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Large Deviation Probabilities 
in the Strong Law of Large Numbers * 

D. Siegmund 

1. Introduction 

Let xl, x2, ... be independent random variables having a common distribution 
function F with mean O. Let s, = ~ '  x k. The weak and strong laws of large numbers 
say respectively that for any e > 0 the sequence of real numbers 

P~=P{m -1 sin>e} (1) 
and 

P,~* = P {sup n-1 s, > e} (2) 
/l>~m 

converge to 0 as m--+ c~. Under conditions on the moment generating function 
y ~  exp(0x)F(dx) Blackwell and Hodges (1959) in the case of lattice variables x k 
and Bahadur and Ranga Rao (1960) in the general case have found an asymptotic 
approximation for P~ (and under further assumptions a complete asymptotic 
expansion). The principal result of this note gives under certain conditions the 
dominant term of such an asymptotic expansion for P,*. A precise statement 
appears in Section 2 and the proof in Section 3. The relation of this result to 
those of Strassen (1965), Mfiller (1968), and Robbins, Siegmund, and Wendel (1968) 
is discussed in Section 4. 

2. Embedding F and Statement of Principal Theorem 

Assume that g (4) = log ~ o~ exp (4 Y) F(e + dy) is finite for 4 in some open interval I 
containing 0, where e is the arbitrary (but fixed) positive number appearing in (2). 
From the well-known properties of the cumulant generating function g it follows 
that g(0)=0, g ' ( 0 ) = - e  and g is strictly convex (unless F is degenerate at 0). 
Hence there exists at most one value 41, necessarily positive, for which g(~l)=0. 
Assume that such a value ~1 exists and let 4o denote the point in (0, 41) at which g' 
vanishes. Let 

and 

Then 

0 (0) = g (40 + 0 ) -  g (40) 

00=  --CO, 01=41--40"  

00<0•01 ,  

4' (0) = 4'' (0) = 0,  

(3) 

(4) 

(5) 

(6) 
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and ~9(0o)=0(01) ' (7) 

Now for each real 0 for which ~, (0)< oe let P0 be the probability on the space of 
infinite sequences (xl, x2, ...) under which the x's are independent with the common 
distribution function 

P0 {xk < x} = i exp [0 y - ~ (0)] exp [~o 3' - g (30)] F(e + dy). (8) 
-oo 

Then P0o {xk < x} = F(x + e) and hence by (2) 

P*=Poo{S,>0 for some n>m}. (9) 

Theorem 1. In addition to the preceding assumptions, if either 

F is non-lattice (10) 
or 

F(e + ") is a lattice distribution supported by (11) 
{0, ++_h, +_2h .... }for some h > 0  

then as m ~ oo 
Pm* ~" POo {Sm2>O} q-e Po1{Sm~O}, (12)  

where if (10) holds 

c=Oo lO Iexp{   l I 
and if (11) holds 

c = (exp (I 0o1 h ) -  1)-l(exp (01 h ) -  1) 

.[exp{~n_l[e_,q,,Oo) po (s, > 0 )_  P0o (s, > 0 ) ]}_  1]. (14) 

Asymptotic expressions for the probabilities appearing on the right hand side 
of (12) are given by Bahadur and Ranga Rao (1960). They will be reproduced 
(cf. Lemma 1) as part of the calculations which give the value of c. In the case 
that F =  (b, the standard normal distribution function, - 0 o = 0 1  =e  and 

P'* ~cb(-eml/Z)exp ( - ~  n-l (15) 

If w (t) denotes a standard Brownian motion process, then for all m > 0 (cf. Robbins, 
Siegmund, and Wendel (1968)) 

P{w(t)>et for some t>m} = 2  ~( -eml /a ) .  (16) 

For e =0.5, 0.3, 0.1, or 0.04 the ratio of constants on the right hand side of (15) 
is respectively 1.54, 1.70, 1.89, or 1.96, and as e + 0  it converges to 2. Further 
remarks on the relation between (12) as e - ,  0 and (16) are contained in Section 4. 

