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Summary. It is shown that a spin system on ~ has only one invariant 
probability measure if it has attractive or repulsive nearest neighbor flip 
rates which are strictly positive and periodic under translation along 2~. 

O. Introduction 

A spin system on 2g is a type of Markov process on the state space S= the  
subsets of g. An introduction to spin systems may be found in Liggett [t2] or 
Durrett [3]. We will briefly describe them here to establish our notation and 
terminology. A rigorous construction will be given in Sect. 1. 

We write ~A for the state of a spin system at time t > 0  if A is the initial 
state. Thus, ~ is a random subset of 2~. We will find it convenient to view ~A 
as the set of sites (points in ;g) that are occupied at time t. We will also treat ~{ 
as a function from ~ to {0, 1}, with 

~fl(x) = 1 if x e ~ ( x  is occupied) 

=0  if xr is vacant). 

We write (~)  for the process with initial state A, and (~) for the system of 
processes (~fl), A6S. 

Associated with each spin system is a set of flip rates ~/x:S ~[0 ,  oe). These 
govern the transitions made by the system. If the system is in a state ~ S ,  then 
Vx(~) is the exponential rate at which the occupancy of the site x changes. 
Thus, if x ~ ,  then yx(~) is the rate at which the vacant site x becomes 
occupied, while if x ~ ,  then 7~(~) is the rate at which the occupied site x is 
vacated. For convenience, we will define birth rates fl~ and death rates c5~ by 

/~x(~)=Tx(~\{x}) and 6~(~)=~x(~u{x}). 

* Research supported in part by NSF Grant MCS 78-01168 A04 

0044-3719/82/0061/0389/$03.20 



390 L.F. Gray 

One of the most important problems in the study of spin systems is to 
determine whether or not a given system is ergodic, that is, whether it has a 
unique invariant probability measure. One of the oldest open questions con- 
cerning the ergodicity of spin systems on 7/. is to determine the validity of the 
so-called "positive rates conjecture", which is that the following three con- 
ditions ensure ergodicity: 

Translation invariant: 7x(~)=~o(~-x) for all x~2g and ~ S ,  where ~ - x  
= { y ~ :  x+ye~} .  

Positivity: ~ e > 0 such that 7~(~)> e for all x e2g and ~ S .  
Finite range: 3 a positive integer r such that 

7~(~)=Tx(~C~{y:x-r<=y<x+r}) for all x~2g and ~ES. 

The conjecture is suggested by, among other things, certain facts from statisti- 
cal mechanics. (For a survey of the connection between spin systems and 
statistical mechanics, see Kindermann and Snell [11] or Durrett [3].) 

Examples are known of non-ergodic systems which satisfy any two of the 
above conditions. In fact, the case in which positivity fails has been studied 
extensively. See Durrett [2] and Gray and Griffeath [6] for recent results. If 
either of the other two conditions fails, almost anything can happen - non- 
ergodicity is only one of the milder possible types of behavior. However, no 
non-ergodic systems are known which satisfy positivity, finite range, and the 
condition that the rates be uniformly bounded. In this regard there is an 
example of a non-ergodic discrete time system due to Cirel'son [1] which has 
uniformly bounded, uniformly positive, finite range flip rates which depend on 
time as well as the state of the system. 

Very little progress has been made on the general positive rates conjecture. 
In fact, Gach, Kurdymov and Levin [4] have suggested a possible counter- 
example in discrete time. Their evidence for non-ergodicity is based on com- 
puter simulations, which are of course not rigorous. See [11] for a discussion 
of this example. 

Some progress has been made in the case that the rates satisfy the follow- 
ing monotonicity condition: 

Attractive: If ~ ' ,  then/~x(~)>/?x(~') and cSx(~)<cSx(~') for all x~2g. 

In this case it is known that (~) and (~)  converge in distribution to invariant 
measures #1 and #0, and that the system is ergodic iff # 0 = # i  (this was first 
proved by Holley [9], although the result is almost taken for granted in light 
of current techniques). Under the further restriction that r = l ,  Liggett [13] 
showed that #i and #o are the only extreme invariant measures. (Liggett used 
a much weaker positivity condition). This condition that r = 1 is called 

Nearest neighbor: finite range with r---1. 

In the very special "one-sided" nearest neighbor case (i.e., 7~(~)=7~(~c~{x,x 
+ 1})), Holley and Stroock [10] have proved the conjecture. Their result covers 
attractive as well as some non-attractive systems. See Sect. 3 below. 
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Our main result (Theorem 1) is to prove the positive rates conjecture in the 
attractive, nearest neighbor case. Actually we do not need the full strength of 
translation invariance - it is sufficient to assume 

Periodicity: 3 an integer d such that 7~(~)=7~ d(~--d) for all xe7Z and ~eS. 

The paper is organized as follows. In Sect. 1 we give a particular con- 
struction of spin systems. This construction helps us to define and develop our 
main tool, called "edges". We use edges to prove the main result in Sect. 2. 
Variations and generalizations of Theorem 1 are discussed in Sect. 3. 

