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On the Deviations in the Skorokhod-Strassen 

Approximation Scheme 

J. KIEFER* 

Summary. In deriving his strong invariance principles, Strassen used a construction of Skorokhod: 
if the univariate d.f. F has first, second, and fourth moments 0, 1, and fi < 0% respectively, then there 
is a probability space on which are defined a standard Brownian motion {~(t), t>0} and a sequence 
of rlonnegative i.i.d. Skorokhod random variables {T~, i> 0} such that 

are i.i.d, with d.f.F. Let 

Strassen showed Z=O(1) wp 1. We prove Z=(2fl) ~ wp 1. Consequently Z = 0  wp 1 implies F is 
Gaussian, answering a special case of a question of Strassen, Analogous results hold for cases where 

T~ is not a sum of independent random variables. 

1. Introduction 

Let  F be a u n i v a r i a t e  d.f. sa t is fying 
co 

(a) ~ x d F(x) = O, 
- o o  

oo 

(b) ~ x 2 d F (x )=  1, (1) 
- c o  

co 

(c) ~ x 4 d F(x)  < ~ .  
- c o  

S k o r o k h o d  [ l 8] showed  h o w  to c o n s t r u c t  a p r o b a b i l i t y  space  o n  which  are  def ined  
(i) a s equence  { X  i, 1 =< i < ~ } of  i. i. d. r. v . ' s :  wi th  c o m m o n  d.f. F, (ii) a B r o w n i a n  
m o t i o n  {~(t), t>=0} of  s t a n d a r d  n o r m a l i z a t i o n  (E~(t)=_O,E~2(t)=t),  a n d  (iii) a 
s equence  of  n o n - n e g a t i v e  r a n d o m  var iab les  {T/, 1 =< i <  ~ } ,  such  that ,  wr i t ing  

f l =  var  (T0 ,  

Uo=O, u.-  ~ (n>0), 
1 

s.=~(u.) (n>_-0), 
(2) 

y.=s.-s._:  (n>0), 
A, = a-field gene ra t ed  by  X 1 . . . .  , X ,  a n d  

{~(t), t <  U,} ( n > 0 ) ,  
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the following properties hold: 

(a) the i-process is independent of {Xi}; T. is A.-measurable; 
{ ~ (U. + t) - ~ (U.), t > 0} is independent of A.; 

(b) the T~ are i.i.d, with E{T~} = 1, (3) 

(c)/3<~, 
(d) the sequence {Y/, i>  0} has the same law as {Xi, i>  0}. 

We will refer to the setup described in the previous paragraph as the i.i.d. 
case, even though the general Skorokhod construction omits (l c) and (3c). 
Strassen [21], p. 333, has mentioned extensions, and has kindly informed the 
author that a more complete description is that Dambis and Dubins-Schwarz 
obtained analogues of Skorokhod's result for continuous parameter martingales, 
whereas Frank Jonas has carried out in detail the construction suggested by an 
observation (of Strassen and, independently, of David Freeman) that Skorokhod's 
construction extends to the case where 

{~X~, l < n < o o }  

is a martingale, with appropriate modification in the conclusion (3); subsequently 
Dubins [5] and Hall [9] obtained other constructions in the martingale case. We 
need not be more precise at this point, since the only properties we use of this 
martingale case (with restrictions whose consequences parallel those of (1 c)) will 
be listed in (i2) and (28) below; in particular, our results apply not just to Skorok- 
hod's construction, but rather to general stopping variables, including those of 
Dubins and of Hall. 

Strassen [19, 21] used the Skorokhod representation and its martingale ex- 
tension in developing his beautiful strong invariance principles. Theorem 1.5 
of [21] states that, in the i.i.d, case, as n-~oo, with S, obtained as in (2)-(3), 

(n) - S, = 0 ((n log log n) ~ (log n) ~) wp I. (4) 

Strassen asks whether the existence of a probability space on which are defined a 
Brownian notion ~ and i. i. d. sequence {S, + 1 -  S,, n > 0} with d.f. F, for which (4) 
holds with O replaced by o, implies that F is Gaussian. The answer in this generality, 
when S, is not required to be obtained from stopping variables as in (2), is unknown. 
If S, is assumed to be obtained as r from stopping times U, as in (2)-(3), the 
question is answered affirmatively by the following result of the present paper: 

