 

Theorem 4.1. Let  A be any subgroup of  OL(v, IR) and let # be a probability measure 
on IR v which is stable under A. Then # is stable under the closure A of  A in GL(v, IR). 

Proof  According to Remark 3.6 it will be sufficient to prove the theorem under 
the additional assumption that # is full. Under this hypothesis, let (e~i)), i=  1, 2, be 
two sequences in A T which converge to e~), i=  1, 2, in GL(v, IR) respectively. 
Hence ~,(i) v converges to ~)v  for all i=  1, 2, wlRv. By Lemma 2.2 there exists a 
sequence (@))c A such that 

(1)T (1)T (2)T (2)r (3)T (3)T K(.n u,~. v) K(~. u,~. v)= K(~. u,~. v)+ 

for every u, v ~ R~. The continuity of K implies the convergence of K(~, 3) T U, ~3)r V), 
and, since # is full, 

lim log K(~3)T u, ~3)r u) = lim log( -- 2 ~9 (c~, 3)T u)) 

exists for all u+0.  Lemma 5.3 in [6] can now be applied to show that (@)) is 
relatively compact in GL(v, IR). Choosing a convergent subsequence of (~3)) with 
limit ~o 3) say, we have ~Co3~ A and 

for all u, v~IRL Since ~o 1) and ~o 2) can be chosen arbitrarily in A, the theorem is 
proved. 
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Lemma 4.2. I f  # is stable under a closed subgroup A c GL(v, IR), then the sub- 
group B of A defined in Lemma 2.2 is closed. 

Proof See Lemma 2.6 in [6]. 

Lemma 4.3. Let p be stable under a closed subgroup A of GL(v, IR) and assume 
that # is full. Then the map c: B ~ I R  + is surjective. 

Proof The proof uses the same idea as the proof of Theorem 4.1 and will be 
omitted. 

Lemma4.4. Under the assumptions of Lemma4.3, B o = { f i e B : c ( ~ ) = l  } is a 
maximal compact subgroup of  A. 

Proof Apply Lemma 6.4 and Lemma 6.5 in [6]. 

Lemma 4.5. Under the assumptions of Lemma 4.3, we have 

1. lim sup sup Ilflxl[ =0 .  

2. lim inf inf II/~xll = oo. 
n~o {x~= Ilxll=l} {B~B=c<B)>_-n} 

Proof Let C be any compact subset of 1R ~. Since 0 is continuous, we have 
61 =sup  IRe0(v)l< oo and inf IRe~,(v)l =62>0 .  For any BaB with c(B)>261/62, 

~ec Ilvll =1 
and for any v with IIv]l : 1, we get 

IRe 0 (fl T V)] = C(/~) iRe ~9(v) l => 2 61 

which implies that/~rvq~ C. Hence 

lim inf inf II/~rxll = 0o. 
~oo {xe~v: I[xl[ =1} {~eB:c(t~)_->~} 

But this implies 

lim sup sup I]flTxll = 0  

which in turn implies (1). (2) follows from (1) in a straightforward way, and the 
proof is complete. 

Lemma 4.6. There exists a Borel subset S c 1R ~ - {0} which intersects each orbit 
of B in ]R ~ -  {0} in exactly one point. 

Proof Let Ill" Ill denote a norm on JR" which is invariant under the compact 
group B o c B .  The maps/~--'lll/~xlll, x ~ l R  ~, are constant on the cosets of B 0 in B 
and can thus be considered as continuous maps on B/B o, which is isomorphic 
to ]R + by Lemma 5.3 in [6] and by Lemma 4.4 in this paper. Together with 
Lemma4.5 this implies that any orbit of B intersects the set F = { x :  Illxli]= l} 
in IR ~. Furthermore, for any xeF ,  the set B x = {fieB: f lxEF} is compact. We define, 
for any x e F ,  Ix] to be the set {fix: f l zBx}  and denote by (9 the collection 
{IxI, xeF} .  (9 is a Hausdorff space in the quotient topology defined by the map 
x --+ Ix] from F onto (9. A theorem of Kuratowski (see [5], p. 23) shows that there 
exists a Borel subset S of F such that S intersects each Ix] in exactly one point. 
Clearly S is then a cross section for the orbits of B. The proof is complete. 
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Remark 4.7. We can in fact choose S in such a way that the closure S of S in N ~ 
does not contain 0. The section S constructed in Lemma 4.6 certainly has this 
property. 

