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We consider a convex body K with interior points in d-dimensional Euclidean 
space IR a and n < d  independent and identically distributed random hyper- 
planes meeting K. About the distribution of the hyperplanes we merely assume 
that it is induced from a translation invariant measure on the space of 
hyperplanes in IRd; if this measure is, moreover, rigid motion invariant, the 
hyperplanes are said to be isotropic. Let p, denote the probability that the 
hyperplanes intersect inside K. In case K is a ball, R.E. Miles [10] has 
conjectured that p, is maximal precisely when the random hyperplanes are 
isotropic. He has also conjectured that in general p, is maximal when K is a 
ball and the hyperplanes are isotropic. In the following we show that the first 
conjecture is true, while the second holds for d=2 ,  but not for n = d > 2 .  

Finally we consider an arbitrary (fixed) number N of independent and 
identically distributed hyperplanes meeting K and we ask for the expectation 
of the number of k-dimensional cells in the cell-complex decomposition of the 
interior of K which is induced by the hyperplanes. The explicit formula giving 
the result involves the probabilities p, defined above, and in the isotropic case 
it generalizes results obtained earlier by Santal6 for the cases d - 2  and d = 3. 

1. Preliminaries 

By a random hyperplane meeting K we understand a "uniform random hyper- 
plane in K"  in the sense of Miles [10]. For  the reader's convenience we repeat 
the definition, but we choose a slightly different approach. 

By •d we denote the space of hyperplanes in IRd, topologized as usual. On 
y~d the translation and rigid motion groups act in the obvious way. We 
assume that we are given a measure # on the Borel sets of 24d d which is 
invariant under translations and is locally finite, i.e., finite on compact sets. 
Such a measure can be represented in a convenient way. To see this, let S e- 1 
={u~iRe: ]lull =1} be the unit sphere of IRd, choose a vector e ~ S  d-1 and put 
S ~ - I = { u ~ S  e- l"  ( u , e ) > 0 } ;  here 1[. [I and ( . , . )  are, respectively, the norm 

004423719/82/0061/0379/$01.80 



380 R. Schneider 

and the scalar product of ]R d. We define a map 7: See - a x N . ~  H a by letting 
?(u,t) be the hyperplane through te with normal vector u. Then ? is a ho- 
meomorphism onto its image d/f', which consists precisely of those hyperplanes 
which are not parallel to e. Let A c See-1 be a Borel set, and for any Borel set 
B c l R  define t/(B)=#(7(A xB)). Clearly t/ is a translation invariant Borel mea- 
sure on N. which is finite on compact sets, hence it is a constant multiple of 
Lebesgue measure 2. The constant factor, of course, depends on A, call it v(A). 
Thus we have #(7(A xB))=v(A)2(B).  If we now let A vary over the Borel 
subsets of See-1, this clearly defines a finite measure v on See-1, and we may 
write # o 7(A x B) = v | 2(A x B), which in turn implies kt o 7 = v | 2. Thus the 
restriction of # to ~vf, is the image measure of v |  under 7. Using the 
translation invariance and the local finiteness of #, one can easily choose the 
vector e such that /~(wd\Yf ' )=0.  Then for any integrable function f on 2/fd it 
follows that 

fdt~= ~ ~ f~ �9 
~d S~- 1 ] R  

It is convenient to write (u , e ) t=z  in the inner integral, so that r is the 
oriented distance of the hyperplane 7(u,t) from the origin, and to define an 
even measure (fi on S d-1 by dqo(u)=dv(u)/2(u,e) for ( u , e ) > 0  and d(p(-u) 
= d(fi(u). If we finally write 

H. ={xelR~: (x,u)=~}, 

we arrive at the formula 

f d # =  S ~ f(H.:)dzdq~(u), (1.1) 
W d  S d 1 __ O0 

which gives a convenient normal form for the translation invariant, locally 
finite measures # on 3r "e. In fact, Miles [10] assumes right from the beginning 
that the measure defining his uniform random hyperplanes is of a form 
equivalent to (1.1), but we felt that this assumption ought to be motivated by 
the above simple reasoning. One could also have used an argument of Ma- 
theron [8], p. 66, but the one given here is direct and more elementary, 
avoiding conditional probabilities. 