Theorem 3. In the i. i.d. case, under the assumptions of(l) , /ff l  > 0, then for either 
choice of sign 

lim sup +_ [4 (n) - ~ (U,)]/[2/3 n (log n) 2 log log n] + = 1 wp 1. (5) 
n ~ o 9  

(Of course, when/3 = 0 we have T, = I w.p. 1 and hence F is standard Gaussian.) 
Theorem 3 is obtained as a corollary of the more general Upper Class Theorem 1 
and Lower Class Theorem 2, which do not require the Y~ to be i.i.d. (nor even for 
{~(U,), n>0} to be a martingale), but only the validity of certain properties (12) 
and (28) which are analogous to those of (1) or which are associated with usual 
proofs of the LIL. 



On the Deviations in the Skorokhod-Strassen Approximation Scheme 323 

In this paper it is only in the i. i. d. case (Theorem 3) that we verify in detail that 
such a simple condition as (1 c) can be used to invoke Theorems 2 and 3. It is not 
hard to find sufficient conditions to invoke Theorems 2 and 3 for various cases 
where the Y~ are not i. i. d., but the known conditions are not sharp in the following 
sense that (lc) is: if (3c) fails in the i.i.d, case, the U, do not obey the LIL (see 
Strassen [20]), and (4) will not generally hold. 

We remark that Breiman [2] has considered the more general case of i.i.d. X i 
not necessarily satisfying (1 c), obtaining in this case bounds which are of a larger 
order than that of (4), and also necessary moment conditions for such behavior. 
While we do not consider such results in the present paper, we believe the techniques 
used herein may be adaptable to such cases where (1 c) fails, through the use of 
analogues of standard LIL developments. To those who may be interested in pur- 
suing such results, we will try to point out, where they occur, our few technical 
departures from usual patterns of proof of LIL-type theorems or from ideas of 
[12] and [13] which we have used. 

Also, Breiman [3], Section 13.6, obtained a representation of the sample 
d.f. for uniformly distributed r.v.'s, in terms of the Brownian bridge, by using 
Skorokhod's construction for exponential r.v.'s {Xi}. It is easy to see that n } 
times the maximum error in this representation satisfies the right side of (4). Later 
Brillinger [4], evidently unaware of Breiman's book, obtained this result inde- 
pendently. See [15] for further comments. 

The developments of this paper yield certain other results, as the interested 
reader will find it easy to verify. We now list some of these. 

Theorem 4. I f  {~(t), t>O} is standard Brownian motion and 0</3<o% then, 
for either choice of sign, 

lim sup { sup _+ [#( t ) -  ~(z)]/[2fl t(log t) 2 log log t] �88 = 1 wp 1 
t--*oo ]~-t[<[2fltloglogt]~ 

and 

lim sup { sup 4- [~ (t) - ~ (r)]/[2/3 t 3 (log t) 2 log l log t 0 ~} = 1 wp 1. 
t~O [~_t[<[2flt31ogllogt[]-~ 

The first of these results is obtained easily from the developments of the succeeding 
sections, and the second follows from the first on using time inversion ({t r 
t>0} is a standard Brownian motion) and elementary estimates. Theorem 4 is 
related to the domain of L6vy's H61der condition, the upper bound half of which 
in fact follows easily from (7) below. (See Ito-McKean [11], pp. 36-38).  

The present paper also yields results concerning the sample quantile process 
r/m) introduced in Section 6 of [13], where we proved results for sample quantiles 
corresponding to the main results of [19] for sums of independent r. v.'s (Theorem 5 
of [13]) and the strong form of the LIL for sample quantiles (Theorem 4 of [13]) 
corresponding to that of Feller [6] for sums of independent r.v.'s (strengthening 
the standard form of the LIL for sample quantiles obtained in [1]). Without taking 
the space here to define t/(2~, we remark that the result of [1] or Theorem 1 of [13] 
shows immediately that the order (with the right constant) of the deviation of 

from r/(2~ is exactly the same as that of ~ from the random walk process t/(~) 
(defined in Section 6.7 of [13]), and the latter is given at once by Theorem 3 of the 
present paper. See [15] regarding variation in p of p-tiles. 
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Finally, a development like that of Lemma 1 yields probability bounds for 
the difference between the maximum and minimum of partial sums and more 
general processes, analogous to L6vy-Kolmogorov-Hajek-Renyi bounds for the 
maximum or maximum norm. We will discuss this elsewhere [14]. 

