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On a Condition Satisfied by Certain Random Walks 

D.J. Emery 

Introduction 

Let X~, X 2 . . . .  etc. be a sequence of independent, identically distributed 
random variables. Define successive partial sums of these random variables 

k 
sk= F~ xj for k___l. 

j = l  

The purpose of this paper is to elucidate the circumstances under which the 
following condition is satisfied 

n - I .  ~ P r ( S k < 0 ) ~ 7  as n ~ o o ,  
k=l  

where 0 < 7 < 1. This condition has been used by a number of authors, see for 
instance Spitzer [93, Heyde [63, Bingham [13 and Emery 1-23. ' 

Preliminary Discussion 

When X~ etc. have a symmetric common distribution, i.e. when Pr(X~ > x )=  
Pr (X 1 < - x )  at all continuity points x, then it is easy to show that the condition is 
satisfied with y = 21-. If X1 etc. all have zero mean and finite second moment,  then 
it follows from the Central Limit Theorem that 

Pr(S, < 0 ) ~ � 8 9  as n ~ ,  

and thus again the condition is satisfied with 7 = �89 

The condition is also satisfied when X 1 etc. belong to the domain of attraction 
of a stable law of exponent ~ :t: 1, with the additional restriction that the mean of 
X 1 etc. is zero when c~ > 1, and no additional restriction when ~ < 1. Under  these 
circumstances there exists a sequence A1, A2 . . . .  etc. of constants such S,/A, con- 
verges in distribution to a stable random variable (see [43, p. 75, Theorem 2 and 
footnote). Thus it follows that 

Pr(S,<O)=Pr(SJA,<O)~7 as n ~ o e .  

If the characteristic function of the stable limit law is 

exp{ c t (l+i  sgn t, tan( t)} 
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where t is rea and e, fl and c are real constants, satisfying 0 < e < 1 or 1 < e < 2, 
c > 0  a n d - l < f l < l ,  then 

7 = 2~-- (nc0-1 - arctan ( - fl tan ( ~ ) )  �9 

Another class of random variables satisfying the condition can be constructed 
from the symmetric Cauchy distribution. Let Yt, Y2 . . . .  etc. be a sequence of in- 
dependent, identically distributed random variables such that 

1 Y du 1 1 
Pr(Yl<X)= n _ j~o ~ = 2 + n-  arctan x. 

k 

If R k = ~ Yj for k > 1 denotes the partial sums of this sequence, then it is an 
j=l 

elementary property of the symmetric Cauchy distribution that Rk/k has the 
same distribution as Y1 etc. Thus if Xk = Yk -- a for k > 1, where a is a constant, then 

Pr(S,<=O)= P r ( R , - n a < O ) =  Pr(R,,<=na) 

= P r  < a  =Pr(Y1 < a)= f + ~  arctan a. 

By varying a the condition can be satisfied with any value of ? between 0 and 1. 

Spitzer has given an example which shows that the limit lim n -~ ~ Pr(Sk<O) 

need not exist (see [10] p. 230, E2). It is easy to see that the ordinary limit 
lim Pr(S, < 0) need not exist by considering, as Spitzer [9] suggests, the Universal 

n ~ o o  
n 

Laws of Doeblin. It is not known, to the author, whether lira n -1 ~ Pr(Sk<0) 
can exist whilst lim Pr(S, < 0) fails to exist. ,~ ~o k= l 

n ~ o o  

An examination of the examples given above might lead one to think that 
random variables in the domain of attraction of a stable law are the only ones 

4= 1 which satisfy the condition with ? ~. This is not so, for, as will be shown, certain 
random variables whose distributions have slowly varying tails satisfy the condi- 
tion with ? 4: �89 If, however, it is known that, in addition to satisfying the condition 
with ? 4 = ~, a, one tail of the distribution is exponentially small, then it does indeed 
follow that the random variables belong to the domain of attraction of a (com- 
pletely asymmetric) stable law. 

