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Almost Everywhere Convergence 
of a Class of Integrable Functions 

Richard Duncan * 

Let (f2, sg,/~) be a finite measure space and let {s be a sequence of integrable 
functions on ~. In Loave [4, p. 406] a necessary and sufficient condition is given 
for the a.e. convergence of {fk} provided that Ifk[ <g  for all k where g is integrable. 
In practice this last condition is sometimes difficult to verify and therefore it is 
important to find other conditions for a.e. convergence which may depend on the 
sequences being studied. In this paper we consider sequences of integrable func- 
tions satisfying conditions on successive terms in the sequence and prove a 
necessary and sufficient condition for a.e. convergence. The condition is then 
applied to prove martingale type theorems for these sequences and to give a 
necessary and sufficient condition for the LV(p) ergodic theorem (1 < p <  oe) on a 
finite measure space. 

If {fk}k_>O is a sequence of integrable functions on ~2 and c~ is a real number, 
define B , , ,={ f~>~}  and B,,&)={L__<~,L+~__<~, ...,L>~} for k>n>O. Note 
that for n fixed the sets {B,,k}k=> . are disjoint and 

B.=-B,(cO=- Z B..k={sups 
k > n  k > n  

Moreover, B.(e) $ B(e) as n-~ oe where B(e) satisfies {lim fk > ~} ----- B(~)_c {lim fk > ~}. 
With these definitions we have 

Lemma. Let {s be a sequence of integrable functions such that [fk -- fk- l  l < g 
for all k >-_ 1 where g is integrable, and sup ~ Is d~ = M < oo. Then for each real 

k 

and A 6 d ,  ~k>=n SAB.,~ s converges absolutely and is uniformly bounded in n. 

Proof Consider first the case where e>0 .  Since f k > e  on B.,k(e ) the terms in 
the sum are positive. Now if k > n + 1 then fk _ 1 --< e on B., k(~) and therefore for all 
integers N > n 

N N N 

k = n  ABn,  e k = n  A B n , k  k = n  ABn, X 

N N 

<X i IL-L_I[+ f If._~l+ Y~ ~p(AB.,k) 
k = n  A B n , k  ABn,  n k = n + l  

< Y, I g + M + ~ ,  AB,,~ __<j'gd~+M+~,(e)<oo. 
k = n  ABn,  k k= 1 
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Hence Zk>=.~aB..~fkdp<~g+M+~#(Q) uniformly in n and the assertion is 
proved for ~ > 0. The case where c~ < 0 is handled easily by writing 

AB.,k=AB.,k{fk> 0} +AB.,k{e< fk<0} 

and using the above argument along with the fact that IAI---- ~ on AB., k{e < fk < 0}. 
We now prove (cf. E4, p. 492]). 

Theorem. Let ~ fk}k>O be a sequence of integrable functions satisfying 
1) I s  for all k >= 1 where g is integrable, 
2) fk-- fk_l--+ 0 a.e. as k ~oe,  and 
3) fk--~ 0 in 12(#) as k--*oe. 
Then for all c~>0, A e ~ ,  and integers m> 1 

lira 2 I fkd# =lim ~ I fk+,.d#=~#(AB(~)) . 
n~oo k >=n ABn, k n~oo k >=n ABn,  k 

Hence # {lira fk > 0} = 0 if and only if the above limit is zero for all ~ > 0 and A--(2. 

Proof Note first that the sequence {~k>. ~AB. ~fk}.>0 is uniformly bounded 
in n for each ~ > 0  and A ~ r  from the Lemma_ Let//'be a limit point of this sequence 
so there is a subsequence {n'} such that f l=lim~k>=, ~AB.,~fR" Since fk>~ on 

B.,,k=B.,,k(C 0 we have fi>=lim Ek__>.' a#(AB.',k)=C~ lira #(AB.,(oO)=a#(AB(e)). 
On the other hand, 

I E S E Y LI---- E S IL_l-Ll o 
k>-n ' A B n ' , k  k>n" A B n ' , k  k>n" A B n ' , k  

from conditions 1) and 2) and [4, p. 406]. Hence f l=l im Eken" iB.,kfk-l '  and 

using the fact that fk- 1 < ~ on B., k for k > n' + 1 we obtain (since ~ IL,I--+ 0) 

fi=<lim I If. ,_xl+~ E #(AB.,,,) 
Bn' ,n '  k >=n' + l 

= ~ lira #(A(B.,(a)\ B., .,(c0)) 

= ct#(AB(~))- c~ li,m #(AB., .,). 