It would be interesting to obtain "strong forms" corresponding to Theorems 3 
and 4. 

The following standard notation is used in this paper: The complement of an 
event A is denoted ,4. The natural numbers and nonnegative reals are denoted 
by N and R +, respectively. For  real x, the greatest integer _-__ x is denoted by int {x}. 
All "orders" (0 or o) or asymptotic relations (,,~) refer to behavior as the exhibited 
dummy variable n or r ~ oe. We abbreviate "random variable" by "r.v.", "inde- 
pendent and identically distributed" by "i. i. d.", "distribution function" by "d. f.", 
"infinitely often" by "i. o.", "almost all n" (i. e., all n in N except for a finite number) 
by "a. a.n.", "law of the iterated logarithm" by "LIL",  "with probability one" by 
"wp 1". Whenever we write such summation operations as ~ it will be understood 

r 

that the summation is over all r in N which are large enough that expressions like 
log log n r which appear in the summand are real. 

The author is grateful to Volker Strassen for helpful comments. 

2. Upper Class Result 

In this section we suppose there is given a probability space on which are defined 
a standard Brownian motion {~(t), t>0} and a sequence of nonnegative r.v.'s 
{ T i, i>  0}. We define U, as in (2). The only assumption we require is an upper class 
LIL-type estimate (12) on the sequence {U,}; questions of dependence among 
the U, and ~ do not otherwise enter. 

As is often the case in LIL-type results, the upper class result is much easier 
to prove than the lower class result. Thus, Strassen rightfully calls (4) "easy" 
in the i.i.d, case, and our details are required only to obtain the right constant in 
(13). At the same time, a little delicacy is needed to obtain that constant. (It 
amounts to using (21) and (7) rather than an estimate like line 4, p. 22 of 1,2], and 
to replacing the n r of 1-2] by numbers which yield our (13) rather than the larger 
order of Theorem 2 of I-2].) 

We remark also that, although Theorem 1 can be proved using approximately 
geometric times n' r,,~ c r as in the lower class proof of Theorem 2, instead of the n r 
used below, it is not very enlightening to use such n'r. This is because the desired 
result is concerned with the magnitude of oscillations of ~ over relatively short 
periods of time, which do not persist over long periods. In the lower class result 
we use such widely spaced n'~ and study what happens between succesive n',, 
because of such developments as the use of (50) to prove (43). (Other reasons for 
this choice will be found in the proof of Theorem 2 and the remarks which follow 
it.) But to use such n'~ in the upper class proof and then to subdivide the period 
between successive n'~ to look like the periods between the nr below, is an unneces- 
sary complication. Moreover, the direct use of the nr makes the source of (4) and 
(5) transparent and points the way toward the right normalization in the cases 
where (1 c) fails (as mentioned in the discussion of I-2] in Section 1), although we 
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have not investigated whether proof technicalities dictate the use of analogues 
of the n, or the n'~ in such cases. 

Before stating Theorem 1, we prove a simple lemma; it is related to the develop- 
ments on pp. 3 6 - 3 8  of I to-McKean [11], and it can also be obtained from the 
results on pp. 3 2 9 -3 3 0  of Feller [7-1 (or, for large c, which is all that matters, 
from (3.6) of [-8]), or from an application of the results of p. 651 of [12], although 
it will be shorter to prove it directly by a simple method which has further appli- 
cations [14]. 