Demonstration of Results 

Denote the characteristic function of X 1 etc. by 0 (t), thus 

+ v o  

0 ( t )=  S e~'xer(X1~d~) �9 
- o 0  

Then Ok(t) is the characteristic function of S k, and let Uk(t) and Vk(t) denote respec- 
tively the real and imaginary parts of Ok(t). Where convienient we shall write 
u(t) and v(t) instead of ul(t) and vl(t). 
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L e m m a  1. I f  X t etc. are non-degenerate, then for every e > 0 

Pr(Sk >0)--  Pr(Sk < 0 ) = 2  lira i vk(t) 
6r t 

(Note that i~(t~)dt  does not necessarily exist 

lim i Vk(t) dt always exists.) 
a+o a t 

dt+O(k-�88 

in an absolute sense, but 

Proof of Lemma 1. We have that 

Vk(t) dt= ~ sinxt .  Pr(Skedx )_d t  
a t 6 - t 

= ~ sin xt  Pr(Sk~dX ) 
- oo 

The interchange of orders of integration is justified because the integrand is 
bounded over the region of integration. Thus 

-boo 
i Vk(t)dt= ~ (~':~ sin0 ) { J; ~ d O }  Pr(Skedx)" 

b sin 0 
Now since J ~ dO < A, where A is a constant independent of a and b, it 

follows by the Dominated Convergence Theorem that 

vk(t) d t~  5 si O_d 0 Pr(SkedX ) 
6 t _ o o  

as 6 ,~ 0. Hence 

vk(t)t +[ooti s inxt  } 
lira( dt= ~ dt Pr(SkedX) 
a~o~ t -oo Lo t 

= ~ s inxt  dt Pr(Sk~dx)-_j  ( j ~ 7 ~ d t ~ P r ( S k e d X ) .  
-ooLo t 

Since 

it follows that 

ir 
if x<O,  

Pr(Sk>O)-Pr(Sk<O)=2~lim jfVk(t) dt 2 +oofV s inxt  ) - -  + - -  J ~j  ... . . . .  dt~Pr(Sk~dx)" 
n a:o0 t n_oo(~ t J 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31 
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Choose n k > 0 and estimate as follows 

) ; { f  sintxt-dt}Pr(SkedX) 

~; ~o < I s i~Odo Pr(Sksdx)+ ~ I sin0 dO Pr(Skedx ) 
Ixl >nk  I~l <nk 

B 
< I - ~ P r ( S k e d x ) +  I A 'Pr(Skedx)  . 

Ixl >_-nk Ixl <n~ 

 ~ we are use p s~ c~ 
sin 0 B 

and ,}x ~ d O  < ~ -  for some constant B. Hence 

)~  ~s in  Xt �9 Pr(ISk[ <n,) .  

Setting nk=�89 ~, it now follows from Theorem 1 (a) of Ros6n [8] that  

-oo + ~ ~  Pr(Skedx) (~ t = O(k-~-)' 

and the lemma follows. 

Lemma 2. I f  Sf f  ~-sLt(O'vgt~ ~), then 

n - t .  ~ {Pr(Sk >0)--  Pr(S k <0)} 
k = l  

tends to a limit as n --* oo if and only if 

1 - s  dt 
2oj" Im ( 1 Z s  ~-(t)) t 

tends to a limit as s T 1, and the two are equal. 

