Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 25-32 (1972)
© by Springer-Verlag 1972

Changes of Time, Stochastic Integrals,
and Weak Martingales

N. KazaMAKI

1. Time Changes Transformations

We need first a series of definitions.

Let Q be a set, & a Borel field of subsets of @, P a probability measure defined
on {Q, ). We are given a family (&,) of Borel subfields of §, increasing and right
continuous (te[0, co[). We may, and do, assume that § has been completed
with respect to P, and that each §, contains all F-sets of measure 0.

We assume that the reader knows the usual definitions: stopping times,
martingales, etc. A notation such that “let M =(M,, §,) be a martingale” means
that the martingale property is relative to the &, family. All martingales below
are assumed to be right continuous.

By a change of time T=(§,, t,) we mean a family of stopping times of the &,
family, finite valued, such that for ;e Q the sample function 7. (w) is increasing’
and right continuous. We say that the change of time is continuous if these sample
functions are continuous. Of course change of time T=(®,, t,) can be defined with
respect to some other right continuous family &, of sub-g-fields of §. If then
X =(X,, %, is a right continuous process, we denote by TX the process (X, , ®,),
called the time changed process of X. We say that the change of time T is X-
continuous if X is constant on all intervals [t,_g, 7,], and on [0, 74].

As usual, we do not distinguish two processes X and Y such that for a.e.
@ X, (w)=Y,{w). This is important for the understanding of uniqueness statements
below.

Lemma 1. Let T=(§,,7,) be a change of time. Then the &, family is right
CONLINUoOUS.

Proof. Clearly this family is increasing, and so it suffices to prove that §, . < &, -
For every A€ §,, .o and every u=0 we have

Anf(r<u)ed, (>0)
from the right continuity of T it follows that An {r,<u}e§,. Thus 4§, .

Lemma 2. Let T=({,,t,) and S=({,,, s;) be two changes of time. Then ST=
(8, 75,) is a change of time.

Proof. Lemma 2 amounts to the following fact: if R is a stopping time of the
&., family, then 1, is a stopping time of the &, family. Otherwise stated, we want

! By increasing we mean “non decreasing”, by positive “non negative”.
2 This notation means that X, is adapted to the &, family.
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to prove that {tp<t}e, for all t. It follows from right continuity that this event
is the union, over all rationals r, of the events {R <r, 7, <t}. Since R is a stopping
time of the &, family, {R<r} belongs to &, , and therefore {R<r}n{r, <t}
belongs to &,. This completes the proof.

The following definition of a local martingale is slightly different from that
of [3], but the authors themselves agree that it is the most convenient one.

Definition 1. A stochastic process M =(M,, §,) is said to be a local martingale
(resp. a locally square integrable martingale) if there exists an increasing sequence
(T;) of stopping times of (&,) such that lim T,=c0, and for each n the process

(M, .. Iz, . oy &) is an uniformly integrable martingale (resp. an I*-bounded one).

Note that if M, is integrable, the process (M,, 1 , &) also is a uniformly
integrable martingale.

Proposition 1. Let M=(M,, §,) be a local martingale. If T=(§,, t,) is a finite
M-continuous change of time, then T M is a local martingale. This applies in particular
to continuous changes of time.

Proof. Set N,=M,_, and denote by (T;) a sequence of stopping times satisfying
the conditions of Definition 1. Set J,=inf{u=0:1,=T,}. It is immediately seen
that for each n J, is a stopping time of the &, family, that J, 1o, and that
{0<J,} ={0<T,}. The theorem therefore will be proved if we show that for each n
(N, . 1,» &) 15 an uniformly integrable martingale on {0<T,}. Now define

Dnz‘CJ"—Oa En=T.I,.'

For t<J,, we have N, ;, =M, , 1, and for t=J, we have N,, ; =M . Since T
is M-continuous, M is constant and equal to My, on the interval [D,, E,]. There-
fore we have N,, , =M, , 1 . Now the process (M, , 1 Iz, . o)) is a uniformly inte-
grable martingale, and so is (M., , 1, I;r, .. o;) by Doob’s optional sampling theorem.

