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Changes of Time, Stochastic Integrals, 
and Weak Martingales 

N. KAZAMAKI 

1. Time Changes Transformations 

We need first a series of definitions. 
Let tJ be a set, ~ a Borel field of subsets of gJ, P a probability measure defined 

on (~2, ~). We are given a family (~t) of Borel subfields of ~, increasing and right 
continuous ( tel0,  ~[ ) .  We may, and do, assume that ~ has been completed 
with respect to P, and that each ~t contains all ~-sets of measure 0. 

We assume that the reader knows the usual definitions: stopping times, 
martingales, etc. A notation such that "let M = ( M t ,  ~t) be a martingale" means 
that the martingale property is relative to the ~t family. All martingales below 
are assumed to be right continuous. 

By a change of time T= (~t, zt) we mean a family of stopping times of the ~t 
family, finite valued, such that for coEf2 the sample function z. (~o) is increasing a 
and right continuous. We say that the change of time is continuous if these sample 
functions are continuous. Of course change of time T =  (~,,  zt) can be defined with 
respect to some other right continuous family 6i t of sub-a-fields of ~. If then 
X = (Xt, ~t) 2 is a right continuous process, we denote by TX the process (X~,, 6i~,), 
called the time changed process of X. We say that the change of time T is X- 
continuous if X is constant on all intervals [Zt_o, rt], and on [0, %]. 

As usual, we do not distinguish two processes X and Y such that for a.e. 
~o X . ( ~ ) -  = Yo(~).This is important for the understanding of uniqueness statements 
below. 

Lemma 1. Let T=(~t,-c~) be a change of time. Then the ~ ,  family is right 
continuous. 

Proof Clearly this family is increasing, and so it suffices to prove that ~ t  + o c ~t-  
For  every A ~ ~ , +  o and every u => 0 we have 

An{z,+h<u}~q~, (h>0)  

from the right continuity of T it follows that A n {~t < u} E ~, .  Thus A ~ ~ .  

Lemma 2. Let T=(~t,  zt) and S = ( ~ , ,  st) be two changes of time. Then ST= 
(~t, zs) is a change of time. 

Proof Lemma 2 amounts to the following fact: if R is a stopping time of the 
~ ,  family, then z R is a stopping time of the ~ family. Otherwise stated, we want 

By increasing we mean ~ non decreasing", by positive "non negative". 
2 This notation means that Xt is adapted to the @r family. 
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to prove that {z R < t} e ~t for all t. It follows from right continuity that this event 
is the union, over all rationals r, of the events {R < r, zr < t}. Since R is a stopping 
time of the ~ t  family, {R < r} belongs to ~ r ,  and therefore {R < r} c~ {% < t} 
belongs to ~t. This completes the proof. 

The following definition of a local martingale is slightly different from that 
of [3], but the authors themselves agree that it is the most convenient one. 

Definition 1. A stochastic process M = (M r, ~t) is said to be a local martingale 
(resp. a locally square integrable martingale) if there exists an increasing sequence 
(T~) of stopping times of (~t) such that lim T, = 0% and for each n the process 

n 

(Nit ̂  r.I(w.> OI, ~t) is an uniformly integrable martingale (resp. an L2-bounded one). 

Note that if M 0 is integrable, the process (Mr ̂  r., ~t) also is a uniformly 
integrable martingale. 

Proposition 1. Let M = (Mr, ~t) be a local martingale. I f  T= (q~,, z~) is a finite 
M-continuous change of time, then T M is a local martingale. This applies in particular 
to continuous changes of time. 

Proof Set Nt---M, t, and denote by (T,) a sequence of stopping times satisfying 
the conditions of Definition 1. Set JR=inf{u>_0: %>TR}. It is immediately seen 
that for each n JR is a stopping time of the ~,, family, that J,]" 0% and that 
{0 < JR} c {0 < T,}. The theorem therefore will be proved if we show that for each n 
(Nt ̂ j . ,  ~ t )  is an uniformly integrable martingale on {0 < TR}. Now define 

DR = zj._ 0, E, = z j .  