Now let K c l R "  be a given convex body (compact, convex subset) with 
interior points, and let # be given and represented as above. Then the total 
measure of the set of hyperplanes which meet K is 

z(Kc~H)d#(H)= ~ ~ z(K~H~:)dzdq~(u), 
3 ~ a  S a -  i _ 

where )/is the Euler characteristic, i.e. z (L)=  1 for any nonempty convex body 
L and Z(0)=0. The inner integral on the right is just the width w(K, u) of K in 
direction u, that is, the distance between the two supporting hyperplanes of K 
orthogonal to u. Writing 

#K(fi) = #(fi C~ {H ~ •d: K c~ H 4= 0}) (1.2) 
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for Borel sets fi ~ ~ d  and assuming that # ~ O, we see that 

w(K,u)dcp(u) 
S a -  1 

(1.3) 

is a probability measure on j fa .  Clearly we may assume, without loss of 
generality, that (p is a probability measure. To conclude with a formal de- 
finition, we now say that a random hyperplane meeting K is a measurable map 
from some probability space into the space H a of hyperplanes such that the 
distribution of the hyperplane (the image measure of the probability) is given 
by (1.3), where ~o is some even probability measure on the sphere S a- 1 and #K 
is defined by (1.1) and (1.2). We shall say that q0 is the generating orientation 
distribution of the random hyperplane. 

We denote by co the unique rotation invariant probability measure on S a- 1. 
A random hyperplane with generating orientation distribution co will be called 
isotropic. 

2. The Probability of Intersection in K 

We consider a given convex body K ~ I R  d with interior points, a number 
n~{2, . . . ,d},  and n independent and identically distributed random hyper- 
planes meeting K. By p,(K, q)), where q) is the common generating orientation 
distribution of the random hyperplanes, we denote the probability that these 
hyperplanes have a common point in K. By the assumption of independence 
we may write 

~ "" S x(Kc~H1 ~ "" c~H,,) dp(H1). . .d#(H.)  
p,(K, (p)=jed ~e~ 

[ (. w(K, u) d~o(u)]" 
S d -  1 

with # as in (1.1). For u l , . . . , u  aS d-1 let [ u l , . . . , u  J denote the n-dimensional 
volume of the parallelepiped spanned by u I . . . .  , u,. Further, let H ......... denote 
the orthogonal projection on to the linear subspace spanned by ul , . . . ,un,  and 
let 2, denote n-dimensional Lebesgue measure. Using (1.1) one easily shows 
(see also Miles [10]) that 

p,(K, (8) = ~''" ~ 2,(H ......... K) [u~ .. . .  , u,,] dqo(u~) ... de(u,)  
[~ w(K, u) de(u)]" (2.1) 

Here, and in the following, all integrations with respect to (p are over S a- * 
In [10], p. 224, Miles conjectured that 

pn(B, (p) <p.(B, co) 

for the unit ball B of IR d. Up to now, only the two-dimensional case has been 
decided. Miles [10] himself gave an argument for d = 2  which shows the 
following, If a measure (p for which p2(B, (p) is maximal (the existence of such 
measures can be shown by familiar compactness arguments) has a continuous 
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density with respect to Lebesgue measure (on the circle), then it must be 
normalized Lebesgue measure. A complete (affirmative) answer for the two- 
dimensional case is contained in the work of Rasson [12]. 

As we shall see in the following, a combination of known results in the 
theory of convex bodies, in particular from the theory of mixed volumes, yields 
an affirmative answer for the general case. 

Theorem 1. The probability that n independent, identically distributed random 
hyperplanes meeting a ball intersect inside that ball is maximal precisely when 
the random hyperplanes are isotropic. 

For the proof  we observe first that for the case of the unit ball B formula 
(2.1) reduces to 

p,(B, ~o) = 2 - "  G ~... ~[u 1 .. . .  , u,] d(p(Ul).., d(p(un) (2.2) 

where ~c, is the volume of B. 
Following Matheron [6, 8] in his work on Poisson hyperplanes, we consid- 

er the auxiliary convex body Z~ defined in the following way. Writing 

1 U h ( u ) = y ~ l ( , v ) l & o ( v )  for u ~ N  a 

one sees that h satisfies the conditions which are necessary and sufficient for a 
function to be a support function (see, e.g., Bonnesen-Fenchel [2], Sect. 17, or 
LeichtweiB [5], w 12), hence there exists a unique convex body Z~o for which h 
is the support function. We consider the Minkowski quermassintegrals VV k of 
Z o (for a definition, see Bonnesen-Fenchel [2], Sect. 32, or Matheron [8], pp. 
76-78). They can be expressed explicitly my means of the generating measure 
(p. In special cases such formulas occur already in Blaschke [1], p. 156; for the 
general case we refer to Matheron [8], Chap. 4.5, and W. Weil [17], formula (9). 
There one finds 

k t  ~c k 
Wk(Zrp ) = d ~  " j . . .  ~ [U 1 . . . .  , Ud_k] d ( P ( U l )  . . .  d(P(Ud_k) (2 .3)  

for k = 0, ..., d - 1 ,  which together with (2.2) yields 

d!~. G_.(Z~) 
p, (B, (p) - 2" (d - n) ! ~:e_, 

We note also that 

( d -  1)! ~d- 1 d 1 
d! 5 dcp(u) = ~c - G-I(G)  