Lemma 3. Let U and V be stopping times of the §, family, such that UZV.
Then there exists a continuous change of time T=(§,,t,) such that t,="U,
T (=limz)=V.

t— 0

Proof. Put 1,=U v (V A t). Then (§&,,,) is a change of time possessing the
desired properties.

Remark. The sample functions 7,(w) aren’t strictly increasing. This is impossible
in general, since the stopping time V can be totally inaccessible.

Theorem 1. Let M=(M,, §&,) be a local martingale (resp. a locally square
integrable martingale ) such that Mo =0. Then there exists a continuous change of
time S=(g;, s,), increasing from 0 to + oo, such that SM is a martingale (resp. a
square integrable martingale® ).

Proof. Let (T,),>, be a sequence of stopping times satisfying the conditions of
Definition 1. Without loss of generality we may suppose T,<n for all n, and set

T,=0. According to Lemma 3, for each n= 1 there exists a continuous change of
time S"=(g,, s) such that s§=T,_,, s% =T,. For each n, let g, be an increasing

3 A martingale N is said to be square integrable if E[N2] < co for all .
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bijection of [n—1, n] onto [0, co]. We have

o — _an—1_ -1
Satn—1) =50 =Ty 1 =50 =S n_1-
The formula

S,=S;n(,) lf n—"1§t§n

therefore defines a continuous change of time. By Doob’s optional sampling
theorem (M, , 1, &) is a uniformly integrable martingale (resp. an I*-bounded
one), and this means, since s,=1T,, that SM =(M_ , &) is a uniformly integrable
(resp. an I?-bounded) martingale when restricted to [0, n]. This completes the proof.

Remark. Set ,=§,,, N=M,, and a,=inf{u:s,>t}. Then it is very easy to
check that A=(®,, a,) is a change of time, and AN is equal to M.

We are going now to investigate the behaviour of stochastic integrals with
respect to a local martingale M under continuous changes of time. The definitions
of (M, M), [M,M], predictable processes, M and M? (the continuous and
discontinuous parts of M), and the stochastic integral C-M are taken from [3].
However, we shall summarily recall them during the proof, for the reader’s

convenience.

Proposition 2. Let M=(M,, §,) be a local martingale such that My=0, and
let T=({,, t,) be a continuous change of time such that 1,=0. Then we have

1) (TM) =T(M"); (TM)'=T(M").

2) [TM, TM]1=T(M, M]), and if M is locally square integrable {TM, TM )=
T({M, M>).

3) If C=(C,, &) is predictable and locally bounded, then TC is predictable and
locally bounded with respect to the family (§.,), and we have TC-TM =T(C-M).

Proof. We set N=M,,, ®,=§, .

We first remark that if C=(C,, &,) is an adapted and left continuous process,
then T Cis also adapted and left continuous with respect to the 6, family. Therefore,
since predictable processes are those which (as functions of (¢, w)) are measurable
with respect to the g-field generated by all adapted left continuous processes, it
follows that if C is predictable, so is TC with respect to the ®, family.

We start with the case of an I?-bounded martingale M. Then (M, M) is defined
as the only predictable increasing process such that

(M,M>,=0, {(M,M)—M?* isa martingale.

In this case, this martingale is even uniformly integrable. Therefore T({(M, M) is
0 at time 0, and T({M, M) —M?) is a martingale (uniformly integrable). This
implies T({M, M»)={TM, TM .

Next, we recall that the I*-norm ||M|, is defined as the norm in I? of the
random variable M, ==tlirt1;10M,. It is clear that |[TM|,<|M]|,. M is said to be

purely discontinuous if M is orthogonal to every I?-bounded, continuous mar-
tingale. This amounts to saying that M is the limit (in the I?-norm) of [*-bounded
martingales M’ the sample functions of which have bounded variation on [0, co].
The martingales TM® possess the same property, and therefore if M is purely
discontinuous, so is TM.
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M can be uniquely decomposed as M =M*+M‘, where M® and M* are -
bounded, M° is continuous and M? purely discontinuous. We obviously have
TM = T(M)+ T(M?), T(M°) is continuous and T(M?) purely discontinuous from
the above. Therefore this must be the unique decomposition of TM.

