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Doeblin's and Harris' Theory of Markov Processes 

William Winkler* 

Our notation and definitions are taken from (Chung, K.L.: The general theory of Markov 
processes according to Doeblin. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 2, 230-254 (1964)). 
A closed set H is called recurrent in the sense of  Harris if there exists a ~-finite measure q~ such that 
for E = H ,  ~0(E)>0 implies Q(x, E ) = I  for all x e H .  Theorem 1. Let X be absolutely essential and 
indecomposabte, 77~en there exists a closed set B a= X such that B contains no uncountable disjoint col- 
lection of perpetuable sets if and only if X = H  +I  where H is recurrent in the sense of Harris and I 
is either inessential or improperly essential. Theorem 2. I f  there exists no uncountable disjoint collection 
of closed sets, then there exists a countable disjoint collection {D,}o~=j of absolutely essential and 
indecomposable closed sets such that I = X - ~ = t  D, is either inessential or improperly essential. 
Under the additional assumption that Suslin's Conjecture holds, Theorem 2 was proved by Jamison 
(Jamison, B. : A Result in Doeblin's Theory of Markov Chains implied by Suslin's Conjecture. Z. Wahr- 
scheintichkeitstheorie verw. Gebiete 24, 2~7-293 (1972)). 

O. Introduction 

In a recent paper Jamison [6] formulated a set-theoretic condition with which 
he was able to obtain some results in Doeblin's theory of Markov chains using 
Suslin's conjecture. In this paper we prove the same results without using Suslin's 
conjecture. In addition we formulate another set-theoretic condition in order to 
obtain further results. These results show that a major portion of Doeblin's and 
Harris' theory may be derived without making the standard assumptions about 
the reference measure, which have characterized this theory (see [8] p. 4, [1, 2, 
4-6, 3]). 

We begin by reviewing the general terminology of Markov processes and the 
specific terminology of Doeblin's theory. Let X be  an abstract space and N 
a Borel field of subsets of X. Let P(x, B), xeX, BeN, be a transition probability. 
P(x, B) has the following properties: 

i) for each xeX, P(x, -) is a probability measure on N, 
ii) for each B E N, P(., B) is a N-measurable function of x. 

For each probability measure # on N there is a probability space (A, J ,  P~) and a 
sequence of functions X0, X1, X2, ... from A to X which are (~r N) measurable, 
that is X j - I ( J ) ~ N  for j = 0 ,  1, .... Xo, X1, X2, ... satisfy 

a) P~(X 0 e B) = # (B) and 
b) P.(X.+ 1 eBlXo, X1,... , X.)=P~(X., B) P~-a.s. 

for each B e N  and n=0,  1,2 . . . . .  In the particular case in which #(-)=3(x,  .) 
where for every BeN:  

3(x,B)={~ if if x(~BXeB 
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we write P~ for P,. For each x e X  and B e N  we write L(x, B) for Px {X, eB} 
- 1  

and Q(x, B) for Px {XkeB} �9 
k = n  ' 

Definition 1. A nonempty set B e N  is called stochastically closed, or closed, if 
P(x, B)--1 for xeB.  A closed set BeN is called indecomposable if it does not 
contain a disjoint pair of closed sets; otherwise it is called decomposable. 

Definition 2. A set E e N  such that Q(x, E)=0  for all x e X  is called inessential; 
otherwise it is called essential. An essential set which is the union of countably 
many inessential is called improperly essential; otherwise it is called absolutely 
essential. 

Definition 3. Let E be a closed set and ~o be a a-finite measure on (X, N) with 
p(E)>0.  Then E is called q~-recurrent if Q(x, F ) = I  for all x e E  whenever F~=E 
and ~p(F)>0. If E is r for some such ~o, then E is called recurrent in the 
sense of Harris (see [5, 8]). 

Definition 4. We say that X is normal if it is indecomposable and absolutely 
essential and if there is a closed set F ~ X which contains no improperly essential 
subsets. Such an F is called a final set. 