Section 1. Edges 

Edges are easiest to define if we construct spin systems using a graphical 
approach due to Harris [8]. The version given here is a more general form of 
the specific construction used by Gray and Griffeath [6]. 

The idea is to define a collection of independent random variables Sn(x ) 
and C,(x), n > l ,  xe2~, and then to define the system (~) on the resulting 
probability space. The S,(x)'s are exponentially distributed and are used to 
determine the times of possible flips at the site x. The C,(x)'s are uniformly 
distributed and are used to introduce the interaction between x and other sites. 

For  each xE~, let 

7x = sup 6x({ ) + sup fi~({). 

We assume that 9-~<00 for all x. Let Sl(X), S2(x),... be i.i.d, exponentially 
distributed random variables with mean 1/yx (let S,(x) = oo if 7~=0). Also, let 
C,(x), C2(x), ... be i.i.d, random variables, uniformly distributed on [0, y~]. 
Assume that all the random variables defined are mutually independent and let 
(f2, ~-, P) be the resulting probability space. Let 

T~(x) = Z Sj(x). 
j = t  

So far, we have made no restrictions on the rates except that Yx < ~ for all 
x. In order to complete our construction, we need to impose a condition that 
will allow us to carry out a certain approximation procedure. We are not 
interested here in stating the most general conditions. Instead, we refer the 
reader to the conditions stated in Theorems 4.4 and 4.9 of Gray [5], which are 
sufficient. (The conditions of Theorem 4.9 in [5] are essentially the well-known 
uniqueness conditions due to Liggett. See also [12].) For  our immediate 
purpose here, we impose the conditions of finite range and uniform bounded- 
ness. Then we claim that we can define a spin system (~) on (~?, Y, P), with flip 
rates (7x), such that: 

(1) ~oA=A, 

(2) a birth occurs at a site x at time s in the process (~t A) iff ~A_(x)=0 and 
there exists an n>  1 such that s =  T.(x) and C.(X)>p--f l~(~A),  
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~A A (3) a death occurs at a site x at time s in the process (~)  iff ~s-(X)=l and 
there exists an n >  1 such that s = T,(x) and C,(x)<6x(~{_), 

where ~s A_ =lira ~A. The transitions described in (2) and (3) are made so as to 
r..~S 

make (~A) right continuous in t. Intuitively, we could think of process (~A) as 
evolving in the following manner. Start in state A. At each site x, wait until 
time Tl(x ). Then flip at x if C1(x ) is the right size, depending on which of the 
other sites are occupied. Continue in this fashion, flipping at the successive 
times T2(x), T3(x ) . . . .  if the corresponding C,(x)'s allow it. Of course, this is 
happening simultaneously at infinitely many sites, so there might be some 
difficulty with existence. In order to prove existence, we first define appro- 

~A ximating systems (~, B) for each finite set B~S. Each process ( t, B) satisfies (1), 
but we only require it to satisfy (2) and (3) at sites x~B. No flips occur at sites 
xr It is elementary to check that each system (~,B) is uniquely defined on 
(~2, ~ ,  P) up to null sets. These "finite" systems have been used many times in 
existence and uniqueness proofs. In particular, they are special cases of the 
systems used in [51. It is shown in the proof of Theorem 4.9 in [5] that under 
our assumptions, 

lim infp(~AB(x) - A - ~, B,(x), 0 < t < s ) =  1 
B.'~Z B ' = B  

A e S  

for all xe;g and s>0.  Thus, we can define (~) to be the limit of the systems 
(~,B) as B.-~2~. It is easily checked that (~[) satisfies (1), (2) and (3), and 
standard results (such as the theorems in [5]) imply that (~) has the desired 
flip rates. 

The above construction has many advantages over more abstract ap- 
proaches. One of these will not become apparent until the end of the proof of 
Theorem 1. A more obvious advantage is that it gives us a way to jointly 
define or couple all the processes that make up the system (~[). This coupling is 
known as the basic coupling (see Liggett [123). It is most useful when the flip 
rates are attractive and nearest neighbor, in which case (2) and (3) imply the 
following well known result (see [12]), which is a sort of maximum principle: 

Proposition 1. Suppose that (~) has attractive, nearest neighbor, uniformly bound- 
ed flip rates. Let I be a bounded or unbounded interval of integers, and let OI be 
the set of points in F with a neighbor in I Q?I is empty if  I = ~ ) .  Choose A, B~S 
and times s and u, with 0 < s < u. Suppose that 

{A(x)> {ff(X) for all x e I  
and 

{A(X)>~(X)  for all x e a I  and te[s, u]. 

Then {{(x)>{~(x)  for all x e I  and te[s,u]. (To be precise, we should say 
something about null sets, but we will soon remove such sets from (2. See (5) 
below.) 

This proposition has an important special case, which we state as 
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Corollary 1.1. f f  os(a~B-s, then ~ta~ff for all t >s.= 

Proof. Let I =TZ and u--~ ~ in Proposition 1. 

We are now ready to define edges. As above and throughout the rest of this 
section, we assume that the flip rates are attractive, nearest neighbor and 
uniformly bounded above. We will define a left edge process (lt) and a right 
edge process (r~) for each n ~ .  These processes are the same as those used by 
Durrett  [23 if fi~(0)--0 for all x, but in general they should be thought of as 
refined versions of the ideas used by Liggett in [133. 