Proof of Lemma 2. First we observe that  

Vk (t) = I m  q5 k (t) = Im (u (t) + i v (t)) (Uk_l (t) + i Vk_l (t)) 

= U (t) v k_l (t) + v (t) u k_l (t), 
and therefore 

Jvk(t)l <-_ Iv~_l (t)f + fv(t)f, 

and so it follows, by induction, that Irk (t)[ =<_ k Iv (t)[. Thus vk!t) eL1 (0, e) for k > 1, 
and hence by Lemma 1 t 

2 
Pr (S k > 0) - P r (Sk < 0) = - -  ~ vk(t) d t + 0 (k- ~:). 

7r o 
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Multiplying through by s, where 0 < s < 1, and summing we obtain 

o 9  ~ _ 

s k {Pr(S k > 0) - Pr(S a < 0)} = ~- Z sk~ vk (t) dt + ~ O(k- +) s k 
k = l  k=l o t k = l  

2 ~ ( ~  ) d t  ~o 
Z sk - -+  Z s 

where the interchange of orders of integration and summation may be justified 
by using irk(t)1 <k  [v(t)[ and appealing to the Dominated Convergence Theorem. 
Since 

Im ~ s k (~k(t)= Im ~ s k (~k(t)-= Im 
1 

k = l  k = O  1 - s ~ ( t ) '  

we conclude that 

(1 - s) ~, s k {Pr (Sk > O) --  Pr (S k < 0)}  
k = l  

2 ~ 1 - s  ~ + ( 1  ~ O(k-~)s  k 
= - -  ~ Im (l_Ss~-(t))  - s )  

7~ 0 k = l  

for 0 < s < l .  

The result now follows by well-known Abelian and Tauberian theorems 
(see [5] Theorems 55 and 92). 

Lemma 3. Suppose that d?(t) is such that 

(i) v(t)>O for O<t<_e where e>0,  

and 

(ii) 

then 

v(t) 
1 - u ( t )  

*0 as t$O, 

Z 
n- 1 ~ {Pr (S k > 0) - Pr (S k < 0)} 

k = l  

tends to a limit as n ~ co if and only if 

2 ~ 1 - s  v(t) dt 
;Jo t 

tends to a limit as sT 1, and the two are equal. (It is not obvious that there exists 
any characteristic function which satisfies (i) and (ii). We postpone discussion of  
this point until after the proof of the lemma.) 

. v ( t )  
Proof of Lemma 3. Since ~lo~lim [ v(t)t dt always exists, (i) implies tha t~-~Lx(0 ,  e). 

Thus Lemma 2 is in force, and we need only show that 

!~m ~_o~ i m 1 - s  dt 

9* 
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exists if and only if 
2 ~ ( l - s )  v(t) dt 

lim--fst, no  (1--su( t ) )  2 ~ -  

exists, and the two are equal. Note that 

and define 

Im 
1 s v(t) 

1--S q~(t)(1--Su(t))2+S2V2(t) ' 

v(t) 
p@)= sup 

o<t<=~l-u(t) 

Assume that X I etc. are non-degenerate, so that there exists e>O such that 
u(t):l=l for O<t<e.  Since u(t) is continuous, 1 -u( t )  is bounded away from 0 
for 0 < g <  t_< ~ (by a suitable choice of e we may assume the same value of 

1 
throughout). Thus Im is bounded above for O<g<_t<~ and O < s <  1, 
and therefore 1 - s r (t) 

and 

~ ( 1 - s  ) ~---~0 as sT1 2 ~ I m  1 - s r  ' 

2 ~  ( l - s )  v(t) d t ~ O  as sT1. 
~ , _  ( 1 - s u ( t ) )  2 t 

Thus it follows that 

lim ~Im 1 -  s ~" 1 -  s dt 
s~l o 1-sq~(t) t s t lo  1--sq~(t) t '  

and 
~' O - s )  v(t) 

limy ( l - s )  v(t) d t = l i m J  - - - -  2 dt. 
~t 'o  ( 1 - s u ( t ) )  2 t ~1 o ( 1 - s u ( t ) )  t 

In other words these limits have values that are independent of ~ so long as 
is sufficiently small. 