Definition 5. If Q(x, EC)< 1 for some x e X ,  then E is called perpetuable (here 
Ec= X \ E). 

Chung (I-1] p. 254) proved the following: 

Proposition 1. Let X be indecomposable and absolutely essential. I f  q) is a a- 
finite measure such that if A is perpetuable then q~(A)>0, then X is normal. 

If we assume that there exists a a-finite measure qo such that if A is perpetuable 
then ~o (A)> 0, then we have the following condition: 

(do) There exists no uncountable disjoint class of perpetuable sets. 

Noting that every closed set is perpetuable (since E closed and x e E  imply 
Q(x, E c) = 0) we have that condition (d ~ implies the following condition: 

(cg) There exists no uncountable disjoint class of closed sets (see [6] p. 288). 

Consider the following conditions: 

(9) There exists a countable disjoint family {D,: n > 1} of closed, indecomposable, 

and absolutely essential sets such that X = I + ~ D, where I is either inessential 
or improperly essential. ,= 1 

(J/0 There exists a finite measure m such that if C is closed then re(C)>0. 

Doeblin [2] proved (see [2], p. 74; also [1, 3]): 

Proposition 2. (J~) ~ (~). 

We note that in'l-l] the measure considered in condition (Jg) is a-finite rather 
than finite. It is easy to see that (j//)~(c~); hence, it is natural to ask: Does (~) 
imply (9)? 

In Section 1 we prove a theorem (Theorem 1) similar to Proposition 1, using 
condition (do). In [61 Jamison proved that (~) implies (9) under the assumption 
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that Suslin's Conjecture holds. In Section 2 we prove that (cg) ~ (9) without using 
Suslin's Conjecture. 

1. Perpetuable Sets 

We say that condition ( ~ )  holds if X = H + I where H is recurrent in the sense 
of Harris and I is either inessential or improperly essential. We now prove the 
following theorem. 

Theorem 1. Let X be indecomposable and absolutely essential. Then the follow- 
ing are equivalent: 

i) (g) holds on some closed subset of X. 
ii) X is normal. 

iii) ( ~ )  holds. 

Proof i) ~ ii). Assume that (()  holds on some closed subset B of X. Since X 
is absolutely essential and indecomposable, B is absolutely essential and indecom- 
posable by Proposition 19 of [1]. If we show that B is normal, then X is normal, 
hence, for convenience, we assume that B = X (that is, (E) holds on X). We assume 
that X is not normal and show that (g) does not hold on X. 

If X is not normal, then X contains an improperly essential set E t . By Pro- 
position 23.1 of Ell, there exists an improperly essential and perpetuable set F 1 
such that E 1 ~ F~ ~ X and G 1 = X \ F 1 is closed. If G 1 were improperly essential, 
then X = F~ u G~ would be improperly essential which is a contradiction. Since X 
is indecomposable, F~ contains no closed sets. If G~ does not contain an improperly 
essential set, then X is normal. Thus there exists an improperly essential set E 2 =~ G 1 . 
Again, by Proposition 23.1 of [-1], there exists an improperly essential and per- 
petuable set F 2 such that E 2___F 2 ~ G a and G 2 =dee G~ \ F 2 is closed. If G 2 were 
improperly essential, then G~ = G 2 w F 2 would be improperly essential which is 
a contradiction. Since X is indecomposable Gz c contains no closed sets and is 
improperly essential by Proposition 14.1 of [1]. We continue our reasoning by 
transfinite induction. 

Let O be the first uncountable ordinal. Let ~ < O be a nonlimit ordinal; then 
= ]~ + 1 where ]~ is an ordinal < O. Assume that G~ has been defined (here we 

only need that G, be absolutely essential and closed). If Gp contains no improperly 
essential sets, then X is normal. Hence we assume that G, contains an improperly 
essential set E~. By Proposition 23.1 of [-1] there exists an improperly essential 
and perpetuable set F~ such that E~=F~=Gp and G~----de f G~\F~ is closed. If G~ 
were improperly essential, then Gp = G~ u F~ would be improperly essential which 
is a contradiction. Hence G~ is absolutely essential. Also since G~ ~ contains no 
closed sets it is improperly essential by Proposition 14.1 of [1]. 

