Changes of Time, Stochastic Integrals, and Weak Martingales

N. Kazamaki

1. Time Changes Transformations

We need first a series of definitions.

Let Ω be a set, \mathfrak{F} a Borel field of subsets of Ω , P a probability measure defined on (Ω, \mathfrak{F}) . We are given a family (\mathfrak{F}_t) of Borel subfields of \mathfrak{F} , increasing and right continuous $(t \in [0, \infty[))$. We may, and do, assume that \mathfrak{F} has been completed with respect to P, and that each \mathfrak{F}_t contains all \mathfrak{F} -sets of measure 0.

We assume that the reader knows the usual definitions: stopping times, martingales, etc. A notation such that "let $M = (M_t, \mathfrak{F}_t)$ be a martingale" means that the martingale property is relative to the \mathfrak{F}_t family. All martingales below are assumed to be right continuous.

By a change of time $T = (\mathfrak{F}_t, \tau_t)$ we mean a family of stopping times of the \mathfrak{F}_t family, finite valued, such that for $\omega \in \Omega$ the sample function τ . (ω) is increasing ¹ and right continuous. We say that the change of time is continuous if these sample functions are continuous. Of course change of time $T = (\mathfrak{G}_t, \tau_t)$ can be defined with respect to some other right continuous family \mathfrak{G}_t of sub- σ -fields of \mathfrak{F} . If then $X = (X_t, \mathfrak{G}_t)^2$ is a right continuous process, we denote by TX the process $(X_{\tau_t}, \mathfrak{G}_{\tau_t})$, called the *time changed process* of X. We say that the change of time T is Xcontinuous if X is constant on all intervals $[\tau_{t-0}, \tau_t]$, and on $[0, \tau_0]$.

As usual, we do not distinguish two processes X and Y such that for a.e. $\omega X_{\bullet}(\omega) \equiv Y_{\bullet}(\omega)$. This is important for the understanding of uniqueness statements below.

Lemma 1. Let $T = (\mathfrak{F}_t, \tau_t)$ be a change of time. Then the \mathfrak{F}_{τ_t} family is right continuous.

Proof. Clearly this family is increasing, and so it suffices to prove that $\mathfrak{F}_{\tau_{t+0}} \subset \mathfrak{F}_{\tau_t}$. For every $A \in \mathfrak{F}_{\tau_t+0}$ and every $u \ge 0$ we have

$$A \cap \{\tau_{t+h} < u\} \in \mathfrak{F}_u \qquad (h > 0)$$

from the right continuity of T it follows that $A \cap \{\tau_t < u\} \in \mathfrak{F}_u$. Thus $A \in \mathfrak{F}_u$.

Lemma 2. Let $T = (\mathfrak{F}_t, \tau_t)$ and $S = (\mathfrak{F}_{\tau_t}, s_t)$ be two changes of time. Then $ST = (\mathfrak{F}_t, \tau_s)$ is a change of time.

Proof. Lemma 2 amounts to the following fact: if R is a stopping time of the \mathfrak{F}_{t_t} family, then τ_R is a stopping time of the \mathfrak{F}_t family. Otherwise stated, we want

¹ By increasing we mean "non decreasing", by positive "non negative".

² This notation means that X_t is adapted to the \mathfrak{G}_t family.

N. Kazamaki:

to prove that $\{\tau_R < t\} \in \mathfrak{F}_t$ for all t. It follows from right continuity that this event is the union, over all rationals r, of the events $\{R < r, \tau_r < t\}$. Since R is a stopping time of the \mathfrak{F}_{τ_t} family, $\{R < r\}$ belongs to \mathfrak{F}_{τ_r} , and therefore $\{R < r\} \cap \{\tau_r < t\}$ belongs to \mathfrak{F}_r . This completes the proof.

The following definition of a local martingale is slightly different from that of [3], but the authors themselves agree that it is the most convenient one.