Lemma 1. I f  ~ is standard Brownian motion and T, L, 6, c are positive values 
with T< L, then 

8 T ~ _ _  e-C2/2T 
P{o~,,<,~TSUp I~(tO-~(t2)l>e} < c(2~)~ (6) 

and 

sup [~( tO_~( t2) [>e)<  8 ( L -  T+6)(T+26) ~ e_d/2(T+26 ( 
P {0~1~1 "< L2 ~L, ]tl--~2[ ~ r  I~ C(2 T~) - ' ~ -  (7) 

Proof. We first prove (6). Let F be the event that for some v and w in [0, T] 
with v < w  we have ]~(w)-~(v)[>c. The r.v. W is defined on F to be the least 
such w, and V is the least v corresponding to that w. Let F + =Yc~ {~(W)> ~(V)} 
and F -  =Yc~ {~(W)<~(V)}. The event W=w, depends only on {~(t), 0<t_<wl};  
hence, we have (as in L6vy's treatment ofs_<UtPr~(t)) 

P{~(T)> ~(W)]F+; W-~-W1} ~--1 (8) 

and thus, since ~(W)-~(V)--c  wp 1 on F +, 

P{F+}<2P{F+; ~(T)> ~(W)} 

= 2 P { F + ;  ~(r)-~(V)>=c} 
(9) 

=< 2 n {4 ( T ) -  0minr~ (t) ~ c} 

= 2P {ore< aXT[~ (T)-- ~ ( T -  t)] > c}. 

But the process { ~ ( T ) - ~ ( T - t ) ,  0=< t =  < T} is again a standard Brownian motion, 
so that L6vy's argument yields 

P {F+ } <= 4 P {~(T)>=c}. (10) 

The analogous result for F -  and the standard inequality for Gaussian tail prob- 
abilities yields (6). 

We now turn to (7). Let . /=  1 + int { (L -  T)/6}, and for 1 _< j ~ J define the event 

Fj={ sup ]~(tl)-~(t2)[>__c } . (11) 
(j-1)b<=tl, t2 <= T + j5 

For every interval [t 1, t2] of length _< T contained in [0, L] there is at least one 
j ( l ~ j ~ J )  such that It1, t 2 ] ~ [ ( j - 1 ) b  , T+jb]. Hence, the left side of (7) is no 

J 
greater than ~ P {Fj}. Each P {Fj} is bounded by (6) on replacing T there by 

1 
T+ 2 6. Since J ~ ( L -  T+  6)/6, we obtain (7). 
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We now state our upper class theorem. 

Theorem 1. Suppose there is a finite value fl > 0 such that 

l imsuplU, -n l / [2 f ln log logn]+< l wpl .  
n---, ~x3 

Then 
lira sup [~ (n) -  ~ (U,)1/[2 fln (log n) 2 log log n] + < 1 

n--.  oo 

Proof. Let e > 0 be given, and write 

q, = [2 fl(1 + e) n log log n] ~ 
and 

d ,=  [2/3(1 +e)3 n(log n) 2 log log n] ~. 

Let {n~} be any increasing sequence of natural numbers satisfying 

n, = {2 -1 fl(1 + e) r 2 log log r} [1 + o(r- 1)]. 

It is easy to compute that 

n~+ 1 - n ~ f l ( 1  +e)r log log r ~ q .  . (17) 
Let 

M . = { t :  t e R + ;  [ t -n l<q . }  (18) 
and 

We define the events 

M* = {(t, n): t e R + ;  neN;  I t -n l  <q,~+~ ; 

t, n~[n~-q  . . . .  , n~+ I +q,~+,]}. 

wp 1. 

(12) 

(13) 

(14) 

(15) 

(16) 

(19) 

A, = {sup ] ~ ( t ) -  r (n) l> d,) (20) 

and 
A*={ sup I~(t)-~(n)]>d,r }. (21) 

(t, n) e M *  

Our theorem will be proved if we show that 

P {A, occurs i.o.} =0 .  (22) 

If A, occurs for some n satisfying nr<n<nr+ 1, then clearly A* occurs. Hence, 
by the Borel-Cantelli lemma, (22) will follow from 

Z P {A*} < ~ .  (23) 

Let A** be the event defined by (21) when N is replaced by R + in (19). Clearly 
A* implies A r . We bound P {A. } by applying (7) with 

L=nr+ 1 - n ~ +  2q.r+ 1 ~ 3/3(1 +e) r log log r, 

T=-q..+~ ~/~(1 +e) r log log r, 

c = d.. ~ [2 fi (1 + e) 2 r log r log log r] ~, 
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and obtain 

P {A*} < P {A**} < 16 q~+, [1 + o(1)] 
rd~.(2:z)~ exp{-dZ~J2(q . . . .  +2r)} 

8 fl(1 +e)~ log log t" 
(re log r)_ ~ exp { -  (1 +e)(1 + o(1)) log r}. 