Now, for 0 < t < ~ and 0 < s < 1, we have 

and 

Hence 

and 

S(1--S) V(t) < s ( 1 - s )  v(t) 

( 1 - ~  u(t)) ~ + s ~ ~ ( t )=  (1 - s  u(t)) ~ ' 

s(1 - s )  v(t) < (1 +p2(@ s (1 -  s) v(t) 
(1 - s  u(t)) 2 = (1 - - s  u ( t ) )  2 -[-s 2 V2(t) " 

2 i ( 1 - ~  xdt = - 2 :  1-~ v(t) lim Im / - - _ < l l m - -  J . - - -  dt, 
s~1 l - -s~)( t )]  t --s~1 n o ( l - -su( t ) )  2 t 

(l-s) v(t) .dt<=(l+p2@))li m Im --~-(0 t 
~ ,  ~z 6 ( l - s u ( t ) )  2 t s , ,  1 
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From (ii) p(e)J.O as e+0, and therefore since the values of these limits are in- 
dependent of e, it follows that 

2 ~ / l i m - - ~ I m ~  1 - s  ', dt - -  2 ~ (Z-s )  v(t) - - - -  I - - = l i m - -  j . - - . d r ,  
s~l ~0 1 - s~b( t ) /  t ~,1 ~ o ( 1 - s u ( t ) )  2 t 

and similarly 

2 i ( 1 - s  \d t  2 .  ~ (Z-s )  v(t) 
lim hn - - -  / - - = l i m - -  j dr, 
~,  1-sdp(t)] t TiT rc o (1-su(O)  2 t 

so that the lemma is established. 

Let L(x) be a bounded non-negative function defined for positive x, which 
is slowly varying at infinity, and such that L(x)/x is non-increasing and 

L(x) dx< +oo. One could, for instance, take L(x)=min(x,(logex)-2). If we 
o x 

set K(x)= ~--f-L(u)du, then K(x) is slowly varying at infinity and 
x U 

L(x) 
- - - ~ 0  as x---~+oo. 
K(x) 

For  if we put 

K(x)_  1 ~ L(u) du= ~L(xt) dt 
L(~) L(~)x " ; U ( ~ ' T '  

then it follows by Fatou's Lemma that 

7,. L(x t) 
lim_m K(x) > 3 llm L~x] 

x~+c~ L ( X )  1 x~oo (X) 

dt [ dt 
= ~ + o 0 .  

t 1 t 

To show that K(x) is slowly varying, choose any positive 2 which is less than 1, 
and note that 

K(2x)  ( K(2 x ) -  K(x) ) L(x) 
K(x) 1= L(x) K(x) " 

L(x) 
Since - ~ 0 as x --* oo the result will follow if we can show that 

K00 
remains bounded as x--*~.  
L(x)/x is non-increasing, for 

K(2x)-K(x)_ 1 ~ L(U) du 
L(x) L(x) z~ u 

K(~x)-K(x) 
L(x) 

This is easily demonstrated using that fact that 

x 

--< r0r ,~--T-- ~x C(x) \ ~ ;  

and the latter is bounded because - - -  
in a like manner. 

L(2 x) 

L(x) 
, l  as x ~ .  The case of 2 >  1 is treated 
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Let us assume that L(x) contains a suitable scaling factor so that ooj, _L(x) dx = 1. 
L(x) o x 

Then we may consider to be the probability density function of the set of 
x 

random variables Xa etc. (in this case, of course, X a etc. will be positive). In this case 

c/o 

q~(t)= S e"X" L(x) .  dx, 
0 X 

u( t )=Scosx t .  L(x) dx, and v ( t ) = ~ s i n x t -  L(x) .dx. 
0 X 0 X 

The conditions of Theorem 2 of Pitman's paper [7] are satisfied and therefore 

1 - u ( t ) ~ K  as t~0. We shall show later that v ( t ) ~ L ( 1 / t )  as t~0. Thus (i) 

and (ii) of lemma 3 are satisfied and so, because Xa etc. are positive, it follows that 