The increasing process [M, M] is defined as

[M, M1, =(MC M€+ ) (AM)
st
where AM, is the jump of M at s. This formula shows at once that [TM, TM]=
T(IM, M1]).

If C is an “elementary” predictable process, i.e. if there exist times
0=t0<t1 <t,,=OO,

and random variables co, ..., c, such that ¢, is §, -measurable for k=0, ...,n,
and C,=¢, for t,<t=t,,,, then an elementary computation shows immediately
that T(C-M)=TC-TM. If we call I*(M) the set of all predictable processes C
such that the norm

([ fezscnn)

is finite, then the stochastic integral operator C+ C- M is a continuous operator
from I*(M) to the space of I?-bounded martingales, and the “elementary”
predictable processes CeI?(M) are dense in I?(M). The norm of TC in I*(TM)
is at most that of C in I*(M), and the relation T(C-M)=TC-TM extends by
continuity to all Ce IZ(M). This completes the proof of the I>-bounded case.

Next we assume that M is a local martingale, and we consider a sequence
(T,) of stopping times satisfying the conditions of Definition 1. As in Proposition 1,
we set J,=inf{u=0: 1,2 T}, and we denote by M" the martingale M stopped at
T,, by N" the martingale N stopped at J,. We have N"=TM", because T is con-
tinuous.

The process M" is an uniformly integrable martingale, but not an I*-bounded
one. However, it is shown in [3] that the stopping times T, can be chosen in such a
way that one can write

Mn — Hn + Vn

where H" is an I”-bounded martingale, and V™ an uniformly integrable martingale,
the sample functions of which have bounded variation on [0, c0], and even

E [ ﬁdm] < ([3], Proposition 4). We set TH"=K", TV"= W,
4]

The martingales H* and V" aren’t uniquely determined, but the continuous
part of H" is uniquely determined, since V" has bounded variation. Let us denote
it by M". We define M* as the unique continuous local martingale which coincides
with M™ for 0<t<T,. We have from the above T(M")=T(H")= K"= N"‘, and
therefore T(M)=N°*. Defining M? as M —M¢, we have T(M%)=N‘ We have,
also from the results on I?-bounded martingales, T({M¢, M})={N¢, N*, if we
define (M°¢, M) as the process which coincides with {(M", M"> for 0=t<T,.
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When M is locally square integrable, we can take V"=0 for every n, and define
{M, M) as the process which coincides with (M", M") for 0<t<T,. Then we
have T({M, M>)={(N, N>.

We define [M, M], as <MY M+ Y, (AM)* 1t is obvious that T([M, M)
=[N, N]. 53¢

Let C be a predictable locally bounded process: this means that the stopping
times T, can be chosen in such a way that the processes C"=(C,, 1, I i1, o), &)
are uniformly bounded in absolute value (by constants which may depend on n).
Then if we set D= T'C, the processes D"=(D, . ; I, . o;, ®,) are smaller in absolute
value than T'C" and therefore D is locally bounded. The stochastic integral C- M
is defined as the local martingale which coincides for 0t < T, with C*-M"=
C"-H"+ C"- V", where C"- H" has been defined above, and C*- V" is an ordinary
Stieltjes integral. It can be shown that it depends neither on the decomposition
M"=H"+ V", nor on the stopping times T,. It follows from the results on I*-
bounded martingales that T(C"- H")=TC"- TH", and it is obvious that T(C"- V")
=TC"-TV" Therefore T(C"-M")=TC"-TM", and letting n tend to infinity,
that T(C-M)=TC- - TM. This completes the proof.

