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Some Variants of Chi-Square 
for Testing Uniformity on the Circle 

J. S. RAO* 

1. Introduction 

One of the basic problems in the analysis of circularly distributed data is to 
find whether a given set of observations on the circumference of the unit circle 
indicate any preferred direction or whether the data can be considered to have 
come from a uniform distribution on the circumference. We shall assume, through- 
out this discussion, that the observations are given in terms of angles measured 
with respect to some suitably chosen origin (or zero direction), taking say, the 
anticlockwise direction as positive. A "goodness of fit" problem on the circle 
then is to test whether a random sample (e~, ..., c~,) comes from a population with 
a completely specified distribution function Fo(e), 0<e_<2n.  If the specified 
distribution function is continuous, then the points x~ = F 0 (c~i) may be considered 
as observations on the circle of unit circumference, where now, the problem is to 
test whether the observations (x~, ..., x,) come from a uniform distribution. Thus 
a goodness of fit problem on the circle can also be reduced to testing for uni- 
formity on the circle and the two problems are canonically equivalent just as 
they are on the line. 

Broadly speaking, the test procedures available for this purpose on the line 
may be grouped into three categories viz., (i) the methods based o n  )~2 (ii) the 
methods utilising the empirical distribution functions and (iii) those based on 
sample spacings, i.e., differences between successive order statistics. However, 
these methods are not, in general, directly applicable for observations on the 
circle because of special problems posed by the arbitrary choice of the zero 
direction. A test statistic should, clearly be independent of this arbitrary origin, 
in order that it can be meaningfully used with the circular data. 

In some cases, modifications of the usual test statistics on the line, so as to 
make them independent of the choice of origin, have been introduced for use 
with the circular data. For instance, when employing the methods based on 
empirical distribution functions, Kuiper [61 and Watson [111 suggested such 
modifications for the standard Kolmogorov-Smirnov and Cramer-von Mises tests 
respectively. On the other hand, if the Z 2 methods were to be exploited for testing 
uniformity, one can make the usual Z 2 test for uniformity invariant under choice 
of origin, by considering the maximum possible value of Z 2 (for a given number of 
class intervals) or by taking the average such Z 2. We obtain the asymptotic 
distribution of the latter in Section 2 by using methods similar to those in Watson 
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[12]. Looking at the problem from another angle, if one has a suitable class of 
parametric alternatives for the observations, one can improve on the usual )~2 
test by concentrating on those alternatives. We show, in Section 3 that a special 
type of X 2, suggested by Rao [8], gives a test based on the length of the sample 
resultant, when testing for uniformity against the class of "close C N  alternatives". 
Finally Rao [10] suggests and studies the third group of tests, based on sample 
arc lengths, which correspond to the spacings tests on the line. (Ref. Pyke [7] and 
the references contained therein.) 

2. An Average Z2 on the Circle and Its Asymptotic Distribution 

In this section, we consider the problem of testing for uniformity on the basis 
of a grouped data, by using the Z2 methods which involve comparing the observed 
frequencies with those expected. The value of the usual Z z statistic depends, in 
general, on the particular grouping adopted and we therefore suggest an average 
type of Z 2 and find its asymptotic distribution (a. d.). We also give a computational 
form for this average Z2 at the end of this section. 

Suppose the circular data consisting of n independent observations ~1,..., G 
is grouped into m class intervals of equal width, the first class starting with a 
suitably chosen direction ~. The number of classes, m, is held fixed throughout 
our discussion. Let the ith class interval be I i(~) = [~ + ( i -  1) 2 s / m ,  ~ + i 2 s /m)  = 
[~i ~+ 1), say, for i =  1 . . . . .  m. Suppose n i = ni(a ) is the number of observations that 

fall in I~(~) and let n = ~ n  i be the total number of observations. For testing 
1 

uniformity on the basis of this grouped data, the usual Z2 statistic with equal 
expected frequencies under the hypothesis is 

m 

d = 
1 

(2.1) 
= n - s ~ z / s ~  

1 

where Pi (~)= nl (~)/n and ~o (~)= 1/m denote the observed and hypothetical relative 
2 frequencies in the ith class. The statistic given in (2.1) has, for n large, a Z<m-1) 

distribution under the hypothesis of uniformity. But this statistic clearly depends 
on the particular grouping adopted or in other words on the starting point ~. 
However, this dependence, it may be remarked, is not peculiar to observations on 
the circle alone. 