Assume that ~ is a limit ordinal < O and that E, ,  Fp, and G~ have been defined 
for all/~ < ~. Assume that K =dee ~ GB is empty or improperly essential. Since 

,~<~ 
for each ]~ < ~, G j  is improperly essential, we have that X =  ~ G, ~ u ( ~ Gp) is 

improperly essential which is a contradiction. Hence K is absolutely essential 
and closed. If K does not contain an improperly essential set, then X is normal 
which is a contradiction. Hence, we see that K contains an improperly essential 
set E~. By Proposition 23.1 of [1] there exists an improperly essential and per- 
6* 
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petuable set F~ such that E~ ~ F, N K and G, =def K \ F~ is closed. If G, were im- 
properly essential, the K=F~w G~ would be improperly essential which is a 
contradiction. Hence G~ is an absolutely essential closed set. Then 

{E~: e<f2}, {F~: e<f2}, and {G~: .<f2}  

are defined by transfinite induction and have the properties described above. 
But {F~: c~ < t2} is an uncountable disjoint collection of perpetuable sets. Hence 
(d o ) does not hold. 

ii) ~ iii). By Theorem 3 of [5] we have that condition (YF) holds. 
iii) ~ i). Let X = H + I where H is recurrent in the sense of Harris and I is 

either inessential or improperly essential. We will show that (g) holds on H. By 
Lemma 2.5 of [4] there exists a a-finite invariant measure zc on H such that if 
Ec=H then ~ ( E ) = 0 ~ E  is inessential in H(that  is, Q(x,E)=0 for all xEH). 
Let E N H  where n(E)=0. We want to show that Q(x,E)=0 for all xEX. Fix 
xEX. Since sup Q(x,E)<=sup Q(x,E)=O, we have, using Proposition6 of [1], 
that xeE x~U 

Q(x,E)=Q(x,E,E)=de f P {XkeE}c~ {XkEE } Xo=x =0 
k = n  n = l  k = n  

for all xEX. Hence E is inessential. Thus we see that every essential set must have 
positive 7c-measure. Proposition 21 of [1] asserts that every perpetuable set is 
essential, which implies that condition (C) holds on H. 

Corollary 1. Let X be indecomposable and absolutely essential. Then (~)  holds 
if and only if there exists a closed subset which contains no uncountable disjoint 
collection of improperly essential sets. 

Proof. If ( ~ )  holds, then, by the fact that essential subsets of H have positive 
K-measure, we immediately have that H can contain no uncountable disjoint 
collection of improperly essential sets. From above, in i ) ~  ii), we saw that if X 
is not normal, then there exists an uncountable disjoint collection of improperly 
essential and perpetuable sets. Hence, if condition (J/t ~ does not hold, we have 
that there exists a closed set which contains an uncountable disjoint collection 
of improperly essential sets. 

Remark. If X is absolutely essential and indecomposable and N is separable, 
then, by Theorem 3 of [5], condition ( ~ )  holds, hence, by Theorem 1, condition 
(~) holds on H. 

Let X = H + I and let ~o be the Harris measure on H. If I is inessential, extend 
q~ to N by q~(B)=q~(BnH), BeN, Then, for BeN, q~(B)>0 implies Q(x,B)=I 
for all xeH since Q(x, Bc~H)=I for all xEH. Also, L(x, Bc~H)=I for all 
x e H. If x e I, then, since Q (x, B n H) = 

1 -  ~ I P"(x, dy)(1-L(y, BnH)) 
n = O  B n H  

(see [1], p. 232), we have that Q(x, BnH)=I .  Hence Q(x ,B)=I  for all xEX 
and (p is the Harris measure on X. 
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If I, as above, were improperly essential, and there existed a Harris measure 
~p on X, then Cp(I)>0. This follows from the fact that ~ ( E ) = 0  if and only if E 
is inessential (see Jain [4], p. 209). But I is a countable union of inessential sets 
which all must have measure zero. Hence, if I is improperly essential, there exists 
no Harris measure on X. 

