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On a Condition Satisfied by Certain Random Walks

D.J. Emery

Introduction

Let X;,X,,... etc. be a sequence of independent, identically distributed
random variables. Define successive partial sums of these random variables

k
Se=Y X, for kx1.
j=1

J

The purpose of this paper is to elucidate the circumstances under which the
following condition is satisfied

n~' Y Pr(S,£0)—»y as n—oo0,
k=1

where O<y < 1. This condition has been used by a number of authors, see for
instance Spitzer [9], Heyde [6], Bingham [1] and Emery [2]. -

Preliminary Discussion

When X, etc. have a symmetric common distribution, i.e. when Pr(X, 2 x)=
Pr(X| < —x) at all continuity points x, then it is easy to show that the condition is
satisfied with y=}. If X, etc. all have zero mean and finite second moment, then
it follows from the Central Limit Theorem that

Pr(S,<0)—»3 as n—oo,

and thus again the condition is satisfied with y=1.

The condition is also satisfied when X etc. belong to the domain of attraction
of a stable law of exponent o 1, with the additional restriction that the mean of
X, etc. is zero when o> 1, and no additional restriction when «< 1. Under these
circumstances there exists a sequence A4, A,, ... etc. of constants such S,/4, con-
verges in distribution to a stable random variable (see [4], p. 75, Theorem 2 and
footnote). Thus it follows that

Pr(S,£0)=P1(S,/4,£0)-»y as n—o0.

If the characteristic function of the stable limit law is

exp{—c|t|“<1 +if-sgn(t) tan (n—;))},
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where ¢ is rea and o, § and ¢ are real constants, satisfying O<a<1 or 1 <a<2,
c¢>0and —1< <1, then

na
y=%—(na)~!-arctan (-ﬁ tan (7))
Another class of random variables satisfying the condition can be constructed

from the symmetric Cauchy distribution. Let ¥, ¥,, ... etc. be a sequence of in-
dependent, identically distributed random variables such that

1 7 1
Pr( Yl<x)——; f =5+ arctan x.

2

k
If R,=Y Y; for k=1 denotes the partial sums of this sequence, then it is an
j=1
elementary property of the symmetric Cauchy distribution that R,/k has the
same distribution as ¥; etc. Thus if X, =Y, —a for k=1, where a is a constant, then

Pr(S,=£0)=Pr(R,—na=0)=Pr(R,<na)

R
=Pr( "<
n

By varying a the condition can be satisfied with any value of y between 0 and 1.

1 1
a) =Pr(Y; <a)=7+—arctan a.
T

Spitzer has given an example which shows that the limit limn~! ) Pr(S,<0)

H-®© k=1

need not exist (see [10] p.230, E2). It is easy to see that the ordinary limit
lim Pr(S, <0) need not exist by considering, as Spitzer {9] suggests, the Universal

Laws of Doeblin. It is not known, to the author, whether limn~! Z Pr(S,<0)
can exist whilst lim Pr(S,=<0) fails to exist. e

n— 0

An examination of the examples given above might lead one to think that
random variables in the domain of attraction of a stable law are the only ones
which satisfy the condition with y= 4. This is not so, for, as will be shown, certain
random variables whose distributions have slowly varying tails satisfy the condi-
tion with y 1. If, however, it is known that, in addition to satisfying the condition
with y=+3, one tail of the distribution is exponentially small, then it does indeed
follow that the random variables belong to the domain of attraction of a (com-
pletely asymmetric) stable law.

Demonstration of Results
Denote the characteristic function of X, etc. by ¢(¢), thus

+ o0
p()= | €"Pr(X edx).
Then ¢*(¢) is the characteristic function of S, and let u,(£) and v, (¢) denote respec-
tively the real and imaginary parts of ¢*(r). Where convienient we shall write
u(t) and v(t) instead of u,(¢) and v, (¢).
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Lemma 1. If X, etc. are non-degenerate, then for every ¢>0

&

2
5

( v (1)
t
z t
lim | o) dt always exists.)
slo; t

Proof of Lemma 1. We have that

ka(t) f{ | sinxt- Pr(Skedx)}

5 6 [~

=14

- (d

+ o0 £ o1 t
{ e dt}Pr(Skedx).