We are thus led to 

Theorem 4.8. Let A be a subgroup of GL(v, IR) and let # be a probability measure 
on IR ~ which is stable under A. Then there exists a one parameter subgroup G= 
{fit, t~lR} of GL(v, IR) such that # is stable under G. Furthermore, there exists a 
Borel subset of F, ~ - {0} which intersects each orbit of G in ~ - {0} in exactly one 
point. I f  A is closed and i f#  is full, then G can be chosen as a one-parameter subgroup 
of A. 

Proof Again we may assume A to be closed and # to be full, by Remark 3.6 
and Theorem 4.1. The subgroup B of A defined in Lemma 2.2 is then closed and 
the homomorphism c(" ) from B to IR + is surjective, by the Lemmas 4.2 and 4.3. 
Lemma 2.2 also implies that # is stable under B. Let B' be the connected component 
of the identity in B. It is easy to see that c(B')= IR + and that there exists a one 
parameter subgroup G in B' with c(G)= IR +. So # is stable under G, and we can 
apply Lemma 4.6 to the case A = B = G to complete the proof. 

5. The L6vy-Hin~in Formula for Stable Measures on Rv 

Let 7 be a real v • v matrix which is a direct sum of kj • kj matrices r = 1 . . . . .  nl, 
and of 21j • 2 lj matrices ~j, j = 1, ..., n2, of the form 

and 

(hi i 1 b~ 0 
~j= 1 �9 , bfi lR (5.1) 

1 bff 

~ cj dj. \ ] 
;...... o .......... o 

0 " ' l ' " ' " ' c j  0 "'"'.. dj 

I ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
�9 ..... o o / 0 ""-. 0 .'".. 

"-- d~ "1 ""cj / 

cj, djelR, d j#0 ,  (5.2) 

nl n2 

such that ~ kj + 2 ~ lj = v. If we assume that there exists a full probability measure 
j = l  j = l  

# stable under the group {expt7, t eR}  then Lemma4.5 implies (without loss of 



Stable Probabil i ty Measures on IW 25 

generality) that 

lim (exp - t 7) v = 0 
t ~ O O  

for all v ~ 1R ~, and hence that 

inf{bj, c~} > 0. 
3 

(5.3) 

(1 0 1 
,. 

If # is in addition Gaussian, then fi(v)=exp(i(v, a ) - � 8 9  v>) where aEIR v and 
where P is a positive definite nonsingular real symmetric matrix. Lemma 2.2 
then implies that 

expt  7 �9 p . exp t TT = exp 2 t �9 P 

for all t~lR, where 24=0. Multiplying both sides by p_1/2 from the left and from 
the right we see that exp t 7 is similar to a scalar multiple of a rotation. The uniqueness 
of the Jordan form (5.1) and (5.2) implies that 

dl c 
c d 2 

-d2 c 0 

7 = "... d, (5.4) 
"C 

0 - d .  c 

0 """.."" 0 \ 
where c > 0  and where dl, ..., dkelR. Since both expt  7 and p-~/2 exptTPa/2 are 
scalar multiples of rotations, P must commute with 7. Note that in this case the 
map c( .)  from {exp t7, tMR} to IR + is given by 

c(exp t 7) = exp 2 c t. (5.5) 

Theorem 5.1. Let G= {exp t6, t~lR} be a one parameter group in GL(v, IR). 
A necessary and sufficient condition for the existence of a full Gaussian probability 
measure # which is stable under G is the following: 