Embedding F in a family of measures for studying first passage and large 
deviation probabilities is a common technique which has been given thorough 
exposition by Feller (1966). The details of my presentation, which are slightly 
different than the usual ones, are particularly well adapted to proving (12), and I 
find that they make the analysis of (1) more comprehensible also. 
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3. Proof of Theorem 1 

Let P0 (') denote the restriction of P~ to the a-algebra of x!, x2, ..., x, (n = 1, 2, ...). 
Then for any 0 and 0', P0 (') and P0~, ") are mutually absolutely continuous, and by (8) 

dPo!")/dPo (") = exp ((0' - 0) s, - n [~ (0') - 0 (0)]). (17) 

In particular, by (7) and (17) 

dPo(o")/dPo(')=exp [--(01 --O0)Sn] (F/= 1, 2 . . . .  ). (18) 

Also it follows easily from (8) that 0' (0)= E o xz and hence by (6) and the strict 
convexity of 

Eox 1<, =,  or > 0  according as 0< ,  = ,  or >0 .  (19) 

Let T,,=inf{n: n>m, s,>0}.  (The inf of the empty set is + oo.) Then by (9) 

and by (18) 

P2=Poo {sm>O} + Poo {m< T,. < oo}. 

P0o{m<Tm<~ = ~ S exp[-(O,-Oo)s,]dPo, 
n=m+l  {Tin=n} 

= I exp [-- (02 - 0o) Srm] dPo,. 
{m< Tin< oo} 

(20) 

(21) 

By (5) and (t9) Eolxl>O; hence {m<T~<oo}={Tm>m}={sm<O} a.s. P<, and 
the final integral in (21) equals 

S exp [ -  (01 -- 00) STm ] dPot = Po, {sin ~ O} Eo, (exp [--  (02 -- 00) ST J Is m <--_ 0), 
{sin<O} 

so that by (20) and (21) 

p~*=Poo{S,~>O}+P<{sm<O} j" Eo~(exp[-(O~-Oo) s.rJlsm=y)Po~{sm~dy[sm<__O}. 
(- ~o,ol (22) 

A comparison of (22) and (12) shows that the proof will be completed by showing 
that the integral appearing in (22) converges to a constant c and evaluating that 
constant. 

The conditional expectation in the integrand in (22) is actually independent 
of m and equals 

Eo, (exp [ - ( 0 ,  - Oo)(S~(bq)-]Yl)]), (23) 

where z (x) = inf { n: s, > x}. Moreover, by Lemma 2 below, under P0~ the conditional 
distribution of s,, given that sm < 0 converges in the non-lattice case to a negative 
exponential distribution with probability density function O1 e ~ (y<O) and in 
the lattice case to a geometric distribution with probability mass function 

(1 - e x p ( -  0~ h)) exp(0~ h k) (k=0, - 1, - 2 ,  ...). 

Considered as a function of x > 0, except at values c belonging to the denumerable 
set A={c ' :  ~ o  Po, {sk=c'}>0}, s,(~)-x is continuous with probability one and 
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hence by dominated convergence, so is (23). (Obviously r ( ') is non-decreasing and 
right continuous; and if x r A but for some k lira z (x') = k < z (x) then for all x' < x 
X ' < S k ~ _ ~ X  , SO S k = X  and hence ~'~x 

�9 , < Po ,fhm v(x ) < z(x)'~ - k  P01 {S,/f = X} =Oo) 
l t x ' ~ x  ) - -  1 

It follows in the non-lattice case that 

lira j Eo,(exp[-(Oa-Oo)(S~(iyl)-IYi)])P< {s,,edyism<=O} 
m~oo ( - 0 % 0 ]  

=01 ~ E0~(exp [-(01-0o)(S~(x)-x)]) exp(-01 x) dx, 
(0, co) 

(24) 

and in the lattice case, since every function is continuous in the discrete topology, 
the limit on the left hand side of (24) exists and equals 

( 1 - e x p ( - 0  i h)) L Eol(exp[-(Oi-Oo)(s~(hk)-hk)])exp(-Oi hk). (25) 
k=O 

It remains to show that the right hand side of (24) and (25) equal respectively the 
values given in (13) and (14). This is accomplished by standard renewal theoretic 
arguments in conjunction with well-known results of Spitzer. Details are given 
only for the non-lattice case. Let G 0 ~) = P01 {st(0) < y} (y > 0) and 

Z (x) = Eol (exp [ - (0, - 00)(st(x) - x)]). 