The interchange of orders of integration is justified because the integrand is
bounded over the region of integration. Thus

[ ”k(t) _ T { T Sig 0 dG} Pr(S,edx).
]

—ow {oé-x

b o3 9
Now since f—SI—g»d(J <A, where A is a constant independent of a and b, it

follows by the Dominated Convergence Theorem that

]

0

£ “+ o0 £ X 1 0
{ i d@} Pr(S,edx)

] — o0

as 6 | 0. Hence

limka(t) Jrj {j sin xt t} P1(S,€dx)

5l05 t
+oo{ oo t +00( w0 . ¢
_ j{jsmx t}Pr(Skedx)— j{jsmtx dt}Pr(Skedx),
—o (0

— &

Since
+7/2 if x>0,

; dt={ 0 if x=0,
0 —n/2 i x<0,

®sin xt

it follows that

2 t 2 tof ©ginxt
Pr(Sy>0)— Pr(S, <0)=—lim 3‘”"() = {j Smt” dt}Pr(Skedx).
0

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31
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Choose n, >0 and estimate as follows

too { w0 o t
f {j o x dt}Pr(Skedx)
% sin 6 © gin @
< [ | J=5—a0|Pr(Sedn)+ [ | [ —;—db|Pr(S,edx)
|x[Zne |e-x |xl<ne |e-x

B
s lj TTPr(SkedxHI lj A -Pr(S,e dx).
® gin @
J

B
<— for some constant B. Hence

Here we are making use of the fact that df| < A for some constant A,

® gin 6

and E»j; 9 ile i
*° (% sin xt B
I {j‘ dt} Pr(Skde) §n~k+A'Pr(|Sk|<nk)

Setting m, =% k*, it now follows from Theorem 1 (a) of Rosén [8] that

=0(k™%),

I

— a0 &

+°°{°°sinxt

dt} Pr(S,edx)

and the lemma follows.

Lemma 2. If —()~5L (0, &), then

n=1- 3 (Pr(S,>0)— Pr(S, <0)}
k=1

tends to a limit as n— oo if and only if

“ (i ssw —s;(n)dt

tends to a limit as s1 1, and the two are equal.
Proof of Lemma 2. First we observe that
v () =Im ¢*(O)=Im(u(t) +1 v(0)) (e_ 1 () +i ve_ (1))

=u(t) v_1 O+ () u_(2),
and therefore
[0k @ = [ve_ O+ o @)1,

and so it follows, by induction, that |v,(
and hence by Lemma 1

Pr(S, >0) — Pr(S, <0)=-—

”"t(t) 0, ¢) for k=1,

f k(t)

o

L0k %).
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Multiplying through by s, where 0 <s < 1, and summing we obtain

Tzt ot Py’

k=1
»I{Zs vk(t)} +kz Ok—%) s,

where the interchange of orders of integration and summation may be justified
by using |v, ()] £k |v(f)} and appealing to the Dominated Convergence Theorem.
Since

1

Im Z s () =Im Z s Pk (t)= Im —5 60’

we conclude that

(1—s) i s {Pr(S, >0)— Pr(S, <0)}
k=1

) e -
i ( (;(t)) +(1— s)zour)sk

for 0<s<1.

The result now follows by well-known Abelian and Tauberian theorems
(see [5] Theorems 55 and 92).

Lemma 3. Suppose that ¢(t) is such that

(i) v{6)=0 for 0<r=<e where >0,
and

(ii)

then

v(r)

— 0
l—u(t)ﬁo as t|0,

n-! i {Pr(S,>0)—Pr(S, <0)}
k=1

tends to a limit as n— oo if and only if

2 f’ 1-—5 _ v(t)

T isaE ¢ &

tends to a limit as s11, and the two are equal. (It is not obvious that there exists
any characteristic function which satisfies (i} and (ii). We postpone discussion of
this point until after the proof of the lemma.)

v()
)

t
Proof of Lemma 3. Since hrn f —()- dt always exists, (i) implies that—>e L, (0, ¢).