We start with left edges. Let L~ = {x: x_>_ n}. The process (lt) will be defined 
in terms of (~n). It will move about on the state space {x+�89 x ~ }  and will be 
constructed so that 

~L~q~--!~--O and L~ ~ 1 _  (4) t , t  2 , -  = it (l~ + 5 ) - 1  for all t>0.  

Let l~ = n- �89 Thus, (4) holds with t = 0. The transitions of (It) occur whenever 
the process ~ "  has a birth at the site immediately to the left of l~ or a death at 
the site immediately to the right of I~. As soon as such a flip occurs, (4) would 
be violated, and so l~ jumps to a new position that lies between a 0 on the left 
and a 1 on the right. In the case that there is a birth at the site to the left of 12, 
the edge jumps to the nearest position on its left where (4) is satisfied, (The 
uniform boundedness of the flip rates ensures that there will always be such a 
site with probability 1.) If instead, there is a death at the site to the right of 12, 
the edge jumps to the nearest position on its right where (4) holds. It is 
elementary to check that the uniform boundedness condition implies that the 
process (l~) makes only finitely many transitions in a finite time with probabili- 
ty 1, so that it is defined for all t > 0. 

The right edge is defined similarly. Let R, = 2~\L,. We wish fit) to satisfy 

~t 0 t - ~ )  - 1  and �89 for all t>0 .  

Therefore, let ~o = n - � 8 9  and define the transitions of (r~) so that the edge jumps 
to the right whenever the process (~R,) has a birth at the site to the right of the 
edge, and jumps to the left if there is a death at the site to the left of the edge. 
The edge always moves to the first position between a 0 and a 1. 

In what follows, we can simplify things if we are allowed to ignore certain 
null sets. We therefore assume 

(5) The following null sets have been removed from f2: 

{co: lira ~2B(X) fails to exist for some xe2~, t>0 ,  or A~S}, 
B.-~N 

{co: any edge process is undefined for some t >0}, 

{co: T,(x)=Tm(y) for some n, m~2g and sites x4y} .  

This last set is removed so that it is impossible for two flips to occur simul- 
taneously at two different sites. It is a consequence of this that Proposition 1 is 
now correctly stated without any mention of null sets. 

We now list some properties of edges. The first two are merely restatements 
of various features of our definitions. The third is the key to the applications in 
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the rest of this paper. 

E 1 (4) and (4) hold for all n. 

E2 (l~)~>s is determined by is" and (~Ln~ t It>=s~ 
(r,),=> S "  is determined by r~ and (itg")~s. 

E3 ~ ( x ) = ~ " ( x )  for all x<Is", 

~(x)  = ~"(x)  for all x > rs", 

if(x) = ~r"(x) for all x > ls", 

if(x) -- gff"(x) for all x < rs". 

E 4 If m_< n, then I m < I~ and r m < ~" 
- -  s ~ f s '  

E 5 If 1~ = l~, then l~ = l~' for al! t > s. 
n If r~'=r~, then rT=r," for all t>s. 

Property E3 (which we prove below) shows that the processes (~t L") and 
( ~ ) are hybrids of (~t ~) and (~), with the edges marking the dividing lines. It 
will be used in the comparisons of (~) and (~) that we need in the next 
section. Property E4 follows easily from Corollary 1.1, which implies that ~"~ 
~ t  r" and ~Rmc~ R n ~  t for all t_>0_ if m<n._ Property E5 is used in the lemma in 
the next section. To prove E5, note that 

1 2 = l s " ~ " = ~ "  by E3 

~ L = = { L ,  for all t>_s by Corollary 1.1 t t 

~l~'=12 for all t>s  by E2. 

Proof of E3. We prove only the first and third equalities in E3. Note that these 
hold for s = 0. We now argue that they are preserved by each transition of the 
system. If such a transition is a flip at any site which is not next to the edge, 
then the edge will not move, and the equalities will be preserved because of 
Proposition 1. Now suppose that there is a flip at the site to the left of the 
edge (the case of a flip to the right of the edge is treated similarly). Just before 
the flip, both processes (~)  and (~t L") have a vacancy at this site by E1 so we 
are only interested in the case that the flip is a birth in at least one of these two 
processes. But ~ t z " ~  for all t > 0  by Corollary 1.1, so a birth in the process 
(~)  implies a birth in the process (~"). We can therefore assume that the flip is 
a birth in the process (~tz"). By construction, the edge jumps to the left over a 
block of sites which are occupied by the process ( t ). Since the site where the 
flip occurred is now to the right of the edge, and since no other flips can occur 
at the same time by (5), the first equality in E3 is clearly preserved. The third 
equality is also clearly preserved at any site which is to the right of the 
previous position of the edge. But the additional sites that are to the right of 
the new position make up the block of sites over which the edge jumped. As 
stated above, these sites are occupied by (~"), so they are also occupied by (~t g) 
because of Corollary 1.1. Thus, the third equality is preserved. 