1. There exists an aeGL(v,  IR) such that 7 = a 6 c c  a is of the form (5.4), 

2. I f  fi(v)=exp(i(v, a ) - � 8 9  v)), then P commutes with 6. 

Proof For any 6eGL(v,  IR) there exists an aeGL(v,  IR) such that 7=c~6a -1 
is of the form 
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where the (i and ~; are matrices given by (5.1) and (5.2). If # is full, (5.3) must also 
be satisfied, and the discussion preceding the statement of the theorem shows 
that 7 is of the form (5.4) and commutes with ~p~- l .  The theorem is proved. 
Turning now to the case where # is purely Poisson, full, and stable under {exp tT} 
with y given by (5.1)-(5.3), we can apply Theorem 3.4 in [-6] and Theorem 4.8 in 
this paper to show that/~ = exp ~ with 

i<v, exptTs}  
O(v)=~s j ( e x p i ( v ' e x p t y s } - I  1 +[[exptTs[]2] e x p ( - 2 t ) d t d p ( s )  (5.6) 

where S is a Borel cross section of the orbits of {exp tT} in IR v -  {0}, p is a o--finite 
measure on S, and 2 is a real number such that, for all v ~ IR ~, 

~ (1 - c o s ( v ,  exp tys))  exp ( -2 t )  dt dp(s)< ~ .  (5.7) 
s IR 

(5.7) is equivalent to 

[[exptTs[[ 2 
J 1 + i expf~s][ 2 e x p ( -  2t)dt  dp(s)< oo (5.8) 

which in turn implies 

S ltslk2 s ~ dp(s) < ~ (5.9) 

and 

0 < 2 <  2min{b 1 , ..., b,,, c 1 ... c,2 } =2i=lmin ..... k{Re2i} (5.10) 

where 21, ..., 2k denotes the eigenvalues of y. If we choose S in such a way that 0r  
(see Remark 4.7), then (5.9) implies that p must be totally finite on S. Conversely, 
if the closure of S does not contain 0, then (5.9) and (5.10) together imply (5.8). 
Note that the homomorphism c( ' )  is now given by 

c(exp t 7) = exp 2 t. (5.11) 

We now recall that any matrix Y is similar to one given by direct summands of the 
form (5.1) and (5.2) and obtain 

Theorem 5.2. Let 76GL(v, JR) and let 21 . . . .  , •k denote the eigenvalues of 7. 
1. There exists a full stable probability measure # for the group G = {exp t Y, t ~ IR} 

on IR ~ if and only if either Re 2 i < 0 for all i or Re 2i > 0 for all i = 1 . . . . .  k. 

2. Assume that Re 21>0 for all i= 1, ..., k. Let S be a cross section of the orbits 
of G in IR ~ -  {0} such that Oq~S. A Poisson measure # on IR ~ is stable under G if and 
only if it is if the form 

~=exp~b 

where ~ is given by 

i ~  Li-e~xp t-~-2 ] ! e x p ( - 2 t )  dt d p ( ) .  (5.12) O(v)=~s~(expi (v ,  e x p t T s ) - I  i ( v ' e x p t T s )  s 
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Here p denotes any totally finite measure on S and )~ is a real number with 

0 < 2 < 2  rain Re2j .  (5.13) 
l< j<k  

Theorem 5.3. Let A be a subgroup of GL(v,  IR). I f  # is stable under A, and if  
#--  fl~ * #2 * Pa is the decomposition of # into its Gaussian part #1 and its Poisson 
part #2, then fll and #2 are concentrated on subs#aces N, and N 2 of IR v respectively, 
which are invariant under A and which have intersection {0}. 

Proof. This follows at once f rom (5.5), (5.10) and (5.11). 

Corollary 5.4. Let 12 be a probability measure on IR ~. There exists a subgroup A of 
GL(v,  IR) such that # is stable under A if and only if # satisfies the following three 
conditions: 

1. # is infinitely divisible. 

2. I f  # = #, * #2 * Pa is the decomposition of # into its Gaussian part #1 and its 
Poisson part #2, then 12, and #2 are supported on subspaces N 1 and N 2 of ]R v respec- 
tively with N 1 n N z = {0}. 

3. #2 on N 2 is given by (5.12)-(5.13) for some one parameter group {expt~} of 
linear transformations of N z such that all the eigenvalues 2, , ..., s of 7 have positive 
real parts. 