Thus Lemma 2 is in force, and we need only show that
2 F 1—s \dt
lim— | Im {——0©—— ) —
slf‘fnoj m(l—sd)(t)) ”
9*
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exists if and only if

limif (1—53) ‘ v(1)

st wy (1—su(®)* t dt

exists, and the two are equal. Note that
1 so(t)
Im =
I—s¢@t) (1—su@)+s*v*@)’
v(t)

PEO= SUb T

and define

Assume that X, etc. are non-degenerate, so that there exists £>0 such that
u(t)%1 for O<t<e Since u(f) is continuous, 1—u(t) is bounded away from 0
for 0<& <t<¢ (by a suitable choice of ¢ we may assume the same value of ¢

throughout). Thus Im is bounded above for O0<¢ <t<e¢ and 0<s=1,

1
and therefore 1=s¢()

2 f 1—5 dt
;"‘Im(l——s—d)(l,‘j)T_)o as STI,
2 F (1-v) .v(t)
?} (1—su@)? ¢

&

and

dt—0 as sTl.

Thus it follows that

& - - 1- dt
fm | Im (iL)dt 1im§1m( i )

st1g 1—s()) ¢ stig 1—so()) ¢
. C (-9 (t)
— 2 (1-y) () , = -5 v®)
lslrnlloj (1—su()® Tt dt_lﬁﬁ’g (1—su@)y ¢ dt.

In other words these limits have values that are independent of ¢ so long as
g is sufficiently small.
Now, for 0<t<e¢and 0<s<1, we have

s(1—s)v(t) < s(1—s)v(t)
(1—su@®)*+s>* ()~ (1—su(@®)*’

and
s(1—s)v() <(1+p2(s))s(1—s) v(t)
(1—su(®)* =~ (1—su(@®)*+s*v*(@)
Hence
— 2 1—s dt — 2 % 1-—s3 v(t)
lﬂr’?Fglm(1—s¢(t)>7§3??§(1—su(z))2' it
and
— 2% (1-9) v(t) sowi 2 ¢ 1—s dt
im sy s (8))1s‘§??§lm(1—s¢(t))?
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From (i) p(e)| 0 as ¢)0, and therefore since the values of these limits are in-
dependent of ¢, it follows that

lim —- jIm( !

-5 )ﬂ — 2 (1—s) ()
sTL T 1—-5¢(t)

‘ =s17rr11?(§(1—su(t))2 f
and similarly

2 1—s dt_. 25 (1—s) ﬂ
i‘{’i‘nilm(l ))“h ;Of(l——su(t))z ;4

so that the lemma is established.

Let L(x) be a bounded non-negative function defined for positive x, which
is slowly varying at infinity, and such that L(x)/x is non-increasing and
¢ L(x)

]

®L e
set K(x)= | uu) du, then K(x) is slowly varying at infinity and

x

dx<+o0. One could, for instance, take L(x)=min(x, (log, x)~?). If we
x

1158 -0 as x-—+o00.
For if we put
K(x) 1 2L °°L(xt) dt

B0 Ll w e T
then it follows by Fatou’s Lemma that

K(x) _ ¢ L(xz) dt wdt*
L ToE !: L ¢ ¢

To show that K(x) is slowly varying, choose any positive A which is less than 1,
and note that

K().x) 1_(1{(& x)—K(x)\ L(x)
K(x) L(x) ) K(x)

K(ix)—
x) —0 as x — oo the result will follow if we can show that ——(M
K(x) )

remains bounded as x—oo. This is easily demonstrated using that fact that
L(x)/x is non-increasing, for

K(dx)—K(x) 1 ji‘ L(u)
L(X) B L(X) Ax u

1 LiAx) * ~— L@x) (1-1
=L ix 'Aid”_ L(x) ( ) )

Since

du

and the latter is bounded because X —1 as x— 0. The case of A>1 is treated
in a like manner. (x)
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L(x)

Let us assume that L({x) contains a suitable scaling factor so that j =1

X) to be the probability density functlon of the set of

Then we may consider

random variables X, etc. (in this case, of course, X, etc. will be positive). In this case

d)(t):?eitx._.@__.dx’
0

u(t):}ocosxt- L) dx, and v(t):}osinxt. L)(Cx) <dx.
0 0

The conditions of Theorem 2 of Pitman’s paper [7] are satisfied and therefore
1

1—u(t)~K (T) as t | 0. We shall show later that v(t)~% L(1/t) as t}0. Thus (i)

and (ii) of lemma 3 are satisfied and so, because X, etc. are positive, it follows that

25 (1-s) o)
?g(l—su(t))z' .

If X, X%, ... etc. is a sequence of independent, identically distributed random

t—»1 as sTl.