The Z 2 statistic (2.1) can be made independent of ~ (or the particular choice 
2~ 

of grouping) by considering, for instance, Sup ~(~) or ~ X~(~)d~. We shall now 
0 

find the asymptotic distribution (a. d.) of the statistic 

2s  o (2.2) 

- -  ni(o 0 - -  d ~  
2rcn o i=1 
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under the hypothesis of uniformity. (Here the subscript n for Z 2 is used to denote 
the number of observations on which it is based.) The a.d. of )~z can be evaluated 
by adopting the following standard method. First, it can be established that the 
empirical process 

converges to a m-variate Gaussian process on [0, 2~). Then appealing to the 
invariance principle, the a.d. of Z 2 is the same as that of the limiting statistic Z 2, 
expressed in terms of the Gaussian process. The Fourier representation of this 
Gaussian process reduces this ~2 t o  an infinite summand of m-variate complex 
Laplacian variables, whose theory is by now well known (see e.g. Goodman [5]). 
A more elementary but essentially equivalent approach is given in Watson [12] 
and we adopt this approach to find the a.d. in our case. Define the indicator random 
variables 

)~j(c~) = { ;  if~176176 otherwise (2.3) 

for j = 1,..., n and i= I .. . .  , m. Then 

]=1 
(2.4) 

which, being a periodic function, may be expressed in Fourier series as (the Fourier 
representation holds for all except a finite number of ~ where the jumps occur) 

where 

and for k + 0 

since 

3* 

(ni(a) - n )  =aio + ~ (aikCOSka+biksinke) 
k=l  

1 2~ 
a i o = ~ -  ~ ! ~ (Z~(~) - 1 )  dc~=O 

1 ~ (~)- cos k~ dc~ 
a l k ' ~  7~-- " 0 

~j_ 2 n~(/m- 1) 

=ky,  f cosk d  
7~ j 2hi  

~J m 

if c~j- 
27r 21ri 

<~i==_c~j i.e., i f ~ j - -  <a__<c~j 
m m 

otherwise. 

27r(i- 1) 
m 

(2.5) 

(2.6) 

(2.7) 



36 J .S.  R a o :  

Thus, from (2.6) k rc 
2 sin - -  

m ~ c o s k  c~j- 27r( i -1) .  (2.8) 
aik kTr j = l  m " 

Similarly bik, the coefficient of  sin ka,  can be shown to be 

k~  
2 sin - -  

i ( ) m 
sin k cq bik-- k~z m 

j = l  

N o w  for a fixed k, consider the set of 2m coefficients {(alk, big), i= 1, ..., m} 
given in (2.8) and (2.9)�9 Since the ~j are independently and uniformly distributed 
on [0, 2 re), it is easy to check that  

E(aik)=E(bik)=O 

E(aik ajk)=E(bikbjk)  = 

kTz 
2n sin 2 - -  

m 2 ~ k  
k2 ~c 2 cos (j - i) - - m  

2n sin 2 k ~  
m 27rk 

E(aik bjk ) -- k2 r~ 2 sin (i--j) ~ -  

(2.10) 

for i, j =  1 . . . .  , m. Further,  for every fixed k, when n is large, by the multivariate 
central limit theorem, the r a n d o m  vector of  2m variables 

1 
tl'~k= 1/~ {alk big a2k b2k"" amk bmk} (2.11) 

converges in distr ibution to a r a n d o m  vector t/~, which has a 2m variate normal  
distribution with means zero and variance covariance matrix 

s k = E rl k rl'k = 
( 2 m  x 2 m )  

1 

0 

x 

cos (m - 1) - -  

- sin (m - 1) - -  

2 sin 2 k r c  ) 
m 

7r 2 k 2 

0 

2 g k  
sin (m - 1) . . . .  

m 

27rk 
cos (m - 1) . . . .  

m 

... c o s ( m -  1) 

... s i n ( m -  1 ) - -  

. ~ 1 4 9  

2rrk 
1 

m 

2 ~ k  
0 

m 

27rk s i n ( m - l )  2rrk 
m m 

27r k c o s ( m -  1) 2~ k 
m m 

1 

(2.12) 
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with the elements corresponding to those defined in (2.10). Moreover in view of 
the orthogonality of the Fourier coefficients, for k4=k', the random vectors ~/.k 
and q,k" converge to independent normal vectors li~ and lik'- Now from (2.2) 
and (2.5), 