The standard renewal argument shows that Z satisfies the renewal equation 

Z(x)=  ~ exp(-(Ol-Oo)(y-x)]G(dy)+ ~ Z(x-y)G(dy). (26) 
(x, co} (O,x] 

The right hand side of (24) is 01 times 

Z*(01)= ~ exp(-Olx)Z(x)dx, 
(0, oo) 

which by (26) equals 

e x p ( - 0 i x  ) ~ exp[-(Ol-Oo)(y-x)]G(dy)dx+Z*(O1)G*(01) , (27) 
(0, m) (x, ~o) 

where 
G*(2)= j exp(-Zx)G(dx) (2>0). 

(0, co) 

Now Fubini's theorem applied to the iterated integral in (27) together with 
elementary computations yields 

Z* (011 = [(1 - G* (01 - 0o))/(1 - G* (0i)) - 1]/I 0o I- (28) 

According to a result of Spitzer (cf. Chung, 1968, p. 262) 

1-G*(2)=l-Eolexp(-2S~(o))=exp(-~n-1 ~ exp(-2s,)dPo,). (29) 
1 (s. > 0) 
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From (17) and (18) it follows that 

exp [(0 o - 01) s,] dP< = P0o (s, > 0) 
(s,, > O) 

and 

(30) 

S exp( - 01 s,) dPol = exp( - n 0 (0o)) Po (s, > 0). (31) 
(s. > 0) 

Combining (28)-(31) shows that the right hand side of (24) equals 

}l 01Z*(O0=[Oo1-1 01 exp n-~ [e-,O(0ol Po(s,>0)-P0o(S,>0)]  - 1 , 

which completes the proof. 
Lemma 2 below justifies the earlier assertion concerning the limiting behavior 

under P01 of the conditional distribution of sm given that sm =< 0. Lemma 1 gives a 
slight generalization of the dominant term of the Bahadur-Range Rao results by 
essentially their method. 

Let o .2 = Eo x 2 �9 

Lemma 1. (a) Under the assumption (10)for each x< O, as m ~ co 

Pol {sin<x} ~(2~ a 2 02 m) -1/2 exp(-mO(O,)+01 x). (32) 

(b) Under the assumption (11),)or each k=0,  - 1 ,  - 2  . . . . .  as m--+ co 

Po~ {s,,<hk}'~( 2zca2 m) -1/2 h(1 - e x p ( - 0 1  h)) -1 exp(-m~9(O0+01 hk). (33) 

Proof (b) Assume that (11) is satisfied. Putting 0'=01 and 0 = 0  in (17) and 
recalling (6) yields 

Po~{sm<hk}=exp(-m$(O0) ~ exp(01 sm)dPo. (34) 
(sm <~hk) 

Under (11) the integral appearing in (34) is actually 2j~k exp(0x h j)Po {s,.=hj} 
which can be split into ~ j t - A , .  and ~-A,.<jZk, where 

m-1/4 Am ~oo,  m-1/2 Am--+O. (35) 

Then (19) and the local limit theorem for lattice distributions (cf. Feller, 1966, 
p. 490) yield for every 6 > 0  and m sufficiently large the following double inequality: 

(2z~ 0 -2 m) -1/2 h(1 - ~ )  ~ exp(01 h k)< ~ exp(01 s,,) dPo 
--Am<j<k (sm <-hk) (36) 

<exp(-OlhA,,)+(2~a2m)-l/2h(l+(5) ~ exp(Oahk). 
-Am<j<=k 

By (35) the term exp( -01  h Am) in (36) is o(m -1/2) while the two series are asymp- 
totically ~j__<k exp(01 h k ) = ( 1 - e x p ( - 0 1  h)) -~ exp(01 h k). Hence (36) together 
with (34) completes the proof, since 6 > 0 is arbitrary. 