The following example shows that there exists a decomposition X = H + I  
where I '  is improperly essential. Let X = Z, the set of integers. Define a transition 
probabili ty as follows: 

P(X~=2(j-1)[Xo=2j)= 2 j=O,  _+1, +2,  ..., 

P(X~=Z(i+I)IXo=2j)= 2- j=0 ,_+1 ,_+2  . . . .  , 

P(XI=2 j+l lXo=2j -1 )=I -2 - f2J I  j = 0 , + l  . . . .  , 

P(X1 =2j]Xo=2j-1)--2 -f2jl j = 0 ,  _+1, .... 

Let A={2j:j=O, _ 1  . . . .  }. Then A is closed. The Markov process on A is a 
symmetric random walk in one dimensionl It is well-known that such a random 
walk is recurrent; i.e. Q(x, {y})= 1 for all x and y in A. Hence, if (p is taken to be 
the counting measure on A, we have that A = H is q~-recurrent. Let x- -  - 1. Then 

~3 

L(x, A)= ~ P(XkEA, Xi~A c 1 -< i_< k -  1 IX o =x )  
k = l  

= I~ (1 -2-12i l ) (2-12 k[)< 2-12k1<1. 
k = l  i = 0  k = l  

Hence, Q(x, A)< 1 and a c is perpetuable. By Proposition 21 of [1], A c is essential. 
Consider Jl <J2. For  n>j2-j l ,  P(X,=2j2-1", .Xo=2j,-1)=O. Also, for all k, 
P(Xk=2j2--1\Xo=x)=O if x = 2 j , - - 1  for J,>J2 or xeA. Hence, if yeA c, 
Q(x, {y})=0 for all x e X  and A c is improperly essential. 

2. Doeblin's Decomposition 

We now state our main result. 

Theorem 2. (cs implies (9). 

Lemma 1. (see [63, p. 288, [21, p. 71). If(C6) holds, and every closed subset contains 
a further subset which is either indecomposable or improperly essential, then (9) 
holds. 

Proof. Call a collection d ~  admissable if it is a non-void, countable, 
disjoint collection whose elements are either indecomposable or improperly 
essential closed sets. By hypothesis, admissable collections exist. Order the 
class of all such collections by inclusion. A collection Y of admissable sets is 
called a chain if and only i f ~  and ~r ~5;: imply that either d 1 ~ d  2 or d 2 ~ N  1 . 
Using condition (c~), we have that the union of a chain of admissable collections 
is itself an admissable collection. Applying Zorn's  lemma to the set of admissable 
collections yields a maximal collection s Let Lbe  the union of all the members 
of S .  Then L is closed. If X--. L contained a closed set, then X'-.  L would contain 
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a closed set C which is either indecomposable or improperly essential. But then 
~ u  {C} would be an admissable collection which contradicts the maximality 
of ~.  Since X \ L  contains no closed sets, we have, using Proposition 14.1 [1], 
that X ' , L  is either inessential or improperly essential. Let D1,D2,... be a 
possibly void or finite enumeration of the members of Y which are indecomposable 
and absolutely essential. Then I = (X "-. L) ~ ( L -  ~2= 1 D,) = X - ~ , ~  1 D, is either 
inessential or improperly essential. Hence (~) holds. 

Proof of Theorem 2. Assume (cg) holds, but that (N) does not. From 
Lemma 1 we can assume that there exists a closed subset which contains no 
indecomposable or improperly essential closed sets. For convenience we assume 
that X is this closed subset. Hence, every closed subset is assumed to be decom- 
posable and absolutely essential. 