We now put E3 to work by proving the following proposition, which will 
help us in the next section to show that the processes (~t ~) and (~t g) tend to 
agree on larger and larger blocks of sites as t-~ oo: 
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Proposition 2. Fix integers m and n and times s and u, with 0 < s < u. Then 

a) I f  l'ff + 2<r  t for all re[s, u] and if ~s~(X)=~sg(X)for l~<x<r~, then ~t4(x) 
= ~t(x) for all te [s, u] and fT' < x < r'~. 

b) I f  r'f +2<ITfor  all te [s ,u]  and if ~ ( x ) = ~ ( x )  for rT<x<[~, then ~ (x )  
=~gt (x) for all te[s, u] and r'f <x  <l~. 

Remark. The proposition states that if (if) and (~)  agree at some time at all 
the sites that lie between any left edge and any right edge, then they will 
continue to agree at whatever sites lie between those two edges, as long as the 
edges remain at least two units apart, it  is necessary that they remain two or 
more units apart because of the following situation which may occur if they 
are only one unit apart: 

t 

~Rn 
t 

1 1 1 
0 1 1 

1 1 0 
0 1 0 

The picture shows the states of the four processes at three adjacent sites. The 
middle site lies between the two edges. A death could occur at that site in the 
process (~)  without one occurring in any of the other three processes, The 
edges would not move in this case, but (~)  and (~t ~) would no longer agree at 
the site between the two edges. 

Proof of Proposition 2. We prove a) only. As in the proof of E3, we will argue 
that the agreement between (r and (~)  on the interval of sites between the 
edges (l~") and (rT) is preserved by any transition of the system, as long as the 
edges remain at least two units apart. We will use the following picture, which 
must be valid if r  for all x between I~' and r~, and if/~'+2=<r]: 

1;" rr 

t 
i) o 
ii) ii) ! 

o 

l * * l  

1 . , 1  

1 , . 1  

1 . , 1  

t t  
ii) ii) 

0 i )  
0 t  

* indicates the (possibly empty) interval of sites between l~'+l and rT-1 
where all four processes agree. 
t indicates sites where ~t z or ~ may be 0 or 1, subject to ~ =  ~ .  
i) indicates agreement with ~ at this site. 
ii) indicates agreement with ~z at this site. t 

The picture shows the states of the four processes at sites between I~'-2 and r2 
+2. It is correct because of E1 and E3. By Proposition 1, the picture remains 
unchanged by any flip that occurs at sites that are not next to one of the two 
edges. We now consider flips at the two sites l~'+_�89 (Flips at r~_+�89 are treated 
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similarly). First consider the possibility of a death in any of the four processes 
m 1 at I t +3 .  Since ~ is dominated by the other three processes at all sites to the 

i Lm left of r~, such a death would necessarily occur in the process ( ~ ). By 
construction, the left edge would then jump to the right, and it is clear from 
the picture that either (if) would continue to agree with (if) at all sites 
between the two edges, or the left edge would no longer be to the left of the 

m 1 right edge. Thus, our claim is true for flips at I t +~.  Now consider the 
m 1 possibility of a flip at I t - ~ .  We are only concerned here with a flip that affects 

rn 3_ the position of the left edge, that is, a birth at I t - ~  in the process (i~'). Since 
m 3 m 1 m 3_ i ~ ( x ) = ~ ( x )  for x = l ~  - ~ ,  I t - ~ ,  and I t +g, such a birth would also occur in 

the process (if) by Proposition 1. Furthermore, after such a birth, the left edge 
would jump to the left over a block of sites which are occupied by ( i~) .  The 
first of these sites is l~-�89 which we have just argued is also now occupied by 
(if). The rest of these sites are also occupied by (~)  because of E3. By 
Corollary 1.1, they are also occupied by (if), so the required agreement 
between (if) and (~)  is preserved. 

Section 2. The Main Result 

In order to set the stage, we first develop an ergodicity criterion. As mentioned 
in the introduction, it is well-known that the pair (it Z, i f )  converges in distribu- 
tion to an invariant measure n on S •  as t ~ o v .  Since ~ = i r  for all t 
and A s S ,  it follows that n((B, C): B ~  C ) = I  and (i~) is ergodic iff 

(6) n((B, C): B =  C)= l .  

We will improve on (6) slightly in the following proposition, which may be 
found in the translation invariant case in Durrett [2]. The general result is 
actually a direct consequence of some facts from ergodic theory (see Chap. 10 
of Phelps [14], for example), but we will give here a short proof based on our 
construction: 

Proposition 3. L e t  (i~) be a spin sy s t em with  a t t rac t ive  neares t  neighbor f l ip  rates  

which are uni formly  bounded. Then (i~) is ergodic i f f  

(7) lira lim P ( i ~ ( x )  = i f ( x ) ,  - k <_ x < k) > O. 
k ~ o o  t ~ o o  

P r o o f  Since (if, i f)  converges in distribution to n, 

(8) n((B,  C): B = C) = lim lira P ( i ~ ( x )  = i f ( x ) ,  - k <_ x <_ k). 
k ~ o o  t ~ o o  