Corollary 5.5. Let A be a subgroup of SL(v, ]R). Then there are no full stable 
probability measures for A. 

Proof. By T h e o r e m  4.7, any full p robabi l i ty  measure  # on 1W which is stable 
under  A is also stable under  a one pa rame te r  subgroup  which lies in the closure 
of  A and hence in SL(v, 1R). But no such one pa ramete r  group has a genera tor  7 
whose eigenvalues have all nonzero  real parts  of the same sign. 

6. Probability Measures on R v 
which Are Stable under the Group of Lower Triangular Matrices 

Let A (v) be the g roup  of matr ices  {(%): aik ~ R ,  aii4: O, aik = 0 for i <  k, i, k = 1, ..., v}. 
The invar iant  subspaces  of IR v are N k = { ( x l , . . . , x v ) ~ l R ~ : x , = x 2  . . . . .  Xk=0}, 
k = 1, .. . ,  v. Accordingly  we conclude f rom T h e o r e m  3.5 and R e m a r k  3.6 that  any 
probabi l i ty  measure  # on IR ~ which is stable under  A (~) is either full, or it can be 
t ranslated onto  some N k where it will be stable under  A <~-k), k >  1. F r o m  Theo-  
rem 5.3 it also follows that  any stable probabi l i ty  measure  is either purely Gauss ian  
or purely  Poisson. 

L e m m a  6.1. Any full Gaussian probability measure # on IR ~ is stable under A (~). 

Proof Let # be a nonsingular  Gauss ian  measure  on IW given by 

/~(y) = exp {i(y, a> - � 8 9  y)} .  

g is stable under  A (~) if and only if, for every ~1, a z e A  (~), there exists an % ~ A  (~) 
such that  
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by L e m m a  2.2. Let %, ~ 2 e A  (v) be fixed, and put Q = %  p a r  + % p a r  Q is a non-  
singular symmetric  real positive definite matrix. We set Mk={(Xx,  . . . ,x)elR~: 
xk+ 1 . . . . .  x~=0}. Let T be an or thogonal  matrix on IR ~ which maps, for every 
k = 1, ..., v, the subspace Q1/2M k onto the subspace P1/2M k in IRL If  e i denotes the 
i-th unit vector in IR ~, we set 

ai = p - I / 2  TQ1/2 ei" 

al, ..., a~ forms a basis of IR v with a k e M  k and with 

( P a j, ak) = (p1/2 a j, p1/2 ak ) = ( T -  1 p1/2 a j, T -  1 p1/2 ak ) = ( Q e j, ek) , 

for all j, k = 1, ..., v. Let a 3 be the element of A (~) whose k-th row is equal to a k, 
k = 1, ..., v. Clearly we have 

o~3 P g~ = Q, 

and the lemma is proved. 
Turning now to the Poisson measures, let us assume that # is a full Poisson 

measure on IR ~ which is stable under A ('), Let U be the subgroup of or thogonal  
matrices in A (~). U is equal to the set of diagonal  matrices with entries _+ 1 along 
the diagonal. By L e m m a 4 . 4  we can find an element e in A ~) such that  # e  is 
invariant under U. We shall assume for the sake of simplicity that # itself is 
invariant under U. According to Theorem 4.8, # i sa l so  stable under a one para- 
meter subgroup G = { e x p t ? ,  telR} in A (~). By Theorem 5.2 ? does not have 0 as 
eigenvalue, so that the sets 

S I = { ( x  1 . . . .  , x j e l R ' : x l = l }  and S l = { ( x l , . . . , x j : x l = - i  } 

together intersect each orbit of G in IR ~ - {0} in at most  one point. Let S be a Borel 
cross section of the orbits of G in IR ~ -  {0} which contains S 1 and S_1, and such 
that 0 r  (see Remark  4.7). By Theorem 5.2 there exists a totally finite measure p 
on S such that # is given by the formulae (5.12) and (5.13). Quite obviously, 
p(S 1 w S 1) > 0, since # is full. The invariance of # under U implies further that the 
restrictions of p to S 1 and to S_ 1 define the same measure on IR ~- 1. More  precisely, 
let us denote by & and p a the restriction o fp  to S 1 and to S_ 1 respectively. Define 
measures v 1 and v_ 1 on IR ~- a by setting 

dp +_i ((+ 1, x2, . . . ,  x j ) = d v  + l ( X 2 ,  . . .  , Xv).  