This yields (23) and completes the proof of Theorem 1. 

(24) 

3. Lower Class Result 

We again suppose there is given a probability space on which are defined a 
standard Brownian motion {~(t), t>0}  and a sequence of non-negative r.v.'s 
{T/, i>0}, and define U, as in (2). Our assumptions will be stated in (28) below in 
terms of certain positive values fi, ~, and 7 > 1. For any choice of such values, let 
{nr} be a specific non-decreasing sequence satisfying 

n ~  ~ (25) 

(for example n r = int {7~}), define q, by (14) and 

mr = n r -  nr- 1, (26) 

and define the events 

Dr={lU..-nrl<q.r},  

B r = { ( 1 - e )  q m < ( U . - n r ) - ( U . .  ;--nr_l)<qm.} , (27) 

F ~ = {  max [U.r+i -U. - i [<eq . , r  } for 6 > 0 .  
' l < i < b n r  

Theorem 2. Suppose there is a finite value fl > 0 such that for every sufficiently 
small e > 0 and sufficiently large 7 > 0 we have 

(a) e {D r for a.a.r} = 1, 

(b) P {B~ i.o.} = 1, (28) 

(e) P {5, ~ for a.a. r} = 1 for 6 sufficiently small and positive. 

Then, for either choice of sign, 

lira sup + [~ (n) - ~ (U.)]/[2 fln (log n) 2 log log n] ~ > 1 wp 1. (29) 
n ~ o o  

1 Proof Let e be given, such that 0<e<g~V, and e is small enough that (28) 
holds for all large 7. In particular, 

Choose 7 so large that 
(1_4~)2(1-+e),-~ > ~ .  16 (30) 

7 -  l > e - 2  (31) 

and that (28) holds. Choose 6 so small that the equation of (28(c)) holds. 
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If the event 
B,~F, ,~Dr_  1 (32) 

occurs, and if 
n,.<n<nr(l +~), (33) 

we have 
( 1 - 2 e )  qm,-q . . . .  < U , -  n < (1 +e) q~+q .... . (34) 

Since q .... /q,,,,,"~(7-1) -~ and (31) holds, if r is larger than some constant  (34) 
implies 

( 1 - 3  e)q,,,,< U , -  n < (1 + 2 e) q , , .  (35) 
We now define 

d', = [2 fl (1 - 4 e) 4 n (log r/) 2 log log n] § (36) 
Let 

Jr = int {6 nr/2 qm,.}, (37) 

and for 0 < i < Jr define the numbers 

n;, i=nr+int{i(1 + 5 e) q,,~}, 

n'/,i=n,+int{[i(l + 5e)+(1-4e)]q~,}, 
(38) 

and the events 

c;, ,= {~ (n;' ~)- ~ (n;, ~) > d ' J ,  
/ t  tp C: ' i={  sup ]~(~,i+Xqm)__~(nri)[<3~d . 1  , } ,  

' O < x < 8 e  ' ~ " 

Q'r = U C'r,i, (39) 
O ~ i < J r  

Q'r '= 0 C "  r ,  i ' 

O < - i < J r  

Suppose (35) holds for n=n'~,i, where O<_i<J r (so that  (33) holds for large r). 
Then 

n'r'i<n'r,i+(1-3e)qm,<U,~;.. <n'r,i+(l+2e)qm,.<n'r',i+Seqmr, (40) 

the extreme inequalities requiring only r >  some constant. Obviously, (40) to- 
gether with C'r, i ~ C"r, i entails 

~ ( u <  i ) -  ~. (n;, ,)> (I - 3 8~)d'. . (41) 

Since e is arbitrarily small, we conclude from (41) that  Theorem 2 will follow from 

P{B,c~F~,~c~Dr-1 c~Q'rc~ Q7 i.ol} = 1. (42) 

We shall show below that  

P{Q'r for a.a. r} = 1 (43) 
and 

P{Q'r' for a.a. r} = 1. (44) 

In view of (43), (44), (28 a), and (28 c), the condition (28 b) thus will entail (42) and, 
thus, our theorem. 
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It remains to prove (44) and (43), which we do in that  order. For  the comple- 
ment  of C" the familiar L6vy estimate and (30) yield, for all sufficiently large r, r ,  i 

and 0 <  i < J , ,  
- - i t  log P { Cr, i} =< - (3 e ~ d'~r)2/2 (8 e q,~r) < - (3 d'j2/16 qnr 

(45) 
= _ (9)  (1 - 4 ~;)2 (1 + e) -~ log n r < - (9)  log n r. 