Thus, (6) implies (7). To prove that (7) implies (6), let ( d ,  ~)  be a random 
initial state in S x S which is distributed according to n and which is in- 
dependent of (#;). By Corollary 1.1, ~ i f f = i t ~ i f  for all t, so 

P (  i f f  (x) = ef t (x) ,  - k <- x <- k ] x~r 4= ~ )  

>- P ( i ~ ( x )  = i f ( x ) ,  - k <_ x <_ k i d  4 = ~ )  

= P(i~t(x)  = itC(x), - k s x < k) 
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since (sg, N) is independent of (4;). Also, 

SO 

P ( ~ ( ~ )  = ~?(x), - k<-x-<  k I ~4 = ~ ) =  1, 

P ( r  (x)  = ~ y ( x ) ,  - k <_ x <_ k) 

< rc(~r = N) + (1 - To(s] = N)) P ( ~ t ( x )  = ~ ( x ) ,  - k <_ x <_ k). 

Now take limits to conclude n ( d = N ) = 0  or 1, by (8). It follows from (7) that 
n(~r = ~ ) =  1, so (6) holds. 

We are now ready for 

Theorem 1. I f  (~) is a spin system with periodic, attractive, nearest neighbor, 
strictly positive flip rates, then (~) is ergodic. 

Note. Periodic nearest neighbor flip rates which are positive necessarily satisfy 
the positivity condition in the introduction. They are also uniformly bounded. 

Proof We will prove (7). The idea is that if k is fixed and s is large, we will be 
able to find a left and right edge pair which start together at time 0 but which 
lie on opposite sides of the interval [ - k ,  k] at time s with probability at least 
1/2. By Proposition 2, (~) and (~)  agree on I - k ,  kl at time s if they agree on 
the interval between the two edges at some time before s when these edges are 
close together. We then estimate the probability of this last event, thereby 
obtaining a lower bound for the expression in (7). 

In order to find a suitable pair of edges, we will make use of the fact that 
the random variables l~' and r;' are negatively correlated for all m, ne2~ and 
t > 0, in the strong sense that 

(9) P(I'~ >j> and r~' >J2) <P(I'~ >Jl) P(r'~ >J2) 

for all integers Jl and J2. This result is an easy consequence of Corollary 1.2 in 
Harris [7], which applied to our situation because of the attractive flip rates 
and the fact that edges are monotone functions of the processes used in their 
construction. The word "monotone"  is used in the sense defined in [7]. 

We apply (9) as follows. For s > 0, let 

re(s) = sup {meTZ: e ( r 7  < 0) > 1/2}. 

The uniform boundedness of the flip rates implies that re(s)< oo for all s. Then 
P(r~'~s)> 0)< 1/2 and P(rT(S~+l >0)=> 1/2, so (9) implies that 

(10) P(r 7ts~ < 0 and 17 ~s~ > O) + P(r'~ ~s)+ 1 > 0 and 17 ~ < 0) > 1/2. 

We will show in the lemma below that for fixed k and large s, the probability 
is low that any edge lies in the interval I - k ,  k] and the probability is high 
that r T ~ =  r7 ~s~+2 so that (10) can be turned into a statement about the edges 
r7 ~s) and 17 ~) lying on opposite sides of the interval I - k ,  k] (see (13) below). 

Lemma. 
lim P(rs ~ =r7  + ~)= lim P(I~ = l~ + ~)= 1 

s ~ o o  S ~ o o  
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uniformly in m~ig, and 

limP(no left or right edge lies in [ - k ,  k] at time s ) = l  

for all k > O. 

Proof This lemma is essentially the same as Lemma 2.2 in Liggett [13]. 
However, there are many superficial differences between our version and 
Liggett's which make it hard to translate one into the other. Also, Liggett's 
proof (as well as any completely rigorous proof that we could give) is some- 
what tedious. We will therefore give an argument which is (we think) convinc- 
ing and which avoids some of the mess. 

First note that the second statement in the lemma follows from the first by 
periodicity. To prove the first statement, define 

f(s) = sup [P (r 7 , r 7 + i) + p (l 7 :# 17 + 1)]. 
m 

By E5, f(s) is non-increasing in s, so that F =  lira f(s) exists, with F > 0 .  We 

wish to show that F = 0 .  Assume F > 0 .  Then the positions along the lattice 
where edges lie at time s maintain a minimum positive density for all s. More 
precisely, periodicity and the Ergodic Theorem imply that for all s > 0, 

1 k 
(11) lim ~ (1{~7,~7+~}+l<2,lp+~})>F/d a.s., 

k ~  2 k + l  ,,=-k 

where d is the period of the rates. By E4, right edges cannot cross over one 
another and neither can left edges, so (11) implies that there is a certain 
amount of"crowding"  which does not decrease as s ~  oe. More precisely, there 
must exist M depending only on F and d such that 

1 k 
(12) l i m - -  ~ (l{r~<r~+,<r~+M}+l{z~,<ZT+,<~+M})>F/2d a.s. 

k~oo 2 k + l  ,,=-k 

It can be shown (this is the tedious part) that if rs" <r~ '+1 <r~+M, then there 
is a positive probability (depending only on M) that the edges (r~") and (r7 + 1) 
will collide in the time interval [s, s +  1]. The reasoning is that the positivity of 
the rates ensures the possibility that the edges move toward each other enough 
to collide. Once they collide, they coalesce forever by E5. The same is true of 
left edges. It is now easy to conclude from (12) and periodicity that f(s) 
decreases at a minimum rate, independent of s, contradicting F > 0. Thus F = 0, 
and the first statement of the lemma follows. 