If a=O, fi<O, hence fi=O. If ~>0,  then li,m#(ABn,,.,(cO)=O as 

#(B., .,(~))= #({ f., > ~})---, 0 

as n'-~oe. Hence fl<c~#(AB(~z)) and therefore fl=~#(AB(a))is the unique limit 
point of the sequence {Zk_>. ~A.., k fk d#}. > o so that !ira •k >=. ~AB.,k L = a #(AB(a)). 

If m> 1 is an integer then I f k + , . - f k l = l ( L + m - L + ~ _ , ) + " "  +(L+,-L)I <rag 
and f,+,. --fk---" 0 a.e. It follows as above that 

[Z  ~ f k + , . - - 2  I fd-------E I IL+~--LI- - 'O as n - ~ m  
k = n  ABn,  k k >n ABn,  k k >n ABn, k 

so that ]irn ~k>=. IAB.,~fk+,.=c~#(AB(a)) and the first assertion in the theorem is 

proved. The second assertion follows from the fact that #{limfk>O}=O iff for 
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all e>0 ,  # { l i m L > e } = # { l i m f k > c ~ } = 0  iff e#(B(e))=0 for all ~>0.  The proof 
of the theorem is complete. 

Remark 1. The sequence {--fk} satisfies the same hypotheses of the theorem 
and therefore the theorem holds with {fk} replaced by {--fk}" If the associated 
limits are also zero for all e > 0, then 

# {lira - s  > 0} = # {lira fk < 0} = 0 and hence fk--~ 0 a.e. 

Remark 2. Suppose {gk}k>=O is another sequence of integrable functions satis- 
fying [fk- gkl < h for all k >0  where h is integrable, and f k -  gk ~ 0  a.e. Then the 
above proof shows that 

lim ~ f gk=~ for all ~ > 0  and A e d .  
n~ao k>=n ABn, k 

To give an example of the type of result one can prove using the theorem, we 
consider a sequence {s of integrable functions on s~ satisfying the hypotheses 
of the theorem, If k > 0  let s~ck=o-(fi: i<k )  be the a-algebra generated by the 
fl, i < k. If h is an integrable function we denote by E ~ ( h )  the conditional expecta- 
tion of h with respect to sr k, i.e. the SO'k-measurable function satisfying 

E ~ ( h )  d# = ~ h dl~ 
A A 

for all A e d  k. Define for m> 1, F,, =sup  IEr 1. If, for example, the {fg} were 
k 

independent with ~fk=0 for all k>0,  then Fro=0 a.e. for all m> 1. The following 
result is an immediate consequence of our theorem. 

Corollary L I fS  Fmd#~% O, then fk--~ 0 a.e. as k-~oo.  

Proof  Let c~>0 and note that B,,k(COed k for k>n>_O. Then the t h e o r e m  
implies that 

~#(B(c0)=lim Z ~ fk+~ = l im  Z S E~k(A+,,) for all m > l .  
n ~  k ~ n  Bn, k n~oo  k >n Bn, k 

But E~e~(fk+,,)<F,, for all k_>0 and therefore e#(B(c0)--<Ek>,~B F , < _ ~ F  m for 
all m> i. S ince~F, , -~0  we obtain ep(B(c0)=0, a simi]-ar result"'holds for the 
sequence { --fk} and therefore (Remark 1 ) f k ~  0 a.e. 

Remark 3. Suppose #(fJ)= 1 and the sequence {fk}k__>0 satisfies only conditions 
2) and 3) of the theorem. Define for each k _ 0 the function fk =fk I(If~ I < 1~ + I(f~ > a} -- 
I(f~<-1~ where I A is the indicator function of A e d ,  and put h k =~ ' -S fk ' .  Then 
the sequence {hg}k>=O is uniformly bounded, hkedk ,  and ~ h k =0  for all k>0.  Now 
it is easy to see that {hk} satisfies conditions 1), 2) and 3) of the theorem. Moreover, 
h k ~ 0 a.e. if and only if fk---" 0 a.e. Hence, if f sup [E~k(hk +,,)1--. 0 as m-~ o0, then 

k 
fk---' 0 a.e. In particular, if {Xk}k>=O is a sequence of independent random variables 
which converge to zero in mean, then Xk---, 0 almost surely if and only if 

X~-X~_~--,O 
almost surely. 
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We consider now sums of integrable functions. More precisely, let {gi}i_>o be 
a sequence of integrable functions and for each k > 0  let fk = ~ =  0 &" Denoie by 
Y3k=a(&:i<k ). If E~(gk+l)=O for all k > 0  then the sequence {fk} forms a 
martingale, and every martingale can be written in this form. Moreover, i f f  k con- 
verges i n / ]  (p) then fk converges a.e. [5]. The question arises as to whether one 
can relax the condition E~(gk+l )=0  and obtain a.e. convergence given conver- 
gence in/2 (#). We assume that ]gil__< g integrable for all i_> 0 and gi---+ 0 a.e. Since 
fk--fk-~ =gk this implies that {s satisfies conditions 1) and 2) of the theorem. 
Define, for m> 1, G m = sup [ E~(g k+,.)]. Under these conditions we have the 
following 

f, k Proposition. Suppose k=~=ogi converges to f in /2(#). If ~m~G,,d#< o% 
then fk converges to f a.e. 