Definition 1. A stochastic process $M = (M_t, \mathfrak{F}_t)$ is said to be a local martingale (resp. a locally square integrable martingale) if there exists an increasing sequence (T_n) of stopping times of (\mathfrak{F}_t) such that $\lim_n T_n = \infty$, and for each *n* the process $(M_{t \wedge T_n} I_{\{T_n > 0\}}, \mathfrak{F}_t)$ is an uniformly integrable martingale (resp. an L^2 -bounded one).

Note that if M_0 is integrable, the process $(M_{t \wedge T_n}, \mathfrak{F}_t)$ also is a uniformly integrable martingale.

Proposition 1. Let $M = (M_t, \mathfrak{F}_t)$ be a local martingale. If $T = (\mathfrak{F}_t, \tau_t)$ is a finite *M*-continuous change of time, then *TM* is a local martingale. This applies in particular to continuous changes of time.

Proof. Set $N_t = M_{\tau_t}$, and denote by (T_n) a sequence of stopping times satisfying the conditions of Definition 1. Set $J_n = \inf \{u \ge 0: \tau_u \ge T_n\}$. It is immediately seen that for each $n J_n$ is a stopping time of the \mathfrak{F}_{τ_t} family, that $J_n \uparrow \infty$, and that $\{0 < J_n\} \subset \{0 < T_n\}$. The theorem therefore will be proved if we show that for each $n (N_{t \land J_n}, \mathfrak{F}_{\tau_t})$ is an uniformly integrable martingale on $\{0 < T_n\}$. Now define

$$D_n = \tau_{J_n - 0}, \qquad E_n = \tau_{J_n}.$$

For $t < J_n$, we have $N_{t \land J_n} = M_{\tau_t \land T_n}$, and for $t \ge J_n$ we have $N_{t \land J_n} = M_{E_n}$. Since T is M-continuous, M is constant and equal to M_{T_n} on the interval $[D_n, E_n]$. Therefore we have $N_{t \land J_n} = M_{\tau_t \land T_n}$. Now the process $(M_{t \land T_n} I_{\{T_n > 0\}})$ is a uniformly integrable martingale, and so is $(M_{\tau_t \land T_n} I_{\{T_n > 0\}})$ by Doob's optional sampling theorem.

Lemma 3. Let U and V be stopping times of the \mathfrak{F}_t family, such that $U \leq V$. Then there exists a continuous change of time $T = (\mathfrak{F}_t, \tau_t)$ such that $\tau_0 = U$, $\tau_{\infty} (= \lim_{t \to \infty} \tau_t) = V$.

Proof. Put $\tau_t = U \lor (V \land t)$. Then (\mathfrak{F}_t, τ_t) is a change of time possessing the desired properties.

Remark. The sample functions $\tau_{\bullet}(\omega)$ aren't strictly increasing. This is impossible in general, since the stopping time V can be totally inaccessible.

Theorem 1. Let $M = (M_t, \mathfrak{F}_t)$ be a local martingale (resp. a locally square integrable martingale) such that $M_0 = 0$. Then there exists a continuous change of time $S = (\mathfrak{F}_t, s_t)$, increasing from 0 to $+\infty$, such that SM is a martingale (resp. a square integrable martingale³).

Proof. Let $(T_n)_{n \ge 1}$ be a sequence of stopping times satisfying the conditions of Definition 1. Without loss of generality we may suppose $T_n \le n$ for all *n*, and set $T_0 = 0$. According to Lemma 3, for each $n \ge 1$ there exists a continuous change of time $S^n = (\mathfrak{F}_t, s_t^n)$ such that $s_0^n = T_{n-1}$, $s_\infty^n = T_n$. For each *n*, let q_n be an increasing

³ A martingale N is said to be square integrable if $E[N_t^2] < \infty$ for all t.

bijection of [n-1, n] onto $[0, \infty]$. We have

$$s_{q_n(n-1)}^n = s_0^n = T_{n-1} = s_{\infty}^{n-1} = s_{q_{n-1}(n-1)}^{n-1}.$$

The formula

$$s_t = s_{q_n(t)}^n$$
 if $n-1 \leq t \leq n$

therefore defines a continuous change of time. By Doob's optional sampling theorem $(M_{s_t \wedge T_n}, \mathfrak{F}_{s_t})$ is a uniformly integrable martingale (resp. an L^2 -bounded one), and this means, since $s_n = T_n$, that $SM = (M_{s_t}, \mathfrak{F}_{s_t})$ is a uniformly integrable (resp. an L^2 -bounded) martingale when restricted to [0, n]. This completes the proof.