- n~(~)- dc~ 
2rcn i=1 o 

- a + .re 
2Icn ~=t k 

ct3 

m oo 

=5- k_21Q.k 

(2.13) 

where Qnk=li'nkqnk is a quadratic form in Iln k. However, since link converges in 
law to t/k as n ~ 0% the a.d. of Q, ~ is that of Qk = lii, q~ where r/k is the random vector 
with means zero and covariance matrix 2 k given in (2.12). Because of this and the 
independence of the quadratic forms Q,~ and Q.~, for k+k', the a.d. of 

is the same as that of 

for any finite N, i.e., 

N 

S,u= ~ Q,k (2.14) 
k = l  

N 

Su = ~ Qk (2.15) 
k = l  

S, N L , SN (2.16) 

where- L ~ denotes convergence in law. IfS,~o and S~o stand for the corresponding 
infinite summands of the quadratic forms, we show below that 

S,,~, ~ S~o (2.17) 

by arguments similar to those in Beran [3]. 

In Fx(.) denotes the distribution function of the subscripted random variable X, 
then for any arbitrary continuity point x of Fs= (x), we have 

[Fs,~(x)-Fs~(X)l < IFs.~ ( x ) -  Fs,~, (x)[ + IFs,N(x)-FsN(X)[ + [Fs~, ( x ) -  Fs= (x)[. (2.18) 

But since 

E(Q,k)=4m 

EISnoo-SnNI = ~ E(Qnk) 
k = N + l  
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and 

k = N + i  

are the tails of convergent series. Therefore by Markov's inequality 

(S,,~ - S,N) v , O, 

(So~ - SN) P ~, 0 

uniformly in n as N ~  oe. Hence for any 8 > 0, there exists an N independent of n 
such that 

IFs.~ ( x ) -  Fs.,, (x)l < 8/3 
(2.19) 

I Fs~ ~ ( x ) -  Fs~ (x) l < 8/3. 

Now for this choice of N, we can get a n o such that for all n > no, 

IFs~ (x)- F~ {x) l < 8/3 (2.20) 

in view of (2.16). For such an n, (2.18), (2.19) and (2.20) imply 

IFs.~ ( x ) -  Fs~ (x)l < 8. (2.21) 

Further since the distribution function of So~ is continuous, by Polya's theorem, 
this convergence in (2.21) is uniform in x. Thus the distribution of 

2 m oe 

z. =5- k~lQ.k 

converges not only weakly but uniformly to that of 

2 Qk as n ~ o o .  
k = l  

Now the distribution of Qk -= I"]' k ilk is not difficult to obtain but notice that 
2; k = ((0)) if k is a multiple of m and for k + 0 (rood. m), it is only of rank 2 as can be 
seen from the fact that the third order principal minors of S k vanish. Therefore 
r/k can be reduced to a two-dimensional random variable Yk by means of a trans- 
formation 

~/k = Bk Yk (2.22) 
(2m• 1) (2rex 2) (2 •  

where B k is such that B k B'k=~,k, B k is of rank 2 and Yk is distributed as N(0, I2) 
(see e.g. Rao [9], p. 440), 12 standing for an identity matrix of order 2. Because of 
the fact that Yk is distributed as N(0, I2), the characteristic function (cf.) of 

is given by 
QR = tl'k tlk = Y[ (B'k Bk) Irk 

(]~k (t) = det -  ~ 1I 2 - -  2 i t B' k Bk]. (2.23) 
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In our case, Z k given in (2.12), can be written as Bk B'k where 

kT~ 
V~ sin - -  

m 

B~,= k~ 

2rrk 2rtk 
-1 0 cos sin 

m m 

x 

0 1 sin--2nk cos 2rck 
m m 

2rck 
... c o s ( m -  1) 

m 

2~k  
... sin (m - 1) - -  

m 

s in(m-  1 ) ~ 1 .  

c o s ( m - 1 ) ~ - J  

(2.24) 

For this Bk, since 
kTz  

2m sin z - -  
m 

B '  k B k = k2 7i 2 12 '  (2.25) 

the cf. of Qk, from (2.23), is 

sin2__krt 12 
1 , m 

~bk(t)= det - "  I2-41tm k27~2 
i 

= 1 kZn2 i . 