Now we make use of the Minkowski-Fenchel-Aleksandrov inequalities 
between the quermassintegrals (see, e.g., Busemann [3], w LeichtweiB [5], 
w 23). A particular case is 

G - ,  (z~)" => ~ -  1 G-~ 

with equality if and only if Z~o is a ball. We deduce that 

G(B, ~o) <-G(B, co) 
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with equality only if Zo is a ball. The latter occurs only if ~ is proportional 
(and hence equal) to co, as follows from a known uniqueness result. (See 
Theorem 1.4 in Schneider [16], where references (on p. 304) and a proof are 
given. A different proof was presented by Matheron [7].) This proves Theorem 
1. 

We return to the case of a general convex body K with interior points. 
Later in his paper [10] (see p. 232) Miles, after showing that p,(K, co)<p,(B, co), 
conjectured further that 

p,(K, cp) <p,(B, co). 

We shall prove this for d = 2, and we show that it is not true for n = d > 2. 
Without loss of generality we may assume that the generating orientation 

distribution q0 is not concentrated on a great sphere (otherwise the problem 
reduces to one in a lower dimensional space). Again we construct an auxilary 
convex body, starting from the measure cp. Let Mo be the solution of 
Minkowski's problem for the measure cp (see, e.g., Busemann [3], w 8). Thus Mo 
is the convex body, unique up to a translation, for which 

Sa-1 (Me,") = (P. (2.4) 

Here S a l (L, . )  is the area function of the convex body L, defined as 
follows: for a Borel set t i c  S d- 1, Sa - i(L, fi) is the area of the set of boundary 
points of L at which there exists an exterior unit normal vector belonging to ft. 
Since the measure cp is even and not concentrated on a great sphere, it satisfies 
the conditions of Minkowski's theorem, the latter taken in its generalized form 
due to Aleksandrov and Fenchel and Jessen. 

We use some results from the theory of mixed volumes, for which the 
reader is referred to Busemann [3], pp. 62, 50, or Leichtweig [5], w167 23, 24. 
In particular, because of (2.4) we have 

1 
V(K, M ~o, ... , M~o ) = 3 j h (K, u) d (p (u) = ~ ~ w (K, u) dcp (u), 

where h(K,.)  is the support function of K, and 

V(M,p) = J~ j w (M~o, u) d q) (u). (2.5) 

From the Fenchel-Aleksandrov inequality 

V(K, Mo, . . .  , M J  > V(K) V(Mo)a 1 

we deduce that 

(2.6) 

V(K) < 1 1 _ V(M~) 
[J w (K, u) dq~ (u)] a = (2 d) a V ( M j  ~ [J w (M~,, u) dcp (u)] a" 

Multiplying both sides by j...j[u~,...,ua]dcp(ul)...dcp(ua) we see from (2.1) 
that 

Pa(K, qo) < Pc(Me, cp). (2.7) 
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Equality in (2.6) and hence in (2.7) holds if and only if K and M r are 
homothetic. Thus for every even probability measure (p which is not con- 
centrated on a great sphere, the maximum 

max pa(K, cp) 
K 

is assumed for a convex body M r which is unique up to a homothety. Now the 
question of Miles for n = d  reduces to the question whether pa(Mr, cp), which 
depends only on cp, is maximal for cp = co. 

To further study this question, we rewrite (2.7) by using the body Z e 
defined earlier. By (2.1), (2.3) (observing W o = V, the volume), and (2.5) we have 

Pa (Me, cp) = V(Me) ~''" ~ [ul .... ' ua] dcp (u 1)... d cp (ua) 
[~ w(M r, u) dqo(u)] a 

(2.8) 
_ V(Mr) d! V(Zr) _ d! V(Zr) 

[2d V(M r)] a 2a d a V(M r) a- ~ " 

By the definitions of Z r and M r we have 

h(Zr ,u)=�89 for u~S  a- ' ,  

and this is precisely the (d-1)-dimensional  volume of the orthogonal pro- 
jection of M e on to a hyperplane orthogonal to u. Thus Z r is what is usually 
called the projection body of M r (see Bonnesen-Fenchel [2], Sect; 30). In the 
plane we obviously have Z r = 2 R ~ / 2 M  r (up to a translation), where Rn/2 de- 
notes a rotation by the angle re/2. Thus for d = 2, the quotient V(Zr) /V(M j -  ~ 
= 4  and thus the probability p2(Mr,~o)=l/2 is independent of ~o. Hence in- 
equality (2.7) together with the equality condition yields the following. 