Remark. Set $\mathfrak{G}_t = \mathfrak{F}_{s_t}$, $N_t = M_{s_t}$, and $a_t = \inf\{u: s_u > t\}$. Then it is very easy to check that $A = (\mathfrak{G}_t, a_t)$ is a change of time, and AN is equal to M.

We are going now to investigate the behaviour of stochastic integrals with respect to a local martingale M under *continuous* changes of time. The definitions of $\langle M, M \rangle$, [M, M], predictable processes, M^c and M^d (the continuous and discontinuous parts of M), and the stochastic integral $C \cdot M$ are taken from [3]. However, we shall summarily recall them during the proof, for the reader's convenience.

Proposition 2. Let $M = (M_t, \mathfrak{F}_t)$ be a local martingale such that $M_0 = 0$, and let $T = (\mathfrak{F}_t, \tau_t)$ be a continuous change of time such that $\tau_0 = 0$. Then we have

1) $(TM)^{c} = T(M^{c}); (TM)^{d} = T(M^{d}).$

2) [TM, TM] = T([M, M]), and if M is locally square integrable $\langle TM, TM \rangle = T(\langle M, M \rangle)$.

3) If $C = (C_t, \mathfrak{F}_t)$ is predictable and locally bounded, then TC is predictable and locally bounded with respect to the family (\mathfrak{F}_t) , and we have $TC \cdot TM = T(C \cdot M)$.

Proof. We set $N_t = M_{\tau_t}$, $\mathfrak{G}_t = \mathfrak{F}_{\tau_t}$.

We first remark that if $C = (C_t, \mathfrak{F}_t)$ is an adapted and left continuous process, then *TC* is also adapted and left continuous with respect to the \mathfrak{G}_t family. Therefore, since predictable processes are those which (as functions of (t, ω)) are measurable with respect to the σ -field generated by all adapted left continuous processes, it follows that if *C* is predictable, so is *TC* with respect to the \mathfrak{G}_t family.

We start with the case of an L^2 -bounded martingale M. Then $\langle M, M \rangle$ is defined as the only predictable increasing process such that

$$\langle M, M \rangle_0 = 0$$
, $\langle M, M \rangle - M^2$ is a martingale.

In this case, this martingale is even uniformly integrable. Therefore $T(\langle M, M \rangle)$ is 0 at time 0, and $T(\langle M, M \rangle - M^2)$ is a martingale (uniformly integrable). This implies $T(\langle M, M \rangle) = \langle TM, TM \rangle$.

Next, we recall that the L^2 -norm $||M||_2$ is defined as the norm in L^2 of the random variable $M_{\infty} = \lim_{t \to t_{\infty}} M_t$. It is clear that $||TM||_2 \leq ||M||_2$. *M* is said to be *purely discontinuous* if *M* is orthogonal to every L^2 -bounded, continuous martingale. This amounts to saying that *M* is the limit (in the L^2 -norm) of L^2 -bounded martingales M^i the sample functions of which have bounded variation on $[0, \infty]$. The martingales TM^i possess the same property, and therefore if *M* is purely discontinuous, so is *TM*.

N. Kazamaki:

M can be uniquely decomposed as $M = M^c + M^d$, where M^c and M^d are L^2 bounded, M^c is continuous and M^d purely discontinuous. We obviously have $TM = T(M^c) + T(M^d)$, $T(M^c)$ is continuous and $T(M^d)$ purely discontinuous from the above. Therefore this must be the unique decomposition of TM.

The increasing process [M, M] is defined as

$$[M, M]_t = \langle M^c, M^c \rangle_t + \sum_{s \leq t} (\Delta M_s)^2$$

where ΔM_s is the jump of M at s. This formula shows at once that [TM, TM] = T([M, M]).