(a) Eq. (32) may be obtained formally from (33) by letting h ~ 0  or equiv- 
alently by replacing h �9 counting measure by Lebesgue measure in the preceding 
proof. However, the usual local limit theorems for non-lattice distributions are 
not given in a form which makes this argument precise and hence it is easier to 
8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31 
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integrate (34) (with h k replaced by x) by parts and use F.sseen's theorem (cf. 
Feller, 1966, p. 512) to prove (32). 

Lemma 2. Under (10) or (11) respectively 

o r  

2imPol {sm~XlSm~O } = exp(01 x) (x_<0) (37) 

limPo,(S,,<hklsm<O}=exp(01 hk) (k=0,  - 1 ,  - 2  ..... ). (38) 

Proof. Since PoI{S,,<X[S,,<O}=PoI{Sm<x}/PoI{Sm<O} for all x < 0 ,  the stated 
results follow at once from Lemma 1. 

4. Remarks 
(a) Let Xl, x2 . . . .  be independent random variables having a common dis- 

tribution with mean 0, variance 1, and finite moment generating function in some 
neighborhood of 0. Strassen (1965) obtained an asymptotic expression for 
P{s,>=b(n) for some n>=m} as m ~  ~ for a class of curves b which among other 
conditions do not increase faster than n 3/5. One interesting feature of Strassen's 
result is that asymptotically this probability does not depend on the underlying 
distribution of the x's and is the same as that for standard Brownian motion. 
In contrast the asymptotic value given by Theorem 1 for P* is highly distribution 
dependent, and as (15) and (16) show even for normally distributed x's the result 
is not the same as for Brownian motion. 

(b) Let x l, x 2 . . . .  be i.i.d, with mean 0 and variance 1. Independently MiJller 
(1968) and Robbins, Siegmund, and Wendell (1968) showed that if e=e(m)--,O 
in such a way that em 1/2 ~a>=O as r n ~  ~ ,  then 

lim P{sup n -1 s,>e} =P{w(t)>a t for some t >  1} =2  q ) ( -  a). (39) 
m~ot) n~tt l  

This leads one to conjecture that the convergence indicated by (12) holds uniformly 
in e for e near 0 and that e considered as a function of e converge to one as 
e ~ 0. This conjecture is correct, but my proof is rather tedious and has been 
omitted. It utilizes Lorden's (1970) bound on sup Eo,(S~(~)-x) and estimates 
of the error in the central limit theorem. 0 =:_x < ~o 

References 
1. Bahadur, R. R,, Rao, R. Ranga: On deviations of the sample mean. Ann. Math. Statist. 31, 1015-1027 

(1960) 
2. Blackwell, D., Hodges, J. L., Jr.: The probability in the extreme tail of a convolution. Ann. Math. 

Statist. 30, 1113-1120 (1959) 
3. Chung, K.L.: A course in Probability Theory. New York: Harcourt. Brace, and World 1968 
4. Feller, W.: In Introduction to Probability Theory and Its Applications. Vol. II. New York: Wiley 

1966 
5. Lorden, G.: On excess over the boundary. Annals Math. Statist. 41, 520-527 (1970) 
6. Mtiller, D.W.: Verteilungs-Invarianzprinzipien fiir das Gesetz der groBen Zahlen. Z. Wahrscheinlich- 

keitstheorie verw. Gebiete 10, 173-192 (1968) 



Large Deviation Probabilities in the Strong Law of Large Numbers 113 

7. Robbins, H., Siegmund, D., Wendel, J.: The limiting distribution of the last time s,>ne. Proc. 
Nat. Acad. Sci. USA 61, 1228-1230 (1968) 

8. Stragen, V.: Almost sure behavior of sums of independent random variables and martingales, 
Proc. 5 th Berkeley Sympos. Math. Statist. Probab., Vol. II, 315-345. Univ. Calif. Press 1965 

D. Siegmund 
Dept. of Mathematical Statistics 
Columbia University 
New York, N.Y. 10027 
USA 

(Received January 16, 1974) 

8* 


