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Summary. A direct proof is given of the Tanny (1974) result that for certain 
non-decreasing sequences {an} , it is true that lim supas = 0  or + oe with 
probability one for all ergodic stationary sequences {X.}. The condition on 
{an} is shown to be necessary. For  all non-decreasing {an} and stationary 
{X,}, lim sup as 1 X n = lira sup a,- t X _ ,  a.s. Similar continuous-time theo- 
rems are also given. 

1. Introduction 

Let {an} be an eventually non-decreasing sequence of positive real numbers. 
Let {Xn} be an ergodic strictly stationary sequence on a probability space 
(f2, ~,  P). Consider the following two equations" 

X.  
l imsup " = oe a.s.; (1) 

a n 

X 
lim sup-~" = 0 a.s. (2) 

a n 

Here and throughout, all limits are taken to be "as n~ov" .  We will prove the 
following theorem: 

Theorem 1. One of (1) and (2) holds for every ergodic stationary sequence {X,} iff 

lim inf arn > 1 for some r > 0. (3) 
a n 

Theorem 1 is proved in Sect. 2. The main step in proving the sufficiency of 
(3) is Lemma 4, which deals with the case a,=-n. The sufficiency was first 
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obtained by Tanny (1974), whose proof involves the theory of branching 
processes in a random environment. One of our purposes is to give a direct 
proof. H. Furstenberg and S. Goldstein have independently obtained another 
proof which is similar but not identical to the one offered here. Aaronson and 
Tanny have found yet another variation based on Aaronson's (1981) result on 
large values for partial sums of stationary sequences. These proofs were com- 
municated to me privately. 

The part of Theorem 1 stating the necessity of (3) is new and we in fact 
show a stronger result, namely: 

Corollary 1. One of (1) and (2) holds for every independent identically distributed 
sequence {X,} only/f(3) holds. 

Our proof of Theorem 1 is facilitated by first obtaining a zero-one law 
(Lemma 2), which is of some independent interest. We note that Tanny (1974) 
obtained this result as a consequence of Theorem 1. 

In Sect. 3, we give several corrollaries of Theorem 1. We show that 
l i m s u p a ~ l X , = l i m s u p a ~ l X _ ,  a.s. for any positive increasing sequence {a,}. 
Here, we have extended {X,} to a doubly infinite sequence {X, ,n  . . . .  , 

- 1, 0, 1, 2, ...}, as can (and frequently will) be done without loss of generality. 
Also, we obtain a continuous parameter analogue of Theorem 1. 

The question of occurrence of large values in a stationary sequence was 
drawn to our attention by L. Arnold and V. Wihstutz in connection with their 
work (1981) on solutions of linear systems of equations with stationary noise. 

We conclude this section with some notational conventions and pre- 
liminary remarks. First, none of (1), (2) or (3) is affected by changing finitely 
many a,'s, so we may assume without loss of generality that {a,} is non- 
decreasing and positive for all n. Likewise, multiplying all a,'s by a factor b, 
which converges to 1 and for which {a, b,} is increasing does not affect (1), (2) 
or (3), so we may assume {a,} is actually strictly increasing. 

We use the phrase "infinitely often (i.o.)" to mean "for infinitely many 
positive n". If P ( X , < 0 ) = I ,  there is some c < 0  for which P(X ,>c  i .o.)=l so 
that (2) must hold. In the complementary case, P ( X , > 0  i .o.)=l and 
lira sup an- 1 X, = lira sup a,- 1 max(X,, 0), so we may as well assume P(X, > O) 
= 1 .  

The ergodicity assumption is essential only in a minor way. Without it, we 

only obtain the result that P ( l i m s u p ~ { 0 ,  ov})= l .  All the results in this 

paper can be modified so as to apply to the non-ergodic case. In particular, 
Corollary 4 holds without modification in the non-ergodic case. The reader is 
referred to Breiman (1968) or Doob (1953) for background material on this 
question. 

Condition (3) holds for a wide variety of sequences. These include all 
regularly varying sequences with positive exponent and all increasing se- 
quences which yield convex sequences when raised to some positive power. 
Slowly varying sequences do not satisfy (3). 
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2. Proof of Theorem 1 

We begin with an easy consequence of the Borel-Cantelli Lemma. 

Lemma 1. I f  E X  1 < oo, then lim sup n - l X n = 0  a.s. I f  {X,} is an i.i.d, sequence 
and E X  1 = o% then lim sup n-  1 Xn = O0 a.s. 

The second statement can be generalized to the case of o-mixing sequences, 
since the Borel-Cantelli Lemma holds in that case. See Iosefescu and Theodor- 
escu (1969) or the author (1977). It cannot be generalized to the case of 
strongly-mixing sequences as can be seen from the Markov chain example in 
Sect. 3. 