(2.26) 

Now from the independence of ~k and qk' for k + k', the asymptotic cf. of Z, z can be 
written down using (2.13) and (2.26) as 

with 

2m2 sin2 krc t) -1 
m 

~b(t)= ~I 1 k2rc 2 i 
k = l  

= [~ (1--it  2k) -I  
k = l  

(2.27) 

2k=2 sin2 k ~ / ( ~  -)z' m (2.28) 

If k is a multiple of m, the corresponding )~k is zero so that it does not contribute 
anything to the cf. of Z 2. We mentioned this earlier by saying that for such a k, 
s = ((0)) SO that the contribution of the corresponding quadratic form Qk is zero. 
From (2.27), the asymptotic distribution of the Z a statistic can be formally written 
down. If f (x) denotes the density function we have by the inversion formula 

fe-""l-rl(1-/,xo-';i a,. 
.g. 7~ --oo k 

(2.29) 



40 J.S. Rao :  

Since the 2 k are positive and distinct there are only simple poles for the integrand 

and they occur in the lower half of the complex plane at t k = 1 .  The integral (2.29) 
i2k 

can then be evaluated by closing a contour in the lower half plane and f ( x )  is 
given by i times the sum of the residues at the poles. Thus 

f ( x )  = ~ c k exp [ - X/2k] for x > 0 (2.30) 
where k 

c k = [2 k ~ (1 - 2k,/;t0]-i 
k '  :~ k 

and zero otherwise. From (2.27) one can write down the ffh cumulant, tcu of the 
distribution and we have 

tc = ( # _  1)! ~ 2y = 2 , ( # _  1) !_2~ y sin2, 2~,. 
j = l  71; j = l  

For getting the percentage points for this distribution, some numerical approxi- 
mations may have to be found or use may be made of the first four cumulants to 
find a suitable Pearson curve approximation. 

The statistic Z 2 given in (2.2) in the integral form can now be expressed as a 
finite sum and given the following computational form 

2 m n i (or - -  d ~ x  

Zn-  2rcn o i=1 

m [ Zj(a)] 2 - 2  n n 2 
- 2 = n  . )~5 dc~ 

I 

= " 2 l -  V 2 ~z n . j j:c j, 

since [Z}(e)]2- = Z~(~). Now from (2.7) 

2h i  2~ ( i -1 )  
if either c~j,- - < :~ < as 

m m 

2rci 2 ~ ( i -  1) 
or c~s-- <~<~s '  

m m 

otherwise. tO 

(2.31) 

(2.32) 

Using (2.7) and (2.32) in (2.31), 

Z ~ = 2 ~ n ~  1 2n 2~ 2re 2 r c n  z ]  

(2.33) 

. . . .  + ' <~ t2~  ~ 0,J):J s ,  D~v, 

where Dss, denotes the "circular" distance (i.e., smaller of the two distances) 
between the observations c~ s and c~ s, on the circumference. Simplifying (2.33) 
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further 

2~n  (m-2n)  ~-~-2 + ~ + ~  m m J,J, D. ,  

: , : )  j, .t 

m 2 _ ~  ( 2 ~  D. .] (2.34) 

n j , j ,  \ m JJ'] 

Thus the invariant version (2.2) of the usual Z 2 statistic, depends on the sample 
arc lengths between the observations. These arc lengths play a crucial role in the 
case of the circle as any invariant test statistic has to be a function of these values. 
A detailed discussion about these arc lengths can be found in Rao [10]. The 
statistic 22, in this form (2.34), looks like a "U-statistic" (see e. g. Fraser [4]) which 
it is not in the strictest sense. The usual central limit theorem for the U-statistics 
thus fails in our case. Finally it may be remarked that the Ajne's statistic A, 
discussed in Ajne [1] and Watson [12] is a special case of our )~2 statistic when 
the number of class intervals into which the circumference is divided is only two. 

3. Testing Uniformity against a Specific Class of Parametric Alternatives 

In this section we consider the problem of testing uniformity from a different 
point of view. Suppose a specific class of parametric distributions can be con- 
sidered as plausible alternatives to uniformity. Such a class can often be specified 
at least approximately, in practice. Then we can improve on the Z 2 given in (2.1) 
by concentrating on these alternatives and using a Z 2 statistic suggested by Rao [8] 
where one compares the estimated cell frequencies under the alternatives with 
those under the hypothesis. Suppose it is desired to test for uniformity, against 
the class of unimodal symmetric densities given by 