If C is an "elementary" predictable process, i.e. if there exist times

$$0 = t_0 < t_1 \dots < t_n = \infty,$$

and random variables $c_0, ..., c_n$ such that c_k is \mathfrak{F}_{t_k} -measurable for k=0, ..., n, and $C_t = c_k$ for $t_k < t \le t_{k+1}$, then an elementary computation shows immediately that $T(C \cdot M) = TC \cdot TM$. If we call $L^2(M)$ the set of all predictable processes C such that the norm

$$\left(E\left[\int_{0}^{\infty}C_{s}^{2}d\langle M,M\rangle_{s}\right]\right)^{\frac{1}{2}}$$

is finite, then the stochastic integral operator $C \mapsto C \cdot M$ is a continuous operator from $L^2(M)$ to the space of L^2 -bounded martingales, and the "elementary" predictable processes $C \in L^2(M)$ are dense in $L^2(M)$. The norm of TC in $L^2(TM)$ is at most that of C in $L^2(M)$, and the relation $T(C \cdot M) = TC \cdot TM$ extends by continuity to all $C \in L^2(M)$. This completes the proof of the L^2 -bounded case.

Next we assume that M is a local martingale, and we consider a sequence (T_n) of stopping times satisfying the conditions of Definition 1. As in Proposition 1, we set $J_n = \inf \{u \ge 0: \tau_u \ge T_n\}$, and we denote by M^n the martingale M stopped at T_n , by N^n the martingale N stopped at J_n . We have $N^n = TM^n$, because T is continuous.

The process M^n is an uniformly integrable martingale, but not an L^2 -bounded one. However, it is shown in [3] that the stopping times T_n can be chosen in such a way that one can write

$$M^n = H^n + V^n$$

where H^n is an L^2 -bounded martingale, and V^n an uniformly integrable martingale, the sample functions of which have bounded variation on $[0, \infty]$, and even $E\left[\int_0^\infty |dV_s|\right] < \infty$ ([3], Proposition 4). We set $TH^n = K^n$, $TV^n = W^n$.

The martingales H^n and V^n aren't uniquely determined, but the continuous part of H^n is uniquely determined, since V^n has bounded variation. Let us denote it by M^{nc} . We define M^c as the unique continuous local martingale which coincides with M^{nc} for $0 \le t \le T_n$. We have from the above $T(M^{nc}) = T(H^{nc}) = K^{nc} = N^{nc}$, and therefore $T(M^c) = N^c$. Defining M^d as $M - M^c$, we have $T(M^d) = N^d$. We have, also from the results on L^2 -bounded martingales, $T(\langle M^c, M^c \rangle) = \langle N^c, N^c \rangle$, if we define $\langle M^c, M^c \rangle$ as the process which coincides with $\langle M^{nc}, M^{nc} \rangle$ for $0 \le t \le T_n$. When M is locally square integrable, we can take $V^n = 0$ for every n, and define $\langle M, M \rangle$ as the process which coincides with $\langle M^n, M^n \rangle$ for $0 \le t \le T_n$. Then we have $T(\langle M, M \rangle) = \langle N, N \rangle$.

We define $[M, M]_t$ as $\langle M^c, M^c \rangle_t + \sum_{s \le t} (\Delta M_s)^2$. It is obvious that T([M, M]) = [N, N].

Let C be a predictable locally bounded process: this means that the stopping times T_n can be chosen in such a way that the processes $C^n = (C_{t \wedge T_n} I_{(T_n > 0)}, \mathfrak{F}_t)$ are uniformly bounded in absolute value (by constants which may depend on n). Then if we set D = TC, the processes $D^n = (D_{t \wedge J_n} I_{(J_n > 0)}, \mathfrak{G}_t)$ are smaller in absolute value than TC^n , and therefore D is locally bounded. The stochastic integral $C \cdot M$ is defined as the local martingale which coincides for $0 \leq t \leq T_n$ with $C^n \cdot M^n =$ $C^n \cdot H^n + C^n \cdot V^n$, where $C^n \cdot H^n$ has been defined above, and $C^n \cdot V^n$ is an ordinary Stieltjes integral. It can be shown that it depends neither on the decomposition $M^n = H^n + V^n$, nor on the stopping times T_n . It follows from the results on L^2 bounded martingales that $T(C^n \cdot H^n) = TC^n \cdot TH^n$, and it is obvious that $T(C^n \cdot V^n)$ $= TC^n \cdot TV^n$. Therefore $T(C^n \cdot M^n) = TC^n \cdot TM^n$, and letting n tend to infinity, that $T(C \cdot M) = TC \cdot TM$. This completes the proof.