The proof of Theorem 1 is simplified by establishing the following 0-1 law, 
which Tanny (1974) obtained as a corollary of his main theorem (our Lem- 
ma 4). We give a more direct proof. 

Lemma 2. Let {A,} be a non-increasing sequence of measurable subsets of IRI. 
Let {Xn} be ergodic and stationary. Then P (Xn sA  n i .o.)=0 or 1. 

Proof The events {X,+k~A . i.o.} form a non-decreasing sequence in the o-- 
algebra Y as k increases. By stationarity, these sets have the same probability 
and hence, except for a null set in g ,  the event {Xn~A, i.o.} is invariant with 
respect to the shift operator. By ergodicity, it has probability 0 or 1. [] 

If b > 0  and {a,} is non-decreasing, it follows from Lemma 2 that { X , > b a ,  
i.o.} has probability 0 or 1. Consequently we have the following result. 

Lemma 3. I f  {a,} is a non-decreasing positive sequence and {X,} is ergodic and 
stationary then lim sup a~ ~ Xn is a.s. constant. 

Lemma 4. I f  {X,} is ergodic and stationary, then 

lim sup n-  1Xn = 0 a.s. or lim sup n - 1X, = o9 a.s. (4) 

Proof By Lemma 3, l i m s u p n - l X , = c  a.s. for some c~[0, oo]. Assume 
0 < c < oo. Define 

U, = max { (2C) - IX ,+k-k ,  k=0,  1,...}. (5) 

Clearly U, is defined a.s. and the sequence { U,} is ergodic and stationary. Also, 
U , _ l = m a x { ( 2 c ) - l X , _ l ,  U, -1}  so that 

( 2 c ) - I X , < U , < U , _ I + I  a.s. for all n. (6) 

For  some teN,  P ( U , < t ) > 0  so that P(U,<t  i .o.)=l .  Let nl ,n2, . . ,  be the 
random positive epochs for which U,<t, with ni<ni+ ~ for all i. Let I , = 1  if 
U,<t  and I , = 0  otherwise. Applying the ergodic theorem to the ergodic 
stationary sequence {I,,}, we see that 

n i - l n i _ z ~ l  a.s. as i~oo.  (7) 

For  n i _ 1 < n < nl, we deduce from (6) and (7) that 
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(2cn)- X Xn< n-1 U,<(Un,_ ~ + n -  ni_ l) n -1 <(t + n l -  ni_ l) ni-11~O 

as i--,oo. This implies the first equation in (4) and thereby proves the 
lemma. [] 

We next prove Theorem 1. The sufficiency half of the proof, which involves 
extending Lemma 4 to the general case, is similar to that of Tanny (1974) and 
is included only for the sake of completeness. 

Proof of the Sufficiency of (3). Assume (3) holds. Let f :  [0, ~ ) ~ [ 0 ,  oo) be a 
continuous increasing function such that f ( n ) = a  n and such that there exists a 
c > 1 with 

f ( r x ) > c f ( x )  (8) 

for all x sufficiently large. Suppose p = P ( X , > c - l d f ( n )  i.o.)>0 where d>0.  
Then p = 1 by Lemma 2. By (8), 

P ( f  - l ( d - 1  Xn)> f - l ( c - l  f ( n ) )>r  -1 n i.o.) = 1. 

Since { f -  1 (d- 1 Xn)} is ergodic and stationary, it follows from Lemma 4 that 

P(X~>df(n)  i . o . ) = P ( f - i ( d  -1 Xn)>n i.o.)= 1. 

Then (1) or (2) must hold since d is arbitrary. [] 

Proof of the Necessity of (3). Assume (3) fails. If {an} converges, take P (X  k 
=l iman)= 1 for all k. Then lim supa2~Xn = 1 a.s. We may therefore assume 
{an} diverges. There exist numbers no=0, n~, n 2, ... such that knk_ ~ <n k for all 
k and ak,~ ,<2an~ for all k. Let H be a non-increasing continuous function 
such that H(a)=(kSnk) -1 for akn;_ ~ <--a<a(k+l~_ x. Then 

H(an)= ~, (k2 nk)-~ [(k + 1) nk--knk_~? 
n = 0  k = l  

> ~ (/dnk)- 1 knk = ~ .  
k = l  

On the other hand, 

n = l  k = l n = n k - l q - 1  

oo 

=< y, (n~-- n~_ ~1H(2%_) 
k = l  

< ~, nkH(ak . . . .  ) 
k = l  

= ~ n &  2 nk)- ~ < oo. 
k = I  

Now let {X,} be an i.i.d, sequence with P(X~>x)--H(x) .  By the Borel-Cantelli 
Lemma, P(X, > a n i.o.) = 1 but P(X n > 2a n i.o.) = 0, so that 1 __< lim sup a~- 1 Xn < 2 
a . s .  [ ]  
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3. Further Results 

In this section, we obtain several consequences of Theorem 1 by means of 
some simple transformations. The simplest of all is the following result ob- 
tained by applying the theorem to Y,= - X  n. 