1 
g(c~lp, 7 ) = ~ - +  p cos (c~- 7), 0~c~<2~ (3.1) 

where 0 < 7 < 2 ~  and p > 0  denote the location and concentration parameters 
respectively. It may be observed that circular normal densities close to the hypoth- 
esis of uniformity (i.e., with a low value for the concentration parameter) can 
be put in this form. Under these alternatives (3.1), the ith cell has probability 

= S + p  cos(fl- ,) dfl 
a + ( i - - 1 ) 2 ~ / m  

1 { ( 
= - - + p c o s 7  2 s i n ~ c o s  e-~ 

m m 
(3.2) 

+ p s i n 7  2sin ~ s i n  ~-F 
m 

1 
= - -  { l  + ~ x i + r l y i }  

m 
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where 
= p cos 7, ~ = p sin 7 

x i = 2 m s i n - - c o s  c~-t- 
m 

yi=2 m sin _~ sin (e + (2i ~ 1)n) 
/~/ m " 

(3.3) 

Now in order that the required asymptotic distribution holds good for the 
statistic given in (3.9), these n~'s should be estimated by any method of estimation 
that is "efficient" in the sense of Rao i.e., satisfying the assumption (3) of Rao [8-1. 
The validity of this assumption can be verified easily for the estimates ~" and 
obtained by minimising the quantity 

t = E1 (Pi - lci)2/1~0 = m ~1 (mpi -- 1 -- ~ X i -- q yi) z . (3.4) 

On using the trigonometric relations 

( 2 i - 1 ) n _ ~  (2 i -1)n  ~ (2 i -1)n  (2 i -1)n  
2. c o s -  ~, sin 2. cos sin =0  
1 m 1 m 1 m IT/ 

(3.5) 
m m 

cos2 (2 i -  1)n _ ~ sin2 (2 i -  1)n 
1 m 1 m 

- m / 2 ,  

the estimating equations simplify and we get 

where 

"~=m~PlX i x =~/msin n 
m 

O=m~piY~  yZ=g/msin__ 
1 / 1  D'I 

(3.6) 

n g = ~ n i c o s  c~-~ and n?=~n~sin  a-~ (3.7) 
i m i m 

are nothing but the components of the vector resultant based on the grouped 
data. Thus from (3.2) and (3.6), 

~ i = l ( l  +~x,+Oy,)  
m 

= l + ( 2 / m )  gcos e4 +~sin e-~ . 
Hq P// m 

Let Eoi=nn ~ and El i=n~i,  denote respectively the estimated frequencies in the 
i th cell, under the restrictions imposed by the hypothesis, and When there are no 
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restrictions on the parameters.  Then Ra o  1-8] suggests the statistic 

m 

T= ~ (Eli-Eoi)2/Eoi = n E (~h- ~o)2/~o 
1 1 

(3.9) 

to test the hypothesis  that  the data  follows a uniform distribution given that the 
admissible set of  probabilities rc i =rci(p, 7) have the representat ion given in (3.2). 
Using the relations (3.5), the statistic (3.9) reduces to 

= 2 n (72 + 32) = 2 R2/n 
(3.10) 

where R 2 is the squared length of the resultant based on the given grouped data. 
The value of  this RZ,computed on the basis of  the grouped data  apparent ly  depends 
on the part icular  grouping adopted.  But as is well known the length of  the resultant 
based on the ungrouped  or raw data is independent  of  the choice of  the zero 
direction so that  the statistic (3.10), is invariant if the effect of grouping is ignored. 
However,  since the grouping correct ion needed for R 2 turns out  to be quite 
negligible even when we have o n l y  about  ten to twelve class intervals (see e.g. 
Batschelet I-2]), the statistic is a lmost  as good  as an invariant  one if m is not too  
small. 

Now,  under  the density (3.1), the cell probabilities rc i have a parametr ic  re- 
presentat ion in terms of  two independent  parameters  p and 7 or equivalently in 
terms of  ~ = p cos 7 and q = p sin 7. On the other hand, the hypothesis  of  uniformity 
is equivalent to the simple hypothesis  that  the parameter  point  is the origin i.e., 

= 0, r /= 0. Hence the statistic T, given in (3.10), has asymptot ical ly  a Z 2 distr ibution 
with 2 degrees of  freedom (ref. Ra o  1,8]). It is interesting that  the special type of  
g 2 test (3.9) reduces to an analogue of the classical Rayleigh's  test for grouped 
data  on the circle. 

I am grateful to Professor C.R. Rao of the Indian Statistical Institute for his encouragement and 
advice. 
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