Adhering to the mathematical framework used by Jamison in [6] we now 
define a collection ~ = N (X) of closed sets in X. This definition is taken verbatim 
from [6] (p. 289). On p. 70 of [2], Doeblin shows that if a closed set E is not 
indecomposable then there are two disjoint closed subsets A and B of E such 
that E\ (A~B)  has no closed subset. We say that (A,B) is a maximal pair of 
closed subsets of E. It follows from Proposition 14.1 that E \ ( A u B )  is either 
inessential or improperly essential. Now assume that (cg) holds and that every 
closed subset of X is decomposable and absolutely essential. Let f~ denote the 
first uncountable ordinal and let the lower case Greek letters denote the ordinals 
less than ~2. Our set theory is that of [-7] (also see [9]), in which every ordinal 
is the set of all ordinals strictly less than it. A function s into {0, 1} is called a 
binary sequence if its domain is equal to an ordinal a < f2, s is then said to be of 
order ~. If s is a binary sequence of order e, then the binary sequences sw{(a, 0)} 
and s~{(a, 1)} are denoted by s0 and s l  respectively, they are of order ~+1.  
We now use transfinite induction to define on the class of all binary sequences 
a function C ( ' )  such that 

(i) C(s) is either empty or a closed set, 
(ii) if s~=t then C(t)~C(s), 

(iii) if neither s_c t nor t ~ s then C (s) m C (t) = ~ (the latter holding, in particular, 
if s and t are distinct and of the same order). 

The unique binary sequence of order 0 is ~. We define C(~)=X. Suppose C(s) 
has been defined for all binary sequences of order less than e. Suppose c~ is not 
a limit ordinal, that is, ~ = fl + 1 for some ordinal ft. Any sequence of order e is 
equal to sO or s l  where s is a sequence of order ft. If C(s)=g, we define C(s0)= 
C(s l )=~.  Otherwise C(s) is closed, and by assumption, decomposable. Let 
(A, B) be a maximal pair of closed subsets of C(s), and C(sO)=A and C(sl)=B. 
Suppose, on the other hand, that e is a limit ordinal. Let s be of order c~. For 
any fl < ~ let s~ be the restriction of s to ft. We define C (s) to be ~ C (sp). Since 

the intersection is countable, C(s) is either empty or closed. The definition of C(s) 
for all binary sequences is now complete by virtue of the principle of transfinite 
induction. It is clear that (i) and (ii) hold. 

We now show that (iii) holds. Let a l = ~  s and let a2=order  t. For  
convenience we assume that e2>a~. If neither s~t  nor t~s, then t,~+s. Let e3 



Doeblin's and Harris' Theory of Markov Processes 85 

be the first ordinal such that t~3 4= s~3. If e3 is a limit ordinal, then, for all ~ < %, 
we have that s o = ta. But using the fact that U = ~3, we have that s~ = t~3. This 

~<~3 
contradiction implies that c% cannot be a limit ordinal and, hence, we have that 
c%=]73+1 for some ordinal ]?3. By the construction of C(.),  (C(t~), C(s~)) is 
a maximal pair in C(s~)--C(ta~). By property (ii) we have that C(s)N C(s~) and 
C(t)c= C(t~). Thus C(s)c~ C(t)~= C(s~3)~ C(t~3)= g. 

Let N={C(s ) :  s is a binary sequence}-{~[}, that is, N is the range of the 
function C(.  ) just defined but with ~ thrown out. It follows from (i), (ii), and (iii) 
that the members of N are closed and that (iv) E e N  and F e N  imply E ~ F  or 
F~=E or E~F=fl .  From our definition of C( ' ) ,  it is clear that for each closed 
set B ~ X  we can define a function CB(. ) on the class of all binary sequences 
such that CB(~)=B and N(B) is a collection of closed sets, formed in the same 
manner as N, descending from B. 

We state several definitions and prove several propositions which will be 
used in the proof of Theorem 2. By the e-th level we mean {C(s): order s=e}  
=eef ~ -  Let DeN.  Let ~<f2 be arbitrary but large (by large we mean e >  order 
sD where C(sv)=D ). By a successor of D on the e-th level, we mean a closed set 
(if it exists) E = C (s) where order s = c~ and E ~ D. 