Then v 1 = v_ r If we write p for the restriction of p to S 1 w S_ 1, then 

i (y ,  e x p t y s )  ~ e x p ( - 2 t )  dt dfi(s) (6.1) ~(Y)= ~ ~ e x p i ( y ' e x p t y s ) - l - l + H e x p t y s l [ 2 ]  
SlwS-1 

defines a Poisson measure/~ on IR ~ by setting/~ = exp q}. It is easy to see that/~ is 
again stable under A (~). We set R~(u, v ) = ~ ( u - v ) - ( J ( u ) - ~ ( - v ) ,  u, ve lR ~, and we 
choose and fix an element ~ = (alk) in A (~). For  any s e S  1 w $ 1 ,  t e N ,  the element 

S :  f l - t - log  ]all I O~J~tS 
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lies again in S s u S 1. Consequent ly  we can write 

/ ( ( J u ,  arv)  = ~ ~(expi(u, aexptTs)  - 1 )  
Sl uS_j 

�9 (exp i(v, a exp t?s) - 1) e x p ( - 2  0 dt d~(s) 

= ~ f(expi(u,  flt+iogl..ig) - 1 )  
S l u S - i  N. 

�9 (exp i(v, Bt+log la. I g) - 1) exp( - 2t) dt dfi(s) 

= ~ ~ (expi(u, f l t s ) - l ) (exp i (v ,  f l f i ) - l ) e x p ( - 2 t )  
IR S i u S - t  

�9 [alsl;'dpl(fl ta-Sfit+logl,,lS)dt. 

Using (2.7), the invariance of # under U, and denot ing by A + the subgroup of A (~> 
consisting of  all elements a = (a~k) in A (~ with as1 > 0, we get the following relation: 
For  any a s, a2EA + there exists an a3~A + such that  

(a~]))x dfi(fl_t a~s fit+ loga[ 1, S) -~- (a~2)) ~ dfi(fi t a21 flt+loga~ 2) S) 

= (a~])) ~ dfi(fi_t ~31 fit + log~i~ s) (6.2) 

a.e.t, where ,(i) denotes the top left entry of  a~, i = l, 2, 3. But the terms of  (6.2) are Ull 
all cont inuous  as functions of t in the weak*- topology for totally finite measures 
on S 1 . Hence (6.2) holds for all t. 

L e m m a  6.2. Any totally finite measure ~ on S1 w S_ 1 satisfying (6.2) is zero. 

Proof We can rewrite (6.2) in the following weaker form: for any a s, a2~A + 
~(3)_ 1 with - ( ~  i = 1 , 2 ,  and for any q ,  c 2 > 0  there exists an % s A  + with " i s -  ~11 

and a c 3 > 0 such that  

cl P1 ~s + c2 Pa a2 = c3 Pl %. (6�9 

Pa is totally finite and hence tight on Sa�9 Choose  a compact  set C in S a with 

p s (C)>  9p1(S~). N o w  choose elements as, a 2 e A  + as follows: 
10 

a i J t 0 

�9 . � 9  ..�9 / 

\ t ~  ~ 0 .; . . . . .  0 1 

with a i Cc~ C = ~ ,  i = 1 , 2 ,  and a 1 C o a  2 C=0 .  According to (6.3), 
elements a 3 and c~ 4 in A + and constants c 3, c 4 > 0 with 

Pl + P l  a l  = c 3 p l  a3, 

Pl + Pl  a l  "~ Pl a2 ~--- C4 Pl a4 

which immediately leads to a contradiction�9 The lemma is proved�9 

there exist 



30 K. Schmidt 

Theorem 6.3. Let A be the group of lower triangular real v x v matrices with 
nonzero determinant. I f  v> 1, then a full probability measure # on tR ~ is stable 
under A if and only if it is Gaussian and nonsingular. I f  v = 1, the stable probability 
measures for A on ]R are given by the classical formulae 

/~ =exp~b 

with 

O(Y): i a y -  b ]yl ~ (6.4) 

where a~ lR, b >O, and 2e(0, 2]. 