2 i ( l - s )  v(t) d t ~ l  as stl .  
rc o (1--su(t)) 2 t 

If X*, X* . . . .  etc. is a sequence of independent, identically distributed random 
L(x) 

variables with a probability density function equal to # - -  for x>0 ,  and 
L ( - x )  x 

(1 - # ) - -  for x<0 ,  where # is a constant satisfying � 8 9  1, then u*(t) and 
- - X  

v* (t), the real and imaginary parts of the characteristic function of X* etc. satisfy 
u*(t)=u(t) and v*(t)=(2 v -  1) v(t). Hence 

2 ~ (1 -- s) v (t) 
~ ~ (1--su*(t)) 2 ( l - s )  v*(t)t d t = ( 2 p - 1 ) x -  ~ o (1--SU(t)) 2 t d t ~ 2 # - i  as s]'l. 

Now u* (t) and v* (t) also satisfy (i) and (ii), and so applying Lemma 3, we have 
that 

n -~ ~ {Pr (S~>0) -Pr (S~ '<0)} -~2#- I  as n ~ + o o ,  
k = l  

where S* denotes the kth partial sum of the sequence X~', X~' . . . .  etc, Using 
Theorem 1 (d) of Ros6n [8] it follows easily that the condition is satisfied with 

= 1 -  ~t. Since the distribution of X~' etc. has a slowly varying tail it cannot 
belong to the domain of attraction of a stable law. 

L(x) Ts 
It remains to show that v( t )~-L(1 / t )  as t],0. Since - -  is non-increasing 

we have that z x 

and 

0o L(x) (2.+i)~/t 
I s i n t x "  .dx< I s in tx .  L(X)--dx, 
0 X 0 X 

L(x) 2,~/t L(x) 
s in tx ,  dx> ~ s i n t x . -  dx, 

0 X 0 X 
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where n is any positive integer. Hence 

(2.+1)~ s i n u  L(u/t) 
v(t) < ~ L(1/t) du, 

L(1/t) = o u 
and 

v(t) > )~" sinu L(u/t) 
L(1/t) = o u L(1/t) "du. 

Now by Lemma 2 of Pitman [-7], we have that for e positive and t sufficiently 
small, there exist a positive constant C such that 

L(u/t) 
- - . <  C u - }  when u < e, 
L(1/t) 

and 
L(u/t) 
L(1/t) <Cu~ when u>~.  

sin u L(u/t) 
Thus, for t sufficiently small, is bounded by a function which is 

u LO/t) 
integrable over any finite interval, and consequently 

lira v(t) (2,+1)~ sinu 
, , o L ( 1 / t )  < ol - -u  "du' 

and 

lim- v(t) >' i"  sin U . d u .  
tto L ( 1 / t )  o u 

Since n is arbitrary it follows that 

oo 

v(t) * I  sin u du=n/2  
L(1/t) o u 

as t + 0. This concludes the proof of Theorem 1. 

Theorem 1. There exist sequences of independent, identically distributed random 
variables which satisfy the condition with 7+�89 and which do not belong to the 
domain of attraction of a stable law. 

We now state the other main result of this paper. 
+ o o  

Theorem2. Suppose that X 1 etc. are such that ~ e-"X Pr(Xl ~ dx) < +oo for 
- o o  

all real r l satisfying 0<  ~/< qo, where tlo is a positive constant (possibly + oo). Then 
if the condition is satisfied with 7 4 :• it follows that X l etc. belong to the domain of 
attraction of a (completely asymmetric, of  exponent 1/7) stable law. 

+ o o  

Notice that the condition ~ e -nXPr(X l~dx)<  +oo for 0 > 0  is equivalent 
- o o  

to requiring that the left hand tail of the distribution of )(1 etc. is exponentially 
small. This theorem is clearly a generalization of Theorem 2 of [-2]. 
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+ o o  

Since qS(t)= ~ e itx Pr(X1E dx), the condition of Theorem2 implies that q~(t) 
- o o  

is analytic for t satisfying 0 < I m t < q o ,  and is bounded and continuous for 
0< Im t<th,  where ~/1 is any positive real number satisfying th<~/o. We shall 
henceforth regard t as a complex variable. 