Let K(]?) be the union of the sets on the ]?-th level. As previously stated any 
two sets on the ]?-th level must be disjoint, and hence, using condition (~), there 
can exist at most a countable collection of closed sets on the ]?-th level. Thus 
K(]?) is either empty or closed. 

Proposition 3 ([6], p. 290). For each ]?<(2, X\K(]?)  is either inessential or 
improperly essential. 

Proof For each s of order c~ for which C(s)4:fJ, (C(sO), C(sl)) is a maximal 
pair in C(s), hence C(s)\(C(sO)wC(sl)) is either inessential or improperly 
essential. This immediately implies that K ( ~ ) \  K(c~ + 1)= ~ { C(s)\  (C(sO)w C(s 1)): 
order s = e} is either inessential or improperly essential for all ct < s If we show 
that X\K( f l )=U(K(~) ' . ,K(c t+I ) )  , then the proposition follows. Let 

x e  ~ ( K ( e ) \  K(c~+ 1)). Then x e K ( e o ) \  K(eo +  1) for some c% <]? which implies 

that x(~K(fl) since K(fl)~=K(c%+l). If xr  , then, since 

xeK(O)=X, we have that x e K ( ~ + l )  for all e<]?. Hence xeK(6) for some 
~ ] ?  xe  K(]?). 

Proposition 4. Let ct < s 7hen X has a successor on the ~-th level. 

Proof If X has no successor on the c~-th level, then K ( , )=  ~. By Proposition 3, 
X = X \ K (,) is either inessential or improperly essential which is a contradiction. 

It follows immediately from Proposition 4 that N must necessarily uncountable. 
Call a collection (~ a chain if C 1 and C2e(~ imply that either C~ ~ C 2 or C2~ C~. 

Proposition 5 ([6], p. 290). N contains no uncountable chains. 

Proof Assume that {C(s~): 7eF} is an uncountable chain where F is un- 
countable, and where s ~ and s ~ are distinct binary sequences if 71 and ~2 are 
distinct members of E By (ii) and (iii), the set {s~: 7eF} is a chain of binary 
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sequences relative to the inclusion relation. Letting a = ~ {s~: 7 e F}, we see that a 
is a function from ~2 to {0, 1} such that, for each yEF, the restriction of a to the 
ordinal which is the order of s ~ is s ~. For each c~ < ~2, let a, be the restriction of a 
to e. Then each set C(a,) is closed and C(a,+l) is one member of a maximal pair 
of closed subsets of C(a~). Denote the other member of this pair by D(e+l) .  
If fl>~, then C(ao)~ C(a~), hence, C(ao)~D(e+ 1)=~. Thus {D(e+ 1): c~<f2} is 
a collection of pairwise disjoint closed sets which contradicts condition (~g). 

Lemma 2. Assume that every closed subset of X is absolutely essential and 
decomposable and that ((g) holds. Let B be a closed set and N(B) be the collection 
of closed sets formed as above. Then there exists no a-finite measure m such that 
C ~ Yt (B) imp lies m (C) > O. 

Proof Assume that there exists a G-finite measure m supported on B such 
that CsN(B) implies that m(C)>0. For convenience we may assume that m is 
a probability measure by passing to an equivalent finite measure and normalizing. 
The following argument is a modification of arguments due to Doeblin (see [2]) 
and Harris (see [1, 3]). 

We have assumed that m(B)= 1. For each x~B set Cx-- 0{C~N(B) :  xeC}. 
We will show that for each xEB, there exists a binary sequence sx such that 
C~=C(s~). Let %=da{C~N(B):x~C}.  If C 1 and C2e%,  then C~c~C2,t=fJ , 
and, using property (iv), either C~ __c C 2 or C 2 ~ C 1 . Hence ~ is a chain and must 
be countable by Proposition 5. Then (g~= {C(s~): 7eF} where F is a countable 
set. Since {s~: 7~F} is a chain relative to the inclusion relation, r = a a  ~ s ~ is a 

binary sequence of order < ~2, say fl < O. Let 6~ be the order of s ~ for all TeE Then 
r~, = s ~ (here ro, denotes the restriction of r to 3y). By the definition of N(B), 
C(r)= (~ C(r~). It is immediate that C(r)~ (~C(s~). Let ye ('] C(s~). Then 

a__< 0 ~EF ~ F  
y e C (s ~) = C (r~) for ~ e E Let ~ s 8~ for some y e E Then y e C (r~) __ C (r~). Hence 
yeC(r~) for all ~ s  =fl which implies that ~ C(r~)~ (~ C~0. Set Sx=r. 