Remark. The Lemma is the only place where we use periodicity in any essential 
way. Otherwise, we only need that the flip rates are uniformly bounded and 
uniformly positive. 

Now we can apply the Lemma and immediately turn (10) into 

(13) lim [P(r~(*)>k and I~(*)< -k)+p(rm(*)< - k  and l~(*)>k)]>l/2. 
s ~ O 0  
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Let gk(s) be the union of the two events in (13); that is, gk(s) is the event that 
r~ (s) and ls ~(~) lie on opposite sides of the interval I - k ,  k]. For co~gk(s ), define 

o-(c~)=sup {t<s: r~"(~)</7(~+2} if Gm(~)(co)>k 

=sup {t<s: l~'(S)<r'~(')+2} if rs~(S)(co)< - k .  

Then by Proposition 2 

P ( ~ ( x )  = ~*s (X), - k < x <_ k) 

> P ( ~ ( x ) = ~ ( x )  for all x between r5 (~) and/5(~) 13k(s))P(gk(s)). 

By (13), P(N~(s))>l/2 for sufficiently large s (depending on k) so we have 
proved the ergodicity criterion (7) if we can show that there exists 5 > 0 which 
does not depend on s and k, such that 

( 1 4 )  P(~(x)=~*~(x) for all x between r~ (~) and/5(~)13k(s))>5. 

The proof of (14) is somewhat long, but it is not too difficult until we get down 
to the inequalities in (18) below. 

To simplify our notation, fix k and s, and let $=o~k(s) and m=m(s). Also 
write 

~+ = ~ { r ~ > k } ,  

~ -  = E ~  {r~ < -k}. 

Consider first toed +. Then by definition of a, r5~ l~+2  and r"~ <=15 +1. 
Thus, at time o-, the right edge jumps to the right and/or the left edge jumps to 

m _ m _ 1). We consider three cases: the left (both can jump only if re__ - 1o_ 

(i) " '~ 
(ii) r m = l m 

f f  ~ 7 - ,  

(iii) ~ = l  5 +1. 

Assume that the right edge jumps at time ~. Then we claim that ~ and ~ 
necessarily agree at all sites between 15 and r~, except possibly at the site l~ +�89 
in case (ii) and possibly at either of the sites l~'+�89 or 15+ 3 in case (iii). This 
claim follows easily from E3 and the construction of edges, since it is always 
the case that if the right edge jumps to the right at time a, ~ * ( x ) = ~ ( x )  
= ~ ( x )  at all sites x between r m_ and r~ except possibly x=r" 2_ +�89 Since l~ 
= l 5 in cases (ii) and (iii) and l~ >/5 in case (i), the claim follows. A similar 

m m 1 3 m 1 --~ instead of l~ +g  and 15+ > works for argument, using the sites G - ~  and r~ 
the case that the left edge jumps at time ~. Thus, the event in (14) always 
occurs in case (i). In case (ii), it occurs if ~ and ~ agree at one special site, 
while agreement at two special sites is needed in case (iii). In order to talk 
about these special sites, we define 

= l~ +�89 if the right edge jumps at time o- 

= r " - !  if the left edge jumps at time a 2 
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with ~ undefined if both edges jump at time a (both edges can jump only in 
case (i)). The site ff is the special site mentioned above for case (ii), and it is 
one of the two special sites in case (iii). The other is ~ - 1  if the right edge 
jumps at time o- or ~ + 1 if the left edge jumps. We now claim that even in case 
(iii), ff is the crucial site. More precisely, 

(15) In cases (ii) and (iii) ~ and ~ agree at all sites between l~ and r~ if they 
agree at K 

To prove (15), assume that the right edge jumps at time ~ (the case of the left 
edge is similar). We have already taken care of case (ii), so assume that we are 

. . . . .  ~-l--rm -�89 Since the right in case (iii), that is, that r ~ _ -  l,_ + 1. Then ff = l , _ _  2 -  ~- 
edge jumps toward the right at time a, there must be a birth at i f+ 1 at time a 
in the process ( ~ ) .  Furthermore, properties E1 and E3 imply that the follow- 
ing picture is valid if ~ ( ~ ) =  ~(ff): 

the two processes agree here. 

l" :g r m ~ + 1 

i 0 �9 

1 0 * 

By Proposition 1 and the above picture, the birth that occurs in the process 
(~ffm) at ~+1  at time a also occurs in the process (~), so ~ ( ~ + 1 ) = ~ ( ~ + 1 )  
= 1, and (15) is proved. Thus we have 

(16 )  P(~(x)=~(x) for all x between l~ and r~lE +) 

=P(r~_ < l~_ ]o ~+) + P ( ~ ( ~ ) =  ~(~)  and r~_ > l~_ ]o~+). 