Lemma 4. There exist ~ > 0 and 6 > 0 such that for all s satisfying 1 -  ~ < s < 1, 
the equation 1-sqS(t)=0 has at most a single, simple root in the closed half-disc 
determined by [tl <e and Im t>0.  

Proof of Lemma 4. We make use of notation and results established in Feller 
Vol. II ChaptersXII and XVIII [3]. Let N=min{nlS ,<O} be the epoch of first 
entry into ( -o0 ,  0], and let SN be the place of first entry. We put H,(I)---Pr {N = n; 
SN~I } where I is any interval contained in ( - ~ , 0 ] ,  and H,(I)=0 when I is 
contained in (0, + ~). We also define 

G,(I)= Pr{S 1 >0, ..., S,_ 1 >0;  S, eI} 

when I is contained in (0, + ~ ) ,  and G,(I)=0 when I is contained in ( - ~ , 0 ] .  
For convienience put F(I)= Pr(X1 El) for any interval I. 

By Eq. (1.5 a) of Chapter XVIII 
~3 

H, +1 (I) = ~ G, (dy) V(I - y). 
o 

Hence if 0 < r/< ~/o, then for every positive c 

0 oo 0 

e-~XH,+~(dx)= ~ G.(dy). ~ e -nXF(dx-y )  
- c  0 - c  

=~e-n 'G , (dy ) .  ~ e-""F(du)<-_ ~e-nYG,(dy)" ~ e-n"F(du). 
0 - y - c  0 - o o  

0 

Therefore, by the Monotone Convergence Theorem, ~ e-nXH~+l(dx) exists for 
- o o  

0__<~/<r/o, and 
0 oo 0 

e-nxU,+~(dx)<= ~ e-n~G,(dy) �9 ~ e-n"F(du). 
- -  oo 0 - o~ 

The duality lemma of Chapter XII, Section 2 shows that G,(I) can be inter- 
preted as the probability that the nth ascending ladder point belongs to the inter- 

val I, and consequently G(I)= ~ G,(I) is a renewal measure. Hence 
n = O  

I e-n" G,(dy)= f e-n' G(dy)< + 
n = O 0  0 

for every q>O, Thus it follows that, for O<q<qo,  the sum 

~ e-nXH,(dx) 
is finite. ,= t - ~o 
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If we put 

and 

= n t a x ] ,  
r  --oO 

oo 

y(s, t)= ~ s" ~ ei'~ G,(dx), 
n=O 0 

then it follows that X(s, t) is analytic for - o o  < I m  t<r/o when 0_<s< 1, and 
7(s, t) is analytic for Im t > 0  when 0<s_< 1. Further, if Im t < q ,  <t/o and 0 < s <  1, 
then the series defining X(s, t) is dominated term-wise by the convergent series 

i e-"'XH,(dx), 
v t = l  --oO 

and therefore )((s, t) tends uniformly to Z(1, t) as s T 1 for Im t < t  h. 

The equation 1 -Z(1 ,  t) has a root at t=0 .  Since 

O 

Z ' ( 1 , 0 ) = i ~  f xH,(dx)#O 
n = l  - -09  

this root is simple. Because ;g(1, t) is analytic in the neighbourhood of t = 0, we can 
find e > 0 such that the equation 1 -Z(1 ,  t)= 0 has no root but t = 0 which satisfies 
[ t l<a  

Let m= inf [1-X(1, t)J, so that m>0.  By choosing s sufficiently close to 1 we 
Itl=~ 

can ensure that IX(s, t)-X(1, t)] <�89 for It]=e. Applying Rouche's Theorem we 
find that 1 -X(s, t) and 1 -X(1, t) have the same number of zeros within the circle 
[t[=e. Hence for s sufficiently close to 1, the equation 1-X(s,  t )=0  has exactly 
one simple root within the circle [t[ =e. 