Proof We are going to verify a condition found in [-4] (cf. p. 402 and Corollary 1, 
p. 405). That is, we show that i f ,  is real and a, > a with %+~, then for all 

k lim 2 f /k= ~ f 
n--->~ k>=n ABn, k(Ctn)  AB'(at) 

where B'(.)= { l imA>.  }. A similar result will hold for the sequence {-fk}. Note 
that from the Lemma the sums are absolutely convergent. Now 

12 s,- S sl=12 i I s-  S sl. 
k > n ABn, k(~tn) AB' (~) k > n ABn, k (CZn) AB" (o0 ABn(etn) 

Since B.( , . ) -+ B'(,) as n--.oo, the second term converge to zero and therefore it 
suffices to show that 

limly~ S u;<-s)l=o. 
k > n A B . ,  ~,(~.) 

Since I(L+m-f)--(fk--f)l = iL+.,-LI--< mg and fk +,,--fk---> 0 a.e. for all m> 1 we 
have, as in the proof of the theorem, 

lim[ 2 ~ ( f k - f ) l  =l]~m [k~, ~ ( s  for all m> 1. 
n k > n A B n ,  k = ABn, k 

Now f =  ~i  >= o& where the convergence holds in /2  (#), hence f--fk +m = ~ > k +mg~ 
in L~(~). If Ae~ko then for k>_n~k o we have AB,,k(%)~ k and therefore 

E i ( f k + m  - f )=  2 l 2 gi:  E 2 ~ gi 
k>=n ABn, k(an) k>=n ABn, k(o~n) i > k + m  k>=n i > k + m  ABn, k(en) 

= E E 5 E~(g,) = E E I E~(g~+m+,)- 
k>=n i > k + m  ABn, k(O~n) k>-n i>-i ABn, k(ctn) 

But IE~kgk+m+il <--Gm+i for all k, m, i. Hence 

l im i~  f (fk-f)i<lim f~ f F~G~+i 
n k > n A B n ,  k(en ) n k '>nABn,  k(~n) i>=l 

----lim ~ ~Gm+i<=~ ~ G i= ~ ~Gi for all m>_-l. 
n ABn(cLn) i > l  i>m+l i > m + l  

Since lim ~, ~Gi-=O, it follows that lim I ~  ~ (fk--f)=O and the proof 
m~o~ i > m + l  n k > n  ABn, k(~tn) 

is complete. 
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As an application of the above proposition we assume that {gi}i>__o is a uni- 
formly bounded orthonormal sequence of functions on /2 so that for all real 
sequences {ai} satisfying ~,i >= o a2 < oe, ~,i >= o aigi converges in L 2 (#), hence in L l(,u). 

k a The case where the sequence fk = ~ =  0 igi forms a martingale has been studied 
by Gundy [2] (see also [1]). Note that fk--fk-1 =aggk--+O a.e. and boundedly so 
that the hypotheses of the proposition are satisfied. Therefore if {al} ~ > o is a square 
summable sequence of numbers such that Gm=sup[ak+,,l[E~k(gk+,,)[ satisfies 

k>0 
~,,  o[ Gin< oo, then ~i_>_o ai& converges a.e. On the other hand, a slight modifica- 
tion of the above proof using the Cauchy-Schwarz inequality shows that if 
sup (~i ~ o E~k(gk +,~ + i)2) ~-is integrable for some large m, then ~i >= o aigi converges 
k>0 
a.). for all sequences {al} such that ~i  a2 < oo. 