The case when c0~d ~ can be treated similarly. Thus, if we define 

2-- r,"+�89 if the left edge jumps at time o-, 

- l~  - 5  if the right edge jumps at time a, 

we have 

(17 )  P ( ~ ( x ) = ~ ( x )  for all x between l T and r~ld ~ 

= P ( ~ _  >l~_ IE-)+P(~(2)=~(2) and ~_ <I  T_ 18-). 

Because of (16) and (17), the occurrence of the event in (14) really hinges on 
what happens at one (random) site. In fact, we claim that 

(18) P(~(~)  = ~(N) and r m_ >l~_ [ 8+) > 6P(r~_ _>_l m_ [d ~+) 

and 
P(~(2)=~(2)andr"~_=<l m~_lE-)>c~P(~_=>/~' [d ~-) 

where 3 > 0  does not depend on s or k. Note that (16), (17) and (18) imply (14), 
so we are done once we prove (18). 
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The proof of (18) is somewhat technical and is based on our construction of 
(~) in Sect. 1, However, the intuitive ideas behind the proof are not too hard, 
and we will attempt to point them out as we proceed. 

We will prove the first inequality in (18) only. We will have to consider the 
cases (ii) and (iii) above separately, so instead of (18), we will prove the 
stronger 

(18') There exists b > 0  which does not depend on s or k such that 

and 

P ( ~ ( X ) = ~ ( ~ ) ] r ~ _  =l~_ and E + ) > b  

P(~(X) = ~(X) I r~'_ = l~_ + 1 and E +) > 8. 

The first inequality in (18') is the easiest to deal with. Furthermore, its proof 
will help the reader understand the proof of the second inequality. 

Let Eo ~ = g  § ~{l~_ =r~_}. It is enough to prove 

(19) There exists b > 0  which does not depend on s or k such that 

P(~(x)-- 1 led-) > ~. 

Choose co~g~. Then by definition of ~ and a, one of the two edges jumps over 
the site ~ at time a, and l~<~<r~ .  It follows that at least one of the two 
processes (~L~) and (~Rm) has a birth at ~ at time a. Thus ~ ( ~ ) = 1 ,  since ~ 

gL,,~?R~ By E3, ~m(2)=~L'~(~)=l .  In particular, the processes (~Lm) and 
Rm ( i t ) ,  and hence the event g~-, do not seem to be directly affected by the value 

of ~(X), since the values of ~ ( ~ )  and ~R,.(X) are determined. This is the 
intuitive reason that underlies (19). To be more rigorous, we need to look at 
the construction of (~) given in Sect. 1. 

Since there is a birth at ~ at time a, (2) implies that there must exist an 
integer v > 1 such that T~(~)= a and 

(20) G(~)_>- y~-  fi*, 

where the value of fl* is determined by the state of the process in which the 
r~ 1 _ ,~ 1 the birth occurs. If x = / o + 5 ,  the birth occurs in (~R~), whereas if Y , - r , - g  

~L~ birth occurs in ( t )- Thus 

~ _ _  m l _ _  m 1 =flx(~L:) if x - G - ~ - l  ._ 

As long as (20) holds, the states ~L~ and ~R,, are unaffected by changes in the 
value of C~(~). To make the term "unaffected" precise, we must say something 
about measureability. Such a statement is slightly complicated by the fact that 
v, 2, and fl* are random variables. To overcome this difficulty we partition 
according to the values of these variables. For  n '>  1 and x'~2~, let ~-(n', x', b) 
be the a-algebra generated by the event {C,,(x ')>y~,-b} and by all the T,(x)'s 
and C,(x)'s except for C,,(x'), where b is any of the (finitely many) possible 
values of fl*. Let g~ (n', x', b) = E~ ~ {v = n'} c~ {~ = x'} c~ {fi* = b}. Then from our 

+ ' ' ~" ' ' b), so it is enough to prove previous discussion, g o (n, x ,  b ) ~ y  (n, x ,  
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X ~ (21) P ( ~ ( x ' ) = l t ~ ( n ' , x ' , b ) ) > ( ~  for all n', and b and almost all 
c0ed ~+ (n', x', b), 

where 3 > 0 does not depend on n', x', b, s or k. Let q > 0 be a lower bound for 
the flip rates. By (2), ~ ( x ' ) =  1 if co e d~ + (n', x', b) and C,,(x')> 7x,-  q. Thus 

t ~ ! t P ( ~  (x') = 11 g (n', x ,  b)) > P(C, ,  (x') > ~x" - rl [ ~ (n, x ,  b)) 

for almost all coego + (n', x', b) 

But C,,(x') is independent of all the T,,(x)'s and of all the C,(x)'s except for 
C..(x'), so 

P(C..(x')>Z.-~ I g ( n ' ,  x', b)) 
= P( C,,(x')> Tx,- t l  ] C,,(x')>= ~ , - b )  

= ~/b for almost all coeg + (n', x', b). 