Corollary 2. Let {a,} be an eventually non-increasing sequence of positive num- 
bers. Then 

, ( l , m S ' =  or 
a n \ an 

for every ergodic stationary sequence {X,} iff (3) holds. 

Let us now consider the sequences {G} which are eventually nondecreasing 
but have a finite limit L. If L # 0 ,  the choice X , - - L  a.s. shows (1) or (2) need 
not hold. If L = 0, we obtain the following result by applying Theorem 1 to the 
stationary sequence {(X,) - 1}. 

Corollary 3. Let {G} be an eventually non-increasing sequence of positive real 
numbers. Then 

P ( l i m i n f X n = 0 ] = l  or P ( l i m i n f X n = o o )  
\ an ! \ a n 

for every positive ergodic stationary sequence {Xn} iff 

= l  

liminf G >1 for some r>0.  
arn 

It is easy to show that the second statement of Lemma 1 does not extend to 
general stationary sequences. Let {X,} be the stationary Markov chain with 
statespace {1,2 . . . .  } given by P ( X n ~ k ) = k  -1 for all k, P (X ,=k+l lXn_ l=k)  

k 2 
- k + 2  and P ( X n = l [ X , _ l = k ) - k +  2. Then Xn<Xo+n a.s. for all n so 

P(lim sup n - l X n ~  1)= 1. Theorem 1 then shows that (2) holds, even though 
EXn= oo. Tanny (1974) gave a more elaborate argument that shows in effect 
that (2) is true for the stationary sequence {X_n}. The fact that (2) holds in 
both cases is not coincidental, as the next corollary shows. We remark that this 
esthetically appealing result seems to be difficult to obtain without resorting to 
Theorem 1. 

Corollary 
eventually 

4. Let {X,} be an ergodic stationary sequence and let {a,} be an 
non-decreasing sequence of positive real numbers. Then 

X n X n 
l i m s u p - - = l i m s u p  - a.s. (10) 

an a n 

Proof It is sufficient to consider the case when {G} is nondecreasing through- 
out. Suppose (10) fails. By Lemma 3, each side of (10) is almost surely constant. 
Thus we may assume without loss of generality that P(X,>a,i.o.)= 1 while 
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P(X,>a, i .o . )=O.  Now define a stationary sequence {Yn} by Y,=0 if X,_k<a k 
for all k > 0 and 

Y, =max  {k: X,_k>ak} otherwise. (11) 

If Y,=k, then X,_~<a i for i>k. Thus X(,+l)_~i+l)<a~+ 1 for i>k, so that 
Y,+I < I1,+ 1. This implies that lim supn -1 Y,=0, by Theorem 1. On the other 
hand, P(X,_~, > a~, i.o.) = 1 so that P(Y, >=�89 i.o.) = 1. This contradiction gives 
us the required result. []  

Our final application of Theorem 1 is a continuous time version of the 
same theorem. 

Corollary 5. Let f: [0, oe)-~N be an eventually non-decreasing positive function. 
Then 

X~ 
l i m s u p ~ = o e  a.s., or (12) 

Xt 
lim sup f( t~=O a.s. (13) 

for all ergodic stationary processes {Xt, teN} iff 

. .  f(rt) 
h m m f - - >  1 for some r>O. (14) 

t-~oo f(t) 

Proof. Assume (14) holds. For {Xt} as in the statement of the corollary, define 

Y, = sup{Xt: n < t < n +  1}. 

Then {I1,} is stationary and ergodic. (This fact is of course weaker than the 
ergodicity of {X~}.) Let a ,=f(n) .  The sequence {a,} is eventually non-decreas- 
ing and positive and (3) holds. Let [ . ]  denote the greatest integer function. 
Then 

r. Xt lim s u p - -  = lim sup 
a,+ 1 f ( [ t ]  + 1) 

Xt 
__< lim sup f(t) 

<lim sup Xt 
f ( [ t ] )  

=lira sup - - .  Y" (15) 
a n 

The sufficiency result now follows from Theorem l and the fact that the first 
and last terms in (15) have the same distributions by stationarity. The necessity 
can be concluded from a minor modification of the proof of the discrete time 
theorem. For example, let {X~} be the pure jump Markov process with mean 
time in every state being one and with the conditional distribution of the 
location after a jump being given by the distribution of X,  as specified in the 
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necessity part of the proof of Theorem 1, no matter what state occurred prior 
to the jump. [] 

We note that Corollaries 2, 3 and 4 have similar continuous-time versions. 

Acknowledgement. I am indebted to H. Kesten, D. Tanny, and W. Vervaat for several useful 
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