2. Weak Martingales

Definition 2. A stochastic process M =(M,, &,) is said to be a weak martingale
if there exists an increasing sequence (7,) of stopping times of the &, family such
that

i) for each n there exists a right continuous, uniformly integrable martingale
M"=(M}, &,) such that M,=M] for 0<t<T,.

i) lim T, = + oo.
n

For shortness, we shall say in this paper that a stopping time T reduces a
right continuous process M=(M,, §,) if there exists a uniformly integrable
martingale H=(H,, &, such that H,=M, for 0<t<T. Since (H,, ) still is a
uniformly integrable martingale, we can always assume that H is stopped at time
T. Note that the word “reduces” isn’t used here in the same sense as in [ 3], where
it was demanded that H,=M, also for t=T on {T >0}. If T reduces M, so does
any stopping time S<T.

It is obvious that a local martingale is a weak martingale. Also, if (M,, §,) is
a weak martingale, so is (M, , r, &,) for any stopping time T.

The following theorem is the reason for considering weak martingales.

Theorem 2. If M =(M,, &,) is a weak martingale, then for every change of time
T=(g,,t,), TM is also a weak martingale.

Proof. Denote by T,, M", stopping times and martingales satisfying the con-
ditions of Definition 2. As in the proof of Proposition 1, set N.=M_,

Jy=mf{u: 1,2 T,}.
We have seen in that proof that, t < J, implying t, < T,, for t <J,, we have

N=M,=M; =N/
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where the process (N{, &.)=(M!,,) is an uniformly integrable martingale
according to Doob’s optional sampling theorem. This means that the stopping
times J, reduce (N;, &, ), which is therefore a weak martingale.

We are going now to investigate the properties of weak martingales.

Lemma 4. Let M =(M,, §,) be a right continuous process. Assume there exists a
sequence (S,) of stopping times reducing M (not necessarily increasing) such that
lim S,= + o a.e. Then M is a weak martingale.

n

Proof. The stopping times T, = igf S,, increase, reduce M, and converge a.e.
mzn

to +o0. To get stopping times which increase everywhere to + o (as in Defini-
tion 2), remark that any positive random variable equal a.e. to a stopping time is
itself a stopping time (since all null sets belong to &;). Then set T,=T, for all n
if lign T, =+ o0, and T,=+ oo for all n otherwise. These stopping times satisfy

the conditions of Definition 2.

Lemma 5. Assume M =(M,, §,) be a right continuous process. Assume there
exists an increasing sequence (R,) of stopping times, such that lim R, = 4 o0 and

n
that for each n there exists a weak martingale M" equal to M for 0=t <R,. Then
M is a weak martingale.

Proof. Replacing if necessary R, by R, An for all n, we may assume that the
stopping times R, are finite. Let then R; be a stopping time reducing M", such
that P{R,<R,}<27" and let S, be R,AR,: S, reduces M", and since M]=M,
for all 1 < S, it also reduces M. On the other hand, according to the Borel-Cantelli
lemma we have lim S, = + o0 a.s. We conclude the proof with an application of
Lemma 4. "

The following result is useful for many purposes. Semimartingales are defined
in [3], but the meaning of this word will anyway be clear from the proof.

Proposition 3. Let T reduce the weak martingale (M,, §,), and let M" be the
process (M, 7, &,). Then M¥ is a semimartingale.

Proof. Let (H,,&)=H be an uniformly integrable martingale, such that
H,=M, for 0Lt<T. We may assume that H is stopped at time T. Since H is
uniformly integrable, we have H,=E[H|&,]. Set

Hf=E[H;|§], H =E[H,|&].
These are two positive martingales, uniformly integrable. Next, set
Yr=H I, ., Y =H ILip.

These are now two positive supermartingales, belonging to the class (D), which
therefore have decompositions in Doob’s sense

Yr=U =V, Y =U"-V".

Here U* and U~ are two uniformly integrable martingales, and V*, V'~ two
predictable, integrable increasing processes. Set U=U*~U~, an uniformly
integrable martingale; V=V~ — V¥, a predictable process whose sample functions
have bounded variation on [0, cc], and remark that Y,* — Y, =M1, _y,. There
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comes:
M =UA+V+ Ml n=U+W,.