By Chapter XVIII, Eq. (1.9) 

7(x, 0{1 - s 0 ( t ) }  = 1 -Z(s ,  t) 

for real t, and 0 < s <  1. Now Z(s, t), 7(s, t) and ~b(t) are all defined for O<Im t <t/o, 
and therefore the above equation holds throughout this strip. It follows that the 
equation 1-sq~( t )=0  has at most a single, simple root satisfying [tf__<e and 
Im t > 0, when s is sufficiently close to 1. Thus the lemma is proved. 

Proof of Theorem 2. We put Xj=X + +X T, where X + =max{0,  Xj} and 
X 7 = min {0, Xj}. Then 

m o 

IE(X+)= ~ xF(dx)<= +oo, and IE(XT)= ~ xF(dx)>-oo.  
O - -oo  

If we set 

and 
j = l  i = 1  
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s .  + 
then S ,=  S + + S~-. The Weak Law of Large Numbers implies that 41E(X~ +) 

tZ 

in probability, and ~'" 41E(Xi-) in probability, as n 4  ~ .  
tZ 

Now if IE(X~+)= + ~ then S, 4 - -  + ~ in probability, and hence Pr(S. = 0)40,  
n 

contrary to 7>0.  Hence IE(X~+)< + ~ ,  and so IE(X1) is finite. If IE(XO*O then 
S. 

- - -~ IE(X1)  in probability, and therefore P r ( S , < O ) 4 0  or 1, contrary to 0 < 7 <  1. 
n v(t) 

Thus IE(Xt)=O, and so 4 0  as t~0. This implies that v(t) ~L~(O, e), and so 
Lemma 2 holds, t t 

By Theorem 1 (d) of Ros6n 1-8], Pr(S,---0)~0 as n-~ ~ ,  and therefore 

n - t  ~ {Pr (Sk>0) - -Pr (Sk<0)}41- -2y  
k = l  

as n4oo .  Applying Lemma 2 

l i m 2  j i m  " 1 - s .  dt = 1 _ 2 7 .  
~T1 n 6 1 - s r  t 

It is easily seen that the equation 1-sq~(t)=O has a root on the positive 
imaginary axis. Indeed, if we put 

f(q)=~b(i~/)= ~ e-"XF(dx), 
- o o  

then f ( 0 ) = l ,  and f ( r / ) ~ + ~  as Y/~'~/o- Therefore f(tt(s))=l/s>l for some 
q(s)>0. Now f '(0) = IE(XI)=0 and since 

/"01) = ~ x2e-"XF(dx)>O, 
- c t ~  

the graph of f(q) is concave. It follows that ~/(s) + 0 as s T 1. By Lemma 4 therefore 
1-sq~( t )=0  has a single simple root satisfying It[<~ and I m t > 0 ,  when s is 
sufficiently close to 1. 

Thus, for s sufficiently close to 1, the function (1-sda(t)) -~ is analytic in the 
interior of the closed half-disc [tl <5, Im t>0 ,  except for a simple pole at t =  iq(s). 
This function is also continuous and bounded on the boundary of this half-disc. 
Take F to be the composite contour ~ + ~ + F3 + ~ where 

={t i t  real, - e < t _ <  - g } ,  

F2= {t[j t l=g,  Im t_>_O}, 

F 3 = {tit real, g < t < e } ,  

F4= {t]ltl=e, Im t >=O}. 