2. Weak Martingales

Definition 2. A stochastic process $M = (M_t, \mathfrak{F}_t)$ is said to be a *weak martingale* if there exists an increasing sequence (T_n) of stopping times of the \mathfrak{F}_t family such that

i) for each *n* there exists a right continuous, uniformly integrable martingale $M^n = (M_t^n, \mathfrak{F}_t)$ such that $M_t = M_t^n$ for $0 \le t < T_n$.

ii) $\lim T_n = +\infty$.

For shortness, we shall say in this paper that a stopping time T reduces a right continuous process $M = (M_t, \mathfrak{F}_t)$ if there exists a uniformly integrable martingale $H = (H_t, \mathfrak{F}_t)$ such that $H_t = M_t$ for $0 \le t < T$. Since $(H_{t \land T})$ still is a uniformly integrable martingale, we can always assume that H is stopped at time T. Note that the word "reduces" isn't used here in the same sense as in [3], where it was demanded that $H_t = M_t$ also for t = T on $\{T > 0\}$. If T reduces M, so does any stopping time $S \le T$.

It is obvious that a local martingale is a weak martingale. Also, if (M_t, \mathfrak{F}_t) is a weak martingale, so is $(M_{t \wedge T}, \mathfrak{F}_t)$ for any stopping time T.

The following theorem is the reason for considering weak martingales.

Theorem 2. If $M = (M_i, \mathfrak{F}_i)$ is a weak martingale, then for every change of time $T = (\mathfrak{F}_i, \tau_i)$, TM is also a weak martingale.

Proof. Denote by T_n , M^n , stopping times and martingales satisfying the conditions of Definition 2. As in the proof of Proposition 1, set $N_t = M_{\tau_t}$,

$$J_n = \inf \{ u \colon \tau_u \ge T_n \}.$$

We have seen in that proof that, $t < J_n$ implying $\tau_t < T_n$, for $t < J_n$, we have

$$N_t = M_{\tau_t} = M_{\tau_t}^n = N_t^n$$

N. Kazamaki:

where the process $(N_s^n, \mathfrak{F}_{\tau_s}) = (M_{\tau_s}^n, \mathfrak{F}_{\tau_s})$ is an uniformly integrable martingale according to Doob's optional sampling theorem. This means that the stopping times J_n reduce $(N_s, \mathfrak{F}_{\tau_s})$, which is therefore a weak martingale.

We are going now to investigate the properties of weak martingales.

Lemma 4. Let $M = (M_t, \mathfrak{F}_t)$ be a right continuous process. Assume there exists a sequence (S_n) of stopping times reducing M (not necessarily increasing) such that $\lim S_n = +\infty$ a.e. Then M is a weak martingale.

Proof. The stopping times $T'_n = \inf_{m \ge n} S_m$ increase, reduce M, and converge a.e. to $+\infty$. To get stopping times which increase everywhere to $+\infty$ (as in Definition 2), remark that any positive random variable equal a.e. to a stopping time is itself a stopping time (since all null sets belong to \mathfrak{F}_0). Then set $T_n = T'_n$ for all n if $\lim_k T'_k = +\infty$, and $T_n = +\infty$ for all n otherwise. These stopping times satisfy the conditions of Definition 2.