Hence, for the complement  of Q ' /we have from (37), (45), and (14), for all large r, 

J r  - 1 
--t!  P{Qr} < ~, P -,, = {Cr, i}<(bnr/2qmr)n~ -~  

i = O  

(1 - 7 - 1 ) -  ~ ~5 n~-~  [-8 fl (1 + e) log log nr] - ~. (46) 

The Borel-Cantelli lemma and (46) yield P {~)'} i.o.} =0 ,  which is equivalent to 
(44). 

r ~ t t  t ~ Next, since 1 - 5 e < k ~, ~ - n,, ~3/q~ < 1 - 3 e for all sufficiently large r and for 
0 < i < Jr, the s tandard Gaussian tail estimate then gives 

[(1--6~)%r/2~]~ exp{ - - (d '~S /Z (1 -3e )  qmr }. (47) P{C; ' i }>  d' 
nr 

Hence, for all large r, and for 0 < i < Jr, 

log p {C,r,i} > , 2 - ( d J / 2  qmr(1--4 e ) 
(48) 

= -- � 8 9 1 7 6 1 7 6  ~ m  r log log m~ log n r . 

Since n J m ~ 7 / ( 7 - 1 ) < [ l + e  2] by (31), and since e<4@6o, we obtain from (48) 
for all large r and for 0 =< i < Jr, 

log P { C',, ~} > - �89 (1 - 4 e) [(1 + e2)/(1 + e)] ~ log n r 

> - �89 - e )  log n r. (49) 

Since for each sufficiently large r the C'r, i (0< i <  J~) are independent, we then 
obtain for the complement  of Q'r, 

log P {0'r} = ~ log P {C'r, ~} < (c5 nr/2 q J  log [1 - n; -(1-~)/2] 
i = 0  

< - ((5 n~/2 % )  n;- (1- ~)/2 (50) 

- ~ [8 (1 + e) fl (7 - 1) ? - a log log n,] - ~ n~/2 . 

The Borel-Cantelli lemma yields P {(~'r i. o.} = 0, which is equivalent to (43). This 
completes the proof  of Theorem 2. 

Remarks on Theorem2. 

1. The conclusion of Theorem 2 obviously remains valid under  such changes 
as replacing U, by - U ,  in the definition of B r, and replacing (28 c) by lira P = 1 

~$0 
(which is pretty artificial in view of 0 - 1  laws for { U,} which will usually hold in 
applications). 
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2. At first sight it may appear strange that no analogue of the last part of 
(3 a) is assumed in Theorem 2. This is misleading, since the strong assumption 
(28 c) allows us to avoid computing conditional probabilities of certain events, 
given B~, which might require an analogue of (3 a). Moreover, the verification of 
(43) by use of (50) makes strong use of the independent increments of ~, and the 
use of (43)- (44) in our proof requires (28 b) to hold; the verification of the latter 
in the application of Theorem 2 to Theorem 3 (Section 4) makes use of the 
structure of the {U,} process, and this can be expected in other applications. Thus, 
a weakening of (28), especially of (28 c), can be given if one assumes conditions 
including analogues of the last part of (3 a), but so far we have not obtained 
natural and useful conditions of this form. 

3. A crucial aspect of the proof is that although Q'r is concerned only with a 
small fraction fi/(7 - 1) of the interval [n,, n,+l], the number Jr is still large enough 
to yield (43). In generalizations and extensions one may want to replace (43)- (44) 
by an analogue of the weaker statement that ~) (C;, ~ c~ C'/, i) occurs for a.a. r wp 1. 

i 

4. Proof of Theorem 3 

We must verify the three parts of (28) in the i.i.d, case under the assumption 
(1) with fi>0. 