~ F  a< O y~F 
Then C (sx) = ~ C (r~) = ~ C (s ~) = C~. 

a<O ysF 

For each n >  1, let E~= {xeB: m(Cx)~ 1/n}. I fy~ C~, then m(@)<=m(C~) since 
C ~  C~. It follows that if xeE, ,  then Cx~=E ~ so that E~= U{Cx: x~E~} is the 
union of closed sets for each n > 1. We must show that each E~ is closed. In order 
to do this it is sufficient to show that each E, is a countable union of closed sets 
in ~(B). 

Fix n>__l. Call a closed set Ce2(B)  maximal in E~ if m(C)<l/n and C is 
not properly contained in any subset D~2(B) such that m(D)<=l/n. Maximal 
subsets exist by the following argument. Let C =  C(s)~2(B) where s has order ~. 
Let flo be the first element in the set {fi s  m(C(so) ) < 1/n} (here s o again denotes 
the restriction of s to fi). Then C(Soo ) is maximal in E~. Let C~ and C2 be two 
distinct maximal subsets in E~. Then either C~ ~ C~ or C ~  C1 or C~c~ C2=~ 
by property (iv). By the definition of maximal in E~, neither C~ ~ C2 nor C 2 ~= C~ 
can hold. Hence C~ ~ C2 =~. 

Let c~ be the collection of maximal subsets in E~. Since distinct maximal 
subsets in E~ are disjoint, by (~) qr can contain at most a countable number of 
distinct sets. If xeE~, then C ~ E ~  and m(C~,)< 1/n. Then, by the main argument 



Doeblin's and Harris' Theory of Markov Processes 87 

used to establish the existence of maximal sets in E., C x is contained in a set D 
which is maximal in E.. Hence x~ U{CECg.} which implies that E.==_ U{CeCg.}. 
Let ye~{C~.} .  Then .y~ C o for some C0~(g . which implies that m(Cy)<m(Co) 
< 1/n since C~,___ C o. Hence y~E. and E . =  U{Ce~,}.  

Clearly B=EI~E2~.... Let xeB, then there exists a first n o such that 
m(Cx)> 1/n o. Hence x6E.o_l\E.o and B=  ~ (E.'..E._i). We now show that B 

n_>_l 
is improperly essential which will contradict the hypothesis that B is absolutely 
essential. In order to do this it is sufficient to show that each E.\E.+ 1 is im- 
properly essential. We know that for each n > 1, E,, is the union of closed sets 
CeYg(B) where each C is maximal in E.. Fix n > l  and let x~=E.\E.+I, Let 

=da {D~= C(s~)} be the collection of closed sets D~ N( B)  which are maximal 
in E.+~. Let f l=sup order s ~. Since ~ is countable we have that fl<f2. 

c( 

We now will show that xe U (X\K(~+ 1))=daG(fi+ 1). By Proposition 3 
~=<p+l 

each G(f l+l)  is either inessential or improperly essential. If x~G(fi+l), then 
x e K ( a + l )  for all ~=<fl+l;  in particular, xeK(fl+l). Hence xeC for some 
CE~(B) on the (fi + 1)-st level and Cx= C(s) for some sequence s of order greater 
than or equal to f i + l .  From the fact that xeE,\E,+a we have that 1/(n+l)  
<m(C(s))<= 1/n. Since C(s 1) and C(sO) are disjoint, m(C(s 1))>(1/2)m(C(s)) and 
m(C(sO)) > (1/2)m(C(s)) cannot both hold. Assume that m(C(s 1))= (1/2)m(C(s)). 
Then m(C(sl))<=l/2n<=l/(n+l). Since any set Ce~(B)  properly containing 
C(sl) must contain C(s), we have that C(sl) is maximal in E,+ 1. But the order 
of s 1 is strictly greater fi which is a contradiction to the definition of ft. Hence 
x E G (fi + 1) which implies that E,'-. E, + i ~ G (fi + 1). Since G (fi + 1) is improperly 
essential E ~ \  E,+I is improperly essential. 