Lemma 5. Assume $M = (M_n, \mathfrak{F}_i)$ be a right continuous process. Assume there exists an increasing sequence (R_n) of stopping times, such that $\lim_n R_n = +\infty$ and that for each n there exists a weak martingale M^n equal to M for $0 \leq t < R_n$. Then M is a weak martingale.

Proof. Replacing if necessary R_n by $R_n \wedge n$ for all n, we may assume that the stopping times R_n are finite. Let then R'_n be a stopping time reducing M^n , such that $P\{R'_n < R_n\} < 2^{-n}$, and let S_n be $R'_n \wedge R_n$: S_n reduces M^n , and since $M_t^n = M_t$ for all $t < S_n$ it also reduces M. On the other hand, according to the Borel-Cantelli lemma we have $\lim_n S_n = +\infty$ a.s. We conclude the proof with an application of Lemma 4.

The following result is useful for many purposes. Semimartingales are defined in [3], but the meaning of this word will anyway be clear from the proof.

Proposition 3. Let T reduce the weak martingale (M_t, \mathfrak{F}_t) , and let M^T be the process $(M_{t \wedge T}, \mathfrak{F}_t)$. Then M^T is a semimartingale.

Proof. Let $(H_t, \mathfrak{F}_t) = H$ be an uniformly integrable martingale, such that $H_t = M_t$ for $0 \le t < T$. We may assume that H is stopped at time T. Since H is uniformly integrable, we have $H_t = E[H_{\infty} | \mathfrak{F}_t]$. Set

$$H_t^+ = E[H_\infty^+|\mathfrak{F}_t], \quad H_t^- = E[H_\infty^-|\mathfrak{F}_t].$$

These are two positive martingales, uniformly integrable. Next, set

$$Y_t^+ = H_t^+ I_{\{t < T\}}, \qquad Y_t^- = H_t^- I_{\{t < T\}}.$$

These are now two positive supermartingales, belonging to the class (D), which therefore have decompositions in Doob's sense

$$Y_t^+ = U_t^+ - V_t^+, \qquad Y_t^- = U_t^- - V_t^-.$$

Here U^+ and U^- are two uniformly integrable martingales, and V^+ , V^- two predictable, integrable increasing processes. Set $U=U^+-U^-$, an uniformly integrable martingale; $V=V^--V^+$, a predictable process whose sample functions have bounded variation on $[0, \infty]$, and remark that $Y_t^+ - Y_t^- = M_t I_{\{t < T\}}$. There

30

comes:

$$M_t^T = U_t + V_t + M_T I_{\{t \ge T\}} = U_t + W_t.$$

The sample functions of W have bounded variation on $[0, \infty]$, but their total variation in general isn't integrable. This decomposition shows that M^T is indeed a semimartingale in the sense of [3].

Proposition 4. Let $M = (M_t, \mathfrak{F}_t)$ be a weak martingale. For each stopping time T, denote by M^T the weak martingale $(M_{t \wedge T}, \mathfrak{F}_t)$. Let $C = (C_t, \mathfrak{F}_t)$ be a locally bounded predictable process. There is an unique weak martingale $C \cdot M$ such that, for any stopping time T reducing M, $C \cdot M$ is equal for $0 \leq t \leq T$ to the stochastic integral $C \cdot M^T$ of C with respect to the semimartingale M^T .

Proof. Let us assume that T reduces M, and keep the notation of the preceding proof. We first recall that $C \cdot M^T$ is defined as $C \cdot U + C \cdot W$ (the second one, an ordinary Stieltjes integral), which depends only on M^T , not on the decomposition $M^T = U + W$ (see [3]). It follows from the behaviour of stochastic integrals under stopping that, if (T_n) is an increasing sequence of stopping times reducing T, such that $T_n \to \infty$, the processes $C \cdot M^{T_n}$ and $C \cdot M^{T_{n+1}}$ agree for $0 \le t \le T_n$, and therefore can be pasted together into one single process $C \cdot M$. The only non obvious remaining point is the fact that $C \cdot M$ is a weak martingale. To see that, we come back to T reducing M and to the preceding notations. We have

$$H_t = U_t + V_t + H_T I_{\{t \ge T\}}.$$

Therefore, $C \cdot M^T$ and $C \cdot H$ agree for $0 \le t < T$. The latter one being a local martingale, the result follows from Lemma 5.