. - . . L
variables with a probability density function equal to u ix) for x>0, and
L(~- . .
(1—p) ( xx) for x<0, where p is a constant satisfying 2 <u <1, then u*(f) and

v*(t), the real and imaginary parts of the characteristic function of X§ etc. satisfy
u*(t)=u(t) and v*({)=Q2u—1) v(t). Hence

~s)  v(®)
su(t)) t

f —s)  v*()
o (1 —su*(t)) t

2 dt=Q2u—1 if dt—2u—1 as stl.
v T o

Now u*(t) and v* (t) also satisfy (i) and (ii), and so applying Lemma 3, we have

that .
n=' Y {Pr(S§>0)—Pr(S§ <0)}-2u—1 as n—+oo0,
k=1

where S} denotes the kth partial sum of the sequence X¥, X%, ... etc. Using
Theorem 1(d) of Rosén [8] it follows easily that the condition is satisfied with
y=1-—pu. Since the distribution of X} etc. has a slowly varying tail it cannot
belong to the domain of attraction of a stable law.

is non-increasing

L
It remains to show that v(t)~—L(1/t) as t 0. Since )
we have that

a0 L (2n+1)njt L
sintx- () -dx< | sintx- &) dx,
0 0
and
w0 L 2nxft . L
fsintx- () dxz | smtx-~(—x)dx,
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where n is any positive integer. Hence
v(t) - @ntDT sinu  L(u/t) y
Li/np= u L(1/1) ’

() 2m sinu L(u/t)
Ly = = “Lin

and

Now by Lemma 2 of Pitman [7], we have that for ¢ positive and ¢ sufficiently
small, there exist a positive constant C such that

(u/t) 1
L) <Cu~ when u=<e,
and
L
(1/t) <Cu*> when u>e.
s u L(u/t)

Thus, for ¢ sufficiently small, is bounded by a function which is

L(ift)
integrable over any finite interval, and consequently

—— o(t) _ @b giny

Iim < -du,
o L(1/1) — of u

and

lim v(r) j." sin u
ivo L(1/1) 2
Since n is arbitrary it follows that

v(t) _)}" sin u
L/ o

as t | 0. This concludes the proof of Theorem 1.

du=m/2

Theorem 1. There exist sequences of independent, identically distributed random
variables which satisfy the condition with y=+%, and which do not belong to the
domain of attraction of a stable law.

We now state the other main result of this paper.

+ oo
Theorem 2. Suppose that X, etc. are such that | e~ " Pr(X,edx)< +oo for
all real y satisfying 05 n<mn,, where 1, is a positive constant (possibly + co0). Then
if the condition is satisfied with y=+% it follows that X, etc. belong to the domain of
attraction of a (completely asymmetric, of exponent 1/y) stable law.
+ o0
Notice that the condition [ e " Pr(X;edx)<+o for #>0 is equivalent

to requiring that the left hand tail of the distribution of X, etc. is exponentially
small. This theorem is clearly a generalization of Theorem 2 of [2].
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+00
Since ¢(t)= | €"*Pr(X,edx), the condition of Theorem 2 implies that ¢ (¢)

is analytic for ¢ satisfying 0<Imt<pn,, and is bounded and continuous for
0=Imt=#,, where #, is any positive real number satisfying 7, <#,. We shall
henceforth regard ¢ as a complex variable.

Lemma 4. There exist £>0 and 3>0 such that for all s satisfying 1 -5 <s<1,
the equation 1 —s@(t)=0 has at most a single, simple root in the closed half-disc
determined by |t|<¢ and Im t 2 0.

Proof of Lemma 4. We make use of notation and results established in Feller
Vol. II Chapters XII and XVIII [3]. Let N=min{n|S,<0} be the epoch of first
entry into (— oo, 0], and let Sy be the place of first entry. We put H,(I)=Pr {N =n;
Syel} where I is any interval contained in (—o0,0], and H,(I)=0 when I is
contained in (0, + o0). We also define

G,()=Pr{S,>0,....S,_,>0; S,el}

when I is contained in (0, + ), and G,(I)=0 when I is contained in (— o0, 0].
For convienience put F(I)=Pr(X €l) for any interval I.