Proof. That every nonsingular Gaussian probability measure on is stable 
under A has been shown in Lemma 6.1. The nonexistence of full stable Poisson 
measures for A follows from Lemma 6.2 and the arguments leading up to it. The 
case v ~ 1 is classical (see [2], p. 327). 

Remark 6.4. If A' denotes the group of lower diagonal real v x v matrices with 
positive determinant (or with positive entries on the diagonal) then the same 
argument as before shows that the full stable measures in the case v > 1 are again 
the nonsingular Gaussian measures, while for v = 1 the stable measures (in both 
cases) are given by/~ = exp 0 with 

lyl x f l + ic Y--- tan ~- 2} (6.5) ~b(y)=iay-b 
[yl 2 

o r  

O ( y ) = i a y - b l y l { l + i c ~ y  21Oglyl} (6.6) 

where aelR, b>0 ,  [el=< 1, 2~(0, l ) u  (1, 2]. 

7. Probability Measures on ~v  which Are Stable under the Group 
of Diagonal Matrices 

Theorem 7.1. Let D + denote the group of diagonal v • v matrices with positive entries 
on the diagonal. A probability measure is stable under A + if and only if it is of the form 

/~=exp~b 

where 

O(Y) = ~ Ok(Yk) for any Y=(Yl, "-, Y~) (7.1) 
k = l  

and where Ok: IR ~ ~ is given by 

tpk(t)=iakt--bkltlX~{l+ick~tltan22k} (7.2) 

o r  

} 
with akelR, bk>O, [Ck[ < 1, 2k~(0, 1) • (1, 2]. 
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In other words, every stable probability measure # for A + is a cartesian 
product of classical stable probabili ty measures on ]R. 

Theorem 7.2. Let  D denote the group of  diagonal v x v matrices with real entries 
and nonzero determinant. A probability measure # on IR ~ is stable under A if  and 
only i f  fi = exp 0 with 

O(y)= ~ iakyk- -b  k [yk[ ~k (7.4) 
k=l  

for  any y = (Yl . . . . .  y~) and for  akEIR, b k > O, 2k~(0, 2]. 

Proof  of  7.1 and 7.2. The idea of the proof  is the same as the one used in the 
previous section, so we shall restrict ourselves to an outline. One first checks that 
any Gaussian measure p which is stable under A + is given by 

1 p f i ( y ) = e x p { i ( y ,  a ) - - ~ (  y, y ) }  

where P is a diagonal matrix. To find the full Poisson measures on IR ~ which are 
stable under A +, let us assume that # is full, stable, Poisson, and in addition stable 
under a one parameter  subgroup G={exptT} with yeA + (cf. Theorem4.8). 
# will then be given by a totally finite measure p on a suitable Borel cross section 
of the orbits of G in I W -  {0}, and by a positive number 2 (see (5.12) and (5.13)). We 

(0 (0 v. choose a Borel cross section S " containing the sets S ~ 1 = {(xl . . . .  , x~ )e IR . x i = _+ 1 } 
and such that 0~S (i). Deriving the equations analogous to (6.2) and (6.3) one sees 
easily, that the restriction of p to S(~_+) a must in fact be concentrated in the points 
(0, ..., 0, __+ 1, 0 . . . . .  0) with _+ 1 in the i-th place. Varying now i between 1 and v we 
see that the measure F in (2.1)-(2.3) is concentrated on the axes in 1R ~. The rest of 
the proof  is a well known computat ion (see p. 227 in [-2]). To obtain the stable 
measures for A, we apply Lemma 4.4 to A and # and see that the kernel K asso- 
ciated with /~ must be invariant under the subgroup B 0 of A consisting of all 
matrices which have entries _+ 1 along the diagonal. So # must be invariant 
under B o, which leads to (7.4). The proof  is then complete. 
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