Since the rates are uniformly bounded, q/b > 6 for some 3 > 0 which does not 
depend on n', x', b, s or k. This proves (21) and completes the proof of the first 
inequality in (19). 

The proof of the second inequality in (19) is similar but more involved. The 
m _ m reason for the complication is that when r~_- l~_  +1, there is no birth (or 

death) at ~ at time a. In order to get ~ ( ~ ) = 1 ,  we will need to find a time 
before cr when a birth occurs at ~. 

Let ~i + =&+c~ {r m_ = l~_ + 1}. For cOe~l +, define 

z 1 =sup  (t<~r: l~'>ff or r~'<~}, 

z2=sup {t<o-: t =  T,(~) for some n >  1}, 

"C ~ "C 1 V " C 2 .  

Since l~_ < ~ < r ~ _  when coed~ +, r l is the supremum of a non-empty set. By El ,  
L r n  - R m  - ~ _  (x)= ~ _  (x)= 1, so r2 is also the supremum of a non-empty set. The time 

will play a role in this part of the proof  that is similar to the role played by a 
in the proof of (19). In fact, (2) implies that no flips can occur at ~ in the time 
interval ("c2, o-]. Thus, ~ " ( ~ ) = ~ ( ~ ( ~ ) = ~ ( ~ ) = 1  and ~ ( ~ ) = ~ ( ~ ) .  It is there- 
fore enough to prove 

(22) P({~(X) = 1 I E~ +) > c5 

where ~ is as chosen above in the proof of (19). We distinguish two cases: 
z > z  2 and "c='c z. if r > r z ,  then v is a time when at least one of the two edges 
jumps over the site ~ in such a way that l~<~<rT .  Since r > r  2, no flip can 
occur at ~ at time z, so the way in which edges are constructed implies that 
~ ( ~ ) = 1  (this is similar to the "case (i)" discussed earlier). Therefore, to prove 
(22), it is enough to prove 

(23) P ( ~ ( X ) =  1 I'c='c 2 and #~+) > c5. 

The proof of (23) is very similar to the proof of (19). If cO~{'c=z2}~g/-, we 
know that ~=T~(X) for some v > l .  We also know that ~ ( X ) - - ~ ( ~ ) = l .  



The Positive Rates Problem 403 

Furthermore, if C~(~)>7~-t/, then ~ ( ~ ) = 1  by (2), where t? is as above. We 
can argue almost exactly as before that 

P(C~(Y~)>~-tlI"C = r  2 and g~-)>8, 

which implies (23). The only difference is that fl* should now be defined 
according to the behavior of the processes ( ~ ' )  and ( ~ ' )  at ~ at time z (we do 
not know quite so much about these processes at ~ at time r as we did at time 
o- in the proof of (19)). In particular, if ~m(~)= 0, then we know that C~(2)> ~ 

~L - / ~ ( ~ y ) ,  and similarly for the other process ( ~ ) .  On the other hand, if 
L ~  - R m  - ~ ,_ (x )=~_(x )=  1, then we only know that C~(~)>cS~(~)v 6~(~2). The ran- 

dom variable/~* should be defined accordingly. Otherwise, there is no essential 
difference. This complete the proof. 

Section 3. Variations 

Our Theorem 1 has an easy corollary which is of some interest because of 
work done by Holley and Stroock [10 I. They used so-called "duali ty" tech- 
niques to treat the translation invariant "one-sided" nearest neighbor case. The 
one-sidedness condition is that ~lx(~)=7~(~[x, oo)) for all x. They divided 
one-sided nearest neighbor flip rates into eight classes, and proved the positive 
rates conjecture for six of these eight. These six cases include all attractive, 
one-sided, nearest neighbor, translation invariant flip rates. The remaining two 
cases include the repulsive case: 

Repulsive: If ~ ' ,  then fl~(~)<flx(~') and ~(~)>6x(~') 

as well as some flip rates which are not repulsive. It is easy to see that 
repulsive nearest neighbor rates can be turned into attractive nearest neighbor 
rates simply by switching the identities of 0 and 1 at every other site. Under 
such a transformation, translation invariant rates become periodic, and so our 
Theorem i applies to repulsive as well as attractive rates (in the general nearest 
neighbor case, as well as in the one-sided case) and we have 

Theorem 2. The attractiveness condition in Theorem 1 may be replaced by the 
repulsiveness condition given above. 

Another variation is to consider the analogous discrete time setting. Unfor- 
tunately, just as in Liggett [13], our results do not carry over to all discrete 
time models which satisfy conditions analogous to those given in Theorems 1 
and 2. See [13] for the reasons for the breakdown. As in [13], our techniques 
do apply to discrete time models which are one-sided or which have constant 
birth rates or constant death rates. 

Finally, we conjecture that periodicity is not needed: it can be replaced by 
the condition that the flip rates be uniformly bounded away from 0 and oo. 
We only used periodicity in the Lemma. Without periodicity, we can still 
prove that lim P (at most two edges lie in I - k ,  k ] ) = l  for all k>0.  This is 

almost enough to carry out the rest of the proof, but our attempts fall just 
short. 
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