By Eq. (1.5a) of Chapter X VIII
H,, ()= G,(dy)FI—-y).
0

Hence if 0<#1 <#,, then for every positive ¢

0

© 0
Je " H, . (dx)= [ G,(dy)- [e ™ F(dx—y)

—c —c

0 -y 0 (1]
=[e ™G, dy): | e™FAw< e "G, (dy)- | e ™F(du).
4] —y—c 0 —©
0
Therefore, by the Monotone Convergence Theorem, | e™"*H,,(dx) exists for

0<y<n,, and -
0 @ 0

{ e H,, ,(dx)< [ e G,(dy)- | e "™ F(du).
4]

—w -0

The duality lemma of Chapter XII, Section 2 shows that G,(I) can be inter-
preted as the probability that the nth ascending ladder point belongs to the inter-

val I, and consequently G(I)= Y, G,(I) is a renewal measure. Hence

n=0

i j:oe_” G,(dy)= Fe”"y G(dy)< +

n=00

for every #>0. Thus it follows that, for 0<#n <n,, the sum

M8

o]
| e7"H,(dx)

n=1

[l

is finite.
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If we put w 0
= Y5 | e H,(dx),
np=1 —o©

and

p(s, t)=

n

IIMg

nj"ezth dx)
0

then it follows that x(s,t) is analytic for —oo<Imit<y, when 0=<s=<1, and
y(s, 1) is analytic for Im ¢ >0 when 0<s< 1. Further, if Imt <#, <5, and 0<s<1,
then the series defining y (s, £) is dominated term-wise by the convergent series

0 0

Y | e m¥H,(dx),

n=1 —o

and therefore y (s, t) tends uniformly to y(1,¢) as s11 for Imt<y,.
The equation 1 — (1, t) has a root at t=0. Since

0

x(1, 0)=i§ { xH,(dx)#0

n=1 -

this root is simple. Because y (1, ¢) is analytic in the neighbourhood of t =0, we can
find &> 0 such that the equation 1 —y(1, t}=0 has no root but t=0 which satisfies
lt|<e.
Let m:Iilnf [1—x(1, 1)}, so that m>0. By choosing s sufficiently close to 1 we
tl=¢

can ensure that |x(s, t)—x(1, t)] <+m for |t|=e. Applying Rouche’s Theorem we
find that 1 —y(s, ) and 1 —y(1, £) have the same number of zeros within the circle
|t|=¢. Hence for s sufficiently close to 1, the equation 1—y(s,t)=0 has exactly
one simple root within the circle |t]=e.

By Chapter XVIII, Eq. (1.9)

(501 —sd @)} =1—x(s, 1)

for real t, and 0<s<1. Now x (s, 2), y(s, t) and ¢(z) are all defined for 0<Im r <#,,
and therefore the above equation holds throughout this strip. It follows that the
equation 1—s¢@{f)=0 has at most a single, simple root satisfying |¢t|<e and
Im t =0, when s is sufficiently close to 1. Thus the lemma is proved.

Proof of Theorem2. We put X;=X;+X;, where X;"=max{0, X;} and

X; =min {0, X;}. Then

IE(Xj+)=jEOxF(dx)§+oo, and IE(X[)= joxF(dx)>—oo.

If we set
Sy=Y X and S;=Y X,
=1
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+

then S,=S;

in probablllty, { ) in probability, as n— co.

S,
Now if IE(X[ )= + o0 then ~n——+ + oo in probability, and hence Pr(S,<0)-0,
contrary to y>0. Hence IE(X{") < + o0, and so IE(X,) is finite. If IE(X;)=0 then

S,
T—>IE(X1) in probability, and therefore Pr(S,<0)-0 or 1, contrary to 0<y<1.

Thus IE(X;)=0, and so —%40 as ¢t} 0. This implies that —(—)eLl(O ¢), and so

Lemma 2 holds.
By Theorem 1(d) of Rosén [8], Pr(S,=0)—0 as n— o, and therefore
n~'Y {Pr(S,>0)—Pr(S,<0)}>1-2y

k=1
as n— 0. Applying Lemma 2
1—s dt
1 I —=1-2y.
slfnllnoj m(l—sd)(t)) t ’

It is easily seen that the equation 1—s¢(t)=0 has a root on the positive
imaginary axis. Indeed, if we put

Fm=gln= | e F(dx),

then f(0)=1, and f(n)— +o0 as ntn,. Therefore f(y(s))=1/s>1 for some
7(s)>0. Now f'(0)=IE(X,)=0 and since

Sro= | x* e F@x)>0,

— 0

the graph of f(n) is concave. It follows that #(s) |0 as s1 1. By Lemma 4 therefore
1—-s¢(t)=0 has a single simple root satisfying |t|<e¢ and Imt=0, when s is
sufficiently close to 1.