We turn now to the/2(#) ergodic theorem for 1 < p < oe. Let T:/2(/~)--~/2(#) 
be a linear contraction, i.e. ~J T f  I p d# < [. I f [P d# for all f~/2(#). Define, forf~/2(#) 
and k > l ,  Skf=(1/k  ) k-1 ~j= o T Jr Then S k is a contraction on/2(#) and it is well- 
known that Skf - -+Pf in  /2(#) as k-*oo where p 2 = p  is a projection satisfying 
P f = P T f = T P f f o r  all f~LP(#) ([-6, p. 213]). If T is an invertible/2-isometry and 
p :4= 2, then S k f--+ P f  a.e. for all fe/2(#) ([3]). Let fk = Sk f - -  P f =  Sk(f-- Pf), k > 1. 
It is easily verified that f k - s  and therefore 
[fk --fk--1 ]~---~1 rk-~f / (  k -  1)1 +lSkf/(k- 1)[ for all k__>2. Clearly 

[Tkf/kl  p< ~, If"f/nlP=-g 
n>_l 

and 
J" g = Y, f I r"~' /n [~ = Y~ l/n# i IT"f[ p < I I f  I p ~ 1/n p < oo. 

n>__l n > l  n>=l 

It follows that Tkf/k--~O a.e. and ITkf /k l<g~/PS L ~ (#) for all k > l .  A 
similar proof shows that ISgf / (k-1) l  ~ 0  a.e. and there is a function &e/2(#) 
such that Skf / (k- -1)<g 1 for all k>2.  Hence Ifk--fk_ll<--__g~/P+gl integrable 
andfk --fk-1 --~0 a.e. In other words, the hypotheses of the theorem are satisfied. 
On the other hand, S k ( f - - P J ) - - S k ( T f - - P f ) = f / k - - r k f / k .  The sequence 
{Sk(Tf--Pf)}k satisfies the conditions of remark 2, and so too does the sequence 
{Sk(Tmf--Pf)}k for any integer m>  1. Hence, from the theorem 

c~#(B(e))= lim 2 I S k ( T m f - e J ) d #  for all m>=l. 
n ~ m  k > n  Bn, k(a) 

It follows that if c(f)  = ~ =  o fl~ Tm'f  2 L  0 P, = > 0 is any convex combination 
of elements of the sequence {Tmf},,=>o, then 

c~#(B(c0)=lim V I S&(f)-Pf)d#. 
n ~ o o  k ~ n  Bn ,  k 

Denoting by S*'k /3(#)--~U(#) the adjoint operator of Sk(1 /p+l /q=l )  we have 
then the following result. 

Corollary 2. For all ~ >= 0 and for every convex combination c(f) of the sequence 
{Tmf}m>=o, 

e/~(B(a))=lim ~ ~ S k ( C ( f ) - P f ) d # = l i m  ~ [.(c(f)-ff)S~(I,,~.)d#. 
n ~ o o  k >=n Bn, k(a) n ~  k > n  
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Hence #{lim Skf--Pf>O}=O iff for each ~>0  the above limit is zero for some, 

T,~ hence all, convex combinations c(f) of { f},~_>o. 
We consider now the case where T is a posftive LP(#)-contraction, i.e. f > 0 

a.e. implies Tf>O a.e. Then the operators S k as well as S* are also positive 
operators. Assume furthermore that h=--sUpSklEI2(l~ ) where 1 is the constant 

k>l 
function. Then for any sequence of disjoint sets {Ba}k~l, the positive function 
g = Y~k>-_l S* (IB~) satisfies 

k > l  k>~l k>=l Bk 

In other words, functions of the above form constitute a bounded set in/2(#). 
Iff~LP(#) is a positive function, c(f) is also positive and 

~ Sk(C(f)--Pf)d#= ~ ~ Sk(C(f))-- ~ Pf  
k >n Bn, k(~) k >=n Bn, k Bn, k 

converges. Since 2k>=,~B,,k Pf=~R,(~)Pf it follows that 2k~, fB,,k Sk(C(f))< o0. 
But 

2 ~ Sk(C(f))= 2 f c(f)S~(IB,,~)=ic(f) Y', S*(IB~ < oo 
k >=n B . , k  k >n k >n 

where 
g~= S* I 1 

Therefore k~, 
C oz o~ oz ~, ~ Sk(C(f)-Pf)= ~ (f)g,-~Pfg,=~(c(f)-Pf)g,d#.  

k>=n Bn, k 

It follows that for all c~>O, ~#(B(cO)=! i rn f (c ( f ) -  Pf)g~ where the functions 

{g~,}. form a bounded set in L~(#) for each c~>O. Note that since Sk f~P f in 
LP(#), a subsequence converges a.e. so that we can always find convex combina- 
tions %(f)-* P f  a.e. Unfortunately, without stronger conditions on the func- 
tions {g~} this is not enough to assert that #(B(e))=0. 
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Note Added in Proof It has recently been proven by M.A.Akcoglu, using techniques entirely 
different from those described above, that the ergodic theorem holds for positive contractions on 
/Y~), 1 <p<oo.  