Theorem 2. Let K be a convex body with interior points in the plane. The 
probability that two independent and identically distributed random lines meeting 
K intersect in K is at most 1/2, and it is equal to 1/2 precisely when the 
generating orientation distribution of  the random lines is proportional to the area 
function S I (K , . )  of K. 

It should be noted that here the case of a generating orientation distribu- 
tion concentrated on a pair of antipodal points need not be excluded, this case 
being trivial, as it gives rise to two random lines which almost surely do not 
intersect at all. 

Collecting our results for general d, we have arrived at 

d! V(HMr)  
Pa (K, cp) < Pa (M ~, cp) - 2a da V(M r)a_ a, 

where H L  denotes the projection body of the convex body L. Unfortunately, 
for d > 2  it is an open problem to determine all centrally symmetric convex 
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bodies L (with interior points) for which the affine invariant V ( H L ) V ( L )  1 a 

attains its maximum. We conjecture that 

V ( H L )  V(L)  ~ - a < 2 d 

for any such L, with equality precisely when L is a direct sum of convex bodies 
of dimensions <2. A proof of this conjecture would give the exact upper 
bound of the probability pa(K, cp). At least, it is not difficult to show that 
V ( H L )  V(L) I -a=2  a if L is as described above, whereas for the ball B we have 

V ( H B )  V(B)  1 -a =_ ~z~ <2 d for d>3 .  

The latter inequality is immediately verified for small dimensions. As this 
already establishes a counterexample, it does not seem worthwhile to repro- 
duce the proof for all d > 3 (I owe an elegant proof to Peter McMullen). 

Thus, choosing L as above and cp as its normalized area function, we have 
pe(L, cp )=pe(Mo,qo)>pe(B ,  co ) (observe that M~ is a ball). This establishes a 
negative answer to the second conjecture of Miles for n = d .  

3. The Decomposition of K by Random Hyperplanes 

In this section we consider an arbitrary (but fixed) number N of independent 
and identically distributed random hyperplanes meeting the convex body K 
(which has interior points). Almost every realization of these random hyper- 
planes determines, in the obvious way, a decomposition of the interior of K 
into relatively open convex cells of dimensions 0 ,1 , . . . ,d  (namely, the in- 
tersections of the interior of K with the relative interiors of the faces of the 
hyperplane arrangement). For  k = 0 .. . .  , d, the random variable v k is defined as 
the number of k-dimensional cells of such a subdivision. In the following we 
will determine the expected value E(vk) of v k. For d=2 ,  3 and isotropic hyper- 
planes this has been done by Santal6 [13, 14], see also Santal6 [15], Sects. 
1.4.4, p. 54, and III.16.4, Note 7. His method is not restricted to convex bodies, 
but apparently it does not extend to higher dimensions. Our treatment of the 
d-dimensional case uses a combinatorial lemma due to Miles [9], [11]. (For 
the case k = d of this lemma, see also Janson [4].) 

Let there be given N independent and identically distributed random 
hyperplanes H1 , . . . ,H  N meeting K, with generating orientation distribution q). 
Clearly with probability 1 these hyperplanes are in general position, which 
means that the intersection of any rn< d+  1 of them has dimension at most d 
- m .  Then the lemma of Miles [11] says that 

n ) 
n ~ d  k 
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where G is the number of n-tuples among the hyperplanes whose intersection 
meets the interior of K. Thus we get 

E(vk)= d - k  ~ Prob K c~ r 
n = d - k  i l  < . . .  <in  = 

tl 

n = d - k  

with p,(K,(p) as defined in w This formula lends new interest to the ex- 
tremum problems considered earlier and inequalities obtained there. In partic- 
ular, Theorem 1 implies: If K is a ball, then the expected value of the number 
of k-cells is maximal precisely when the random hyperp!anes are isotropic. 

Of course, in the isotropic case the probabilities pn(K, co) can be computed 
by known methods of integral geometry, since the integral 

j'...  z(K 
with # induced from q~=~o according to (2.1), can be computed recursively, 
using the Crofton formula ([15], p. 233). One obtains 

n 

.=e-k 2" ga_ . W d_ l(K)"" 

For d = 2, 3 this coincides with the formulas given by Santal6. 
The formula simplifies if expressed in terms of the "intrinsic n-volumes" 

Vn(K ) defined by 

which are independent of the dimension of the space in which K lies. We have 
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