The sample functions of W have bounded variation on [0, c0], but their total
variation in general isn’t integrable. This decomposition shows that M7 is indeed
a semimartingale in the sense of [3].

Proposition 4. Let M =(M,, §,) be a weak martingale. For each stopping time T,
denote by MT the weak martingale (M, , 1, &,). Let C=(C,, &, be a locally bounded
predictable process. There is an unique weak martingale C-M such that, for any
stopping time T reducing M, C-M is equal for 0t <T to the stochastic integral
C-MT of C with respect to the semimartingale M7,

Proof. Let us assume that T reduces M, and keep the notation of the pre-
ceding proof. We first recall that C- M7 is defined as C- U + C- W (the second one,
an ordinary Stieltjes integral), which depends only on M7, not on the decomposi-
tion MT=U+ W (see [3]). It follows from the behaviour of stochastic integrals
under stopping that, if (7) is an increasing sequence of stopping times reducing
T, such that T - oo, the processes C-M™ and C- M™+! agree for 0<t<T,, and
therefore can be pasted together into one single process C-M. The only non
obvious remaining point is the fact that C- M is a weak martingale. To see that,
we come back to T reducing M and to the preceding notations. We have

H=U+V,+Hylys 7.

Therefore, C- MT and C- H agree for 0<t< T. The latter one being a local mar-
tingale, the result follows from Lemma 5.

The decomposition of MT=U+W in Proposition 3 allows the definition
of other intrinsic elements connected with M. For instance, the continuous part
of U doesn’t depend on the decomposition, only on MT. and therefore one can
show the existence of a unique continuous local martingale M¢, such that for any
stopping time T reducing M we have M{= U for t<T. We can also define

[M, M],= (M5, M, + T (AM,).
s=t
However, as we shall see below, there exist sample continuous weak martingales
such that M°=0, [M, M]=0, and thus we cannot characterize the stochastic
integrals C-M by an identity involving the brackets [ , ], as in [3] for the local
martingale case.

A counter-example. After the rather satisfactory Theorem 2, and Propositions 3
and 4, which mean that the process deduced from a local martingale by means
of a change of time still has some pleasant properties, we shall investigate another
problem, with rather disquicting results.

The problem is the following: how far reaching is the generalization we have
done of the notion of a local martingale? For instance, is every weak martingale,
which belongs to the class (D), a true martingale (as in the case of local martingales)?
We shall see that the answer is negative.

We start with the following elementary result: let (X,) a Poisson process of
parameter 4, with respect to its natural family of o-fields &,, such that X,=0.
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Let S be its first jump time (an exponential r.v. of parameter 4). Then an easy
computation shows ’
E [ 1 % ]_ t if t<$§
Ao 1

S—— if t=8.
/.

This is an uniformly integrable martingale. Consider now on a suitable probability
space a sequence of such independent Poisson processes (X}), with parameters 4,
tending to 0. Let S, be the first jump time of the process (X7}). Let &, the o-field
generated by the random variables X7 for all n and s<t, and all sets of measure 0.
Set M,=t, M=(M,, &,). It isn’t difficult to see that the family (&,) is right con-
tinuous. We also find, using independence, that

i 1
E[s,,—7-|3,]=t if <8, §,——— if (28,

n

Otherwise stated, S, reduces M. Now take for instance 4,=n"3; then

Y P{S,Smj=3 (1—e"™)

converges, and the Borel-Cantelli lemma implies that S, — oo a.s. According to
Lemmad4, M is a weak martingale, a result which doesn’t correspond to our
expectation. Stopping M at a fixed time u, we get an example of a bounded weak
martingale, sample continuous, which isn’t a martingale. This example is due to
P. A Meyer.

Acknowledgement. The author is indebted to Professor P.A. Meyer for suggesting a detailed
study of the weak martingales, after reading a first draft of this paper.
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