The decomposition of $M^T = U + W$ in Proposition 3 allows the definition of other intrinsic elements connected with M. For instance, the *continuous part* of U doesn't depend on the decomposition, only on M^T . and therefore one can show the existence of a unique continuous local martingale M^c , such that for any stopping time T reducing M we have $M_t^c = U_t^c$ for $t \leq T$. We can also define

$$[M, M]_s = \langle M^c, M^c \rangle_s + \sum_{s \leq t} (\Delta M_s)^2.$$

However, as we shall see below, there exist sample continuous weak martingales such that $M^c=0$, [M, M]=0, and thus we cannot characterize the stochastic integrals $C \cdot M$ by an identity involving the brackets [,], as in [3] for the local martingale case.

A counter-example. After the rather satisfactory Theorem 2, and Propositions 3 and 4, which mean that the process deduced from a local martingale by means of a change of time still has some pleasant properties, we shall investigate another problem, with rather disquieting results.

The problem is the following: how far reaching is the generalization we have done of the notion of a local martingale? For instance, is every weak martingale, which belongs to the class (D), a true martingale (as in the case of local martingales)? We shall see that the answer is negative.

We start with the following elementary result: let (X_t) a Poisson process of parameter λ , with respect to its natural family of σ -fields \mathfrak{F}_t , such that $X_0=0$.

Let S be its first jump time (an exponential r.v. of parameter λ). Then an easy computation shows

$$E\left[S - \frac{1}{\lambda} | \mathfrak{F}_t\right] = \begin{cases} t & \text{if } t < S \\ S - \frac{1}{\lambda} & \text{if } t \ge S \end{cases}$$

This is an uniformly integrable martingale. Consider now on a suitable probability space a sequence of such independent Poisson processes (X_t^n) , with parameters λ_n tending to 0. Let S_n be the first jump time of the process (X_t^n) . Let \mathfrak{F}_t the σ -field generated by the random variables X_s^n for all n and $s \leq t$, and all sets of measure 0. Set $M_t = t$, $M = (M_t, \mathfrak{F}_t)$. It isn't difficult to see that the family (\mathfrak{F}_t) is right continuous. We also find, using independence, that

$$E\left[S_n - \frac{1}{\lambda_n} | \mathfrak{F}_t\right] = t \quad \text{if } t < S_n, \qquad S_n - \frac{1}{\lambda_n} \quad \text{if } t \ge S_n.$$

Otherwise stated, S_n reduces M. Now take for instance $\lambda_n = n^{-3}$; then

$$\sum_{n} P\{S_{n} \leq n\} = \sum_{n} (1 - e^{-n\lambda_{n}})$$

converges, and the Borel-Cantelli lemma implies that $S_n \to \infty$ a.s. According to Lemma 4, M is a weak martingale, a result which doesn't correspond to our expectation. Stopping M at a fixed time u, we get an example of a *bounded* weak martingale, sample continuous, which isn't a martingale. This example is due to P.A. Meyer.

Acknowledgement. The author is indebted to Professor P.A. Meyer for suggesting a detailed study of the weak martingales, after reading a first draft of this paper.

References

- 1. Dambis, K.E.: On the decomposition of continuous submartingales. Theor. Probab. Appl. 10, 438-448 (1965).
- 2. Doob, J.L.: Stochastic processes. New York: Wiley 1953.
- Dade, C. D., Meyer, P.A.: Intégrales stochastiques par rapport aux martingales localles, Université de Strasbourg, Lecture notes in Mathematics, vol. 124. Berlin-Heidelberg-New York: Springer 1970.
- 4. Kazamaki, N.: Some properties of martingale integrals. Ann. Inst. Henri Poincaré (to appear).
- 5. Meyer, P.A.: Probabilités et potentiel. Paris: Hermann 1966.

N. Kazamaki Mathematical Institute Tôhuku University Sendai/Japan

(Received February 1, 1971)