Thus, for s sufficiently close to 1, the function (1 —s¢(r))~" is analytic in the
interior of the closed half-disc |t| e, Im t 20, except for a simple pole at t=ix(s).
This function is also continuous and bounded on the boundary of this half-disc.
Take I' to be the composite contour I; + I, + I3 + I, where

={t|treal, —eZt< —¢'},
L={t|{t|=¢, Im 20},

={t|t real, &' <t s},
L={t]|t|=¢ Im20}.

Then, using the Residue Theorem, we obtain

1—s dt . 1-s
rf(l—scp(t)) o = (—s¢'(in(s)in(s)
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. 1 1—s \. )
Since — Im (-———) is an even function of ¢ for real ¢
t 1—5¢(1)
1-s dt 4 1-s dt
L U TN S
H£T3(1~S¢(t)> t gj l—sop)/ ¢

and the latter tends to

F 1—s dt ,
21§ Im (m)—t as 0.

From the fact that ¢(t)—1 as t—0, it follows that
1—s dt
——— | ——>—mi as ¢&|0.
ii=eem) ¢
Hence letting &' | 0, we obtain

. 1—s dt l—s \dr 2ri(l—s)
2 fim (=) it ] (1—s¢>(r))7“ O (=sF o)

Letting 571 we find that
1—5 dt
_—  ———> 0’
,{ (l—sd)(t)) t
and consequently

2ni(l—ys)
in(s)(—s¢'(ins))

->ni(l-2y)—ni+0=—-2miy

as sT1. This is the same as lim =v. Since #(s}|0 as sT1, this can

1—s
be re-expressed as st sn(s).f"(n(s))
. nf'l ) 1
lim =—< -+
nio fim)—1 v
It follows that f(#)—1=A(1/7)n""?, where A is a function which is slowly

varying at infinity. For, given any ¢>0, we can find 6(g)>0 such that, for every
x satisfying 0 <x <4, it is the case that

P R R P by

Now let k be any constant greater than 1. We choose # so that kn<J, and
integrate from # to k#. Thus

(%-s) log, k<log, (ff(’(”;)_ 11>§( . +a) log, k

for n < /k, and therefore
flem—1
fm—1

- k7 as n5l0.
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If we now put A(n)=#"""(f(n)—1), then lll(k )
is proved, with A (1/7)=1(;). )
Using the fact that IE(X,)=0, we can re-state this result in the form

—1 as 70, and so the assertion

+j°°(e‘""+i1 x~—1)F(dx)=A (%) n.

By the Dominated Convergence Theorem
1 0 0
;’7 j (e=™+nx—1)F(dx)—> 5 1x?F(dx)
as 1} 0. Since (¢7"*+#n x—1)=0 for x=0, Fatou’s Lemuma gives
1 o ac
lim 5 {71 x— ) @92 [$* Fd)
0 0

0
If 1/y>2 then

— 0 nl0

+ 0 1
[ 1x? F(dx)<lim A (ﬂ pi=2 =0,

and it would follow that F(x) is degenerate. Hence 1/y<2, and since by assump-
tion y %3, we deduce that 1/y <2. So now we have that

o 1
fle™+nx—1)F(dx)~A (—n—) 7" as 0.
0
If we put M{x)= { {1~ F(u)} du then, integrating by parts twice, we have

fle™™+nx—1)F(dx)=n*{e™"" M(x)dx.
o o

Hence
@ 1
fe ™ M(x)dx~A (_n_)n—(z—w) as 70.
0

Since M (x) is non-increasing, it follows from Feller XII1.5, p. 421, Theorem 2 [3],

that AG) e
X)-x

M(x)~—+——-— as x>+,
O~ Ta=im)

Finally, because 1— F(x) is also non-increasing, we deduce that

A(X)(l/v—l) ~1fy
r@e-1fyy)

The result now follows from a classical limit theorem (see [4]).

1—F(x)~ as x— +o0.
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