Condition (28 a) is a consequence of the Hartman-Wintner LIL [10]. 

To prove (28c), suppose (~ < 7 - 1 .  Write * " n r =lnt{nr(l+5)}.  There is a value 
p such that nr+l<n*<nr+ 1 for r>=p. The r.v.'s T/, nr<i<=n*, r>=p, are then 
distinct, and we relabel the sequence 

a s  

Znp+l, rnt,+2, . . . ,  Zn,o, rno+,+l  . . . . .  Zn,+l, Zno+2+D ... 

1+ V~, l + V 2 , 1 +  V3, ... . 

The Hartman-Wintner LIL for the V~ says that 

~ V~ <q,, (51) 

for a.a. m, wp 1. If (51) holds for two values m=M and m=k>M, we have 

~+IV~ <= ~V~ + ~V~I<qk+qM" (52) 

If f is any function from N into N with f(n)> n for all n, we conclude that, for 
a.a. M in N, wp 1, 

k 

max ~ Vii < qM + qf(~t) 
M<k_-<S(M) M-~I (53) 

< 2 qS(M)" 
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In particular, selecting only the values M = nr, r >  p, with f chosen so that f(nr) = n*, 
and writing r 

k r = ~ (n* - n~) (54) 
j=p 

for r > p, we obtain 

max 1U, r+i--U,r--il<2qk, for a . a . r>p ,  wp l .  (55) 
l<_i<_3nr 

Since kr~n r 67/(7- 1)~m r 672/(7 - 1) 2, we have 

2qkr~ [26�89 2/e(2-  1)] eq,~. (56) 

Hence, if 6<e2(y-1)2/472,  we have 2qk<eq,,, for all large r, and then (28c) 
follows from (55) and the definition (27). 

We turn finally to (28 b). While this condition can be verified in several ways, 
an expeditious proof relies on the Hartman-Wintner truncation scheme [10] and 
the validity of the analogue of (28 b) in Kolmogorov's lower class proof E16], as 
we shall now show. 

Firstly, given 0 <  e < 1, let e '> 0 be such that 

1 - 2 e ' > ( 1 - e ) ( l + e )  ~ and l + 3 d < ( l + e )  ~. (57) 

If T~ is truncated and centered (by constants depending only on i), say to Zi, 
exactly as in [10], so that [Z,[=o(n/q,), then it is shown in [10] that 

(T/-  Z,) = o (q.) wp 1. (58) 
1 

Moreover, the developments of Kolmogorov's lower class proof [ t6]  (also to be 
found in Lo~ve [17], pp. 260-262)  show, after minor arithmetic to verify the 
negligible difference (in the appropriate sense) between the first two moments of 

~ Z i  and U., that if 
1 nr 

Hr= ~ Zi-m, ,  (59) 
i = n r - l + l  

then for each small positive e' there is a small positive e" such that, for all large r, 

P {Hr > (1 - e') [2fl m r log log m~] ~} > r ~''- 1. (60) 

On the other hand, the analogue of the first inequality of (53) for the Z~ (and their 
LIL) rather than the Vii yields 

jH, J<(l+e')(2fl)}{(n~loglogn~)++(nr_~loglogn~_~) ~} for a.a.r, w p l .  (61) 

If ~ is so large that (1 + d)(7}+ 1)/(7- 1)~< (1 + 2~'), the Borel-Cantelli lemma for 
the independent H~ of (61), together with (60), yields 

~ P{1-e '  <H,[2flmrloglogmr]--~ <l + 2e'}= +oo. (62) 
r 
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By (58) and the analogue of (53) for the T i -  Z i instead of the V~, 

i=,~i+ (Ti-Zi) < ~' [2 /? mr log log m~] ~ for a.a.r, wpl .  (63) 

The sequence (in r) of sums on the left side of (63) being independent, the Borel- 
Cantelli lemma and (63), with (62), yield 

~P{1-2~'<[2~m~loglogmr]--~(U,r-U,r_l-m,)<l+3~'}= +oQ. (64) 
r 

From (57), the definition of (27), and the Borel-Cantelli lemma applied to the 
independent events of (64), we obtain (28 b). This completes the proof of Theorem 3. 
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