Conclusion of the Proof of Theorem 2. Assume that every closed set is ab- 
solutely essential and decomposable and that (c6) holds. Then, as remarked fol- 
lowing Proposition 4, ~ is uncountable. Assume that there exists a o--finite 
measure m such that m(K(fi))>O for all fi<[2. Call a set Ce~ maximal m-null 
if re(C)=0 and C is not properly contained in D e ~  such that re(D)=0. By 
Lemma 2 there exists C E ~  such that re(C)=0. Then C=C(s) where s is of 
order a. Let flo be the first element in the set {fl<c~: m(C(s~))=O}. Then C(s~o ) 
is a maximal m-null set. 

Let JC/(fl) be the collection of maximal m-null sets on the fl-th level; J~(fl) is 
countable, but possibly empty. Let fll <f12- If C~J///(fll) and C2~J~(fi2), then 
C 2 must necessarily be a successor of a set on the fi~-st level with positive m-meas- 
ure. Hence Cic~C2=ft. Assume sup{fl: ~ ( f l )  nonempty}=da%<O.  If there 
exists a set C on the (%+ 1)-st level such that re(C)>0, then C has a successor D 
on some level, say the ~-th level, such that re(D)=0. If not, then using Lemma 2 
with ~ (C)= {D ~ N: D =c C}, we can show that C is improperly essential which is 
a contradiction. Let D = C(r) and let 6 o be the first element in the set {fi< order r: 
m(C(r~))=O}. Then ~ o + 1 < ~ o < 6  and d//(6o) is nonempty which contradicts 
the definition of c%. Hence re(C)--0 which implies that m(K(ao+ 1))=0, which 
contradicts the assumption that (K(fi))>0 for all fi<f2. Thus sup{fi: ~(f i )  
nonempty} -- /2. But then there must exist uncountably many fl such that ~{(fi) 
is nonempty. This follows from the fact that sup{e<O:  c~A}=(2 if and only 
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if A contains an uncountable number of countable ordinals. By choosing one C 
in each nonempty Jg(/3), we have an uncountable disjoint collection of closed 
sets which contradicts (off). Hence we have proved the theorem if we show that 
there exists a ~-finite measure m such that re(K03))>0 for all/3<~2. 

For each EG~ we set E ~ = {x: L(x, E)= 0}. If E ~ is nonempty, then E ~ is closed 
by Proposition 1 of [7], and if, in addition, E is closed, then E ~  U. Let/~ < 9. 
If K(/3) ~ is nonempty, then K(/3) ~ is a closed set contained in X \ K ( ~ ) .  Since, 
by Proposition 3, X \ K ( ~ )  is improperly essential, we have that K(/?) ~ is im- 
properly essential which contradicts our assumption that every closed set is 
absolutely essential. Hence K(/?) ~ is empty for all /3<9. Let xeX.  Set m( . )=  
~2= t ( 1/2 k) pk (x,"). Since m (B) > 0 if and only if L(x, B) > 0, we have that m (K (/3)) > 0 
for all/~ < 9. 

Corollary 2. I f  (g) holds, the X = I + ~ , ~ = l  H, where each H, is recurrent in 
the sense of Harris and I is either inessential or improperly essential. 

Proof Since (~) implies (cg) we have that X - - J  + ~ , ~ :  D, where J is either 
inessential or improperly essential and each D n is an absolutely essential and 
indecomposable closed set. By Theorem 1 each D, =/4,  + J, where/4, is recurrent 
in the sense of Harris and J, is either inessential or improperly essential. Setting 
I = J + ~ =  1 J. yields the desired result. 
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