Then, using the Residue Theorem, We obtain 

~r (_ 1 - s  ) d t=2n i .  1 - s  
1 sc~(t) t ( -s~?'( i . (s))) iq(s)  
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1 - s  ) 
Since I t  Im -1 -~-~-(t) is an even function of t for real t 

1 - s  t = 2 i -  Im 1 - s  dt f 
rl +J r3 1 -s~b(t)  , 1 - s~-(t) t '  

and the latter tends to 

as d ~ 0 .  2i Im 1-sqS(t )  t 

F r o m  the fact that  q~(t)---, 1 as t ~ 0 ,  it follows that  

~ (  1 - s  1 ~ ~' - - ~ - n i  as ~0. 
1 -  s 4)(t) t 

Hence  letting e'$ 0, we obtain 

2 i o~ Im 1 - s ~(t)  --t - n i + r4 ~ 1 - s ~b (t)- t - i t/(s) ( - s ~b' (i t/(s))) " 

Let t ing s T 1 we find that  

and consequently 
2hi (1  - s )  

i tl(s) ( - s  49'(i t/(s))) , n  i ( 1 - 2 ~ ) - n  i + 0 =  - 2 n  i 7 

1 - s  
as sT 1. This is the same as lim =V. Since r/(s)~0 as s t  1, this can 
be re-expressed as ~ ~ t s r/(s) f '(r/(s)) 

lim t / f ' ( t / )  1 
- < + ~ .  

,~o f ( t / ) -  1 y 

It follows that  f ( t l ) - l=A(1/r l ) t l  t/~, where A is a function which is slowly 
varying at infinity. For,  given any e>O, we can find f i(e)>0 such that, for every 
x satisfying 0 < x < ~, it is the case that  

- e  < + e  - -  
x f (x) - -  1 x " 

Now let k be any constant  greater than 1. We choose r/ so that  k~/< ~, and 
integrate from r / to  kr/. Thus 

( l _ ~ )  loge k <loge ( f ( k  t l ) -  l ~ < 

for t /<  6/k, and therefore 

f ( k t l ) - i  ~kl/e as 1/~.0. 
f (tl)- 1 
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If we now put 2(q)=q-1/~(f(tl) - 1), then 2 ( k q ) 1  as ~/J,0, and so the assertion 
is proved, with A(1/r/)=2(r/). 2(r/) 

Using the fact that  IE(X1) =0 ,  we can re-state this result in the form 

( e -~+t lX-1)F(dx )=A ~l tl'. 
--  ct3 

By the Domina ted  Convergence Theorem 

1 o 9 
.zg ~ (e-"x+tlX-1)F(dx) ~ j" �89 
t l  - c o  - o o  

as t / [  O. Since (e-  "~ + q x - 1) > 0 for x => O, Fatou 's  Lernrna gives 

lira (e-"x+tlX-1)F(dx)> I�89 
,t~o tl o o 

If 1/7 > 2 then 

�89 x 2 F(dx)<li__mm A tlt/~- 2=O, 
_ ~  q ~ O  

and it would follow that  F(x) is degenerate. Hence 1/7 < 2, and since by assump- 
t ion 7+�89 we deduce that 1/7<2.  So now we have that  

~(e-"x+t lx-1)F(dx)~A tl 1/~ as tl~O. 
0 

If we put  M(x)= ; {  1 -  F(u)} du then, integrating by parts  twice, we have 

oo oo 

( e - " ~ + q  x -  1) F(dx)=q 21 e-"~ M(x) dx. 
0 0 

Hence 

~e-nXM(x)dx..~A t/-(2-I/~) as t150. 
o 

Since M(x) is non-increasing, it follows from Feller XIII.5, p. 421, Theorem 2 [3], 
that  

A (x) -  x t -  t / ,  
M(x) as x ~ + o o ,  

r ( 2 -  1/7) 

Finally, because 1 - F ( x )  is also non-increasing, we deduce that  

1 - F ( x ) , , ~ A ( x ) ( 1 / y - 1 )  x_l/~ as x ~ + o e .  
v(2-1/7) 

The  result now follows from a classical limit theorem (see [4]). 
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