For t<JR, we have Nt^j-=M~,^To, and for t>_J, we have Nt^j-=M~. Since T 
is M-continuous, M is constant and equal to MT. on the interval [DR, ER]. There- 
fore we have Nt ̂  j. = M** ̂  T~. NOW the process (M t ̂  r~ I(r~ > 0~) is a uniformly inte- 
grable martingale, and so is (M,t ̂  W~ I(r~ > 0/) by Doob's optional sampling theorem. 

Lemma 3. Let U and V be stopping times of the 5t family, such that U <= V. 
Then there exists a continuous change of time T=(~ t,zt) such that % = U ,  
~o ( = lim "ct)= V. 

t ~ o O  

Proof Put % = U v (V/~ t). Then (~t, zt) is a change of time possessing the 
desired properties. 

Remark. The sample functions z.(co) aren't strictly increasing. This is impossible 
in general, since the stopping time V can be totally inaccessible. 

Theorem 1. Let M=(Mt, ~t) be a local martingale (resp. a locally square 
integrable martingale) such that Mo=0. Then there exists a continuous change of 
time S=(~t ,  st), increasing from 0 to + 0% such that SM is a martingale (resp. a 
square integrable martingale 3). 

Proof Let (T,),~ 1 be a sequence of stopping times satisfying the conditions of 
Definition 1. Without loss of generality we may suppose T~ =< n for all n, and set 
T o = 0. According to Lemma 3, for each n > 1 there exists a continuous change of 
time S"= (~t, sT) such that s~ = T,_ 1, soo_R - T , .  For each n, let q, be an increasing 

a A martingale N is said to be square integrable if E [Nt 2] < 0o for all t. 
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bijection of [n - 1, n] onto [0, oo]. We have 

s n  __  n __  'T '  __  n - 1  n - 1  
q n ( n - 1 ) - - S o  - ~ n _ l - - S o o  - - ~ ' S q , ~ _ l ( n _ l ) .  

The formula 
st=s~,~t ) if n - l < t < _ n  

therefore defines a continuous change of time. By Doob's  optional sampling 
theorem (Ms, ̂  r,, ~st) is a uniformly integrable martingale (resp. an U-bounded  
one), and this means, since s, = T,, that S M  = (Ms,, ~s,) is a uniformly integrable 
(resp. an U-bounded)  martingale when restricted to [0, hi. This completes the proof. 

Remark. Set flit=~s~, Nt=Mst, and at=inf{u: s ,>t}.  Then it is very easy to 
check that A = (15, at) is a change of time, and A N  is equal to M. 

We are going now to investigate the behaviour of stochastic integrals with 
respect to a local martingale M under continuous changes of time. The definitions 
of (M,  M) ,  [M, M], predictable processes, M C and M d (the continuous and 
discontinuous parts of M), and the stochastic integral C. M are taken from [3]. 
However, we shall summarily recall them during the proof, for the reader's 
convenience. 

Proposition 2. Let M = ( M ,  q~) be a local martingale such that Mo =0, and 
let T =  (~t, zt) be a continuous change of time such that z o ---O. Then we have 

1) (TM) C= T(M0; (TM) d= T(Ma). 

2) [ TM, TM] = T([M, M]), and if M is locally square integrable ( TM, T M ) =  
T( (M,  M)) .  

3) I f  C = (Ct, q~t) is predictable and locally bounded, then TC is predictable and 
locally bounded with respect to the family ( ~ ) ,  and we have TC.  T M  = T(C.  M). 

Proof We set Nt = M,t, fli t = ~?~. 
We first remark that if C = (C,, ~t) is an adapted and left continuous process, 

then T C  is also adapted and left continuous with respect to the flit family. Therefore, 
since predictable processes are those which (as functions of (t, co)) are measurable 
with respect to the a-field generated by all adapted left continuous processes, it 
follows that if C is predictable, so is TC with respect to the flit family. 

We start with the case of an U-bounded martingale M. Then (M, M )  is defined 
as the only predictable increasing process such that 

(M,  M)o  =0 ,  (M, M )  - M  2 is a martingale. 

In this case, this martingale is even uniformly integrable. Therefore T( (M,  M ) )  is 
0 at time 0, and T ( ( M , M ) - M  2) is a martingale (uniformly integrable). This 
implies T( (M,  m ) ) =  ( T M ,  T M ) .  

Next, we recall that the U-norm ][MI[ 2 is defined as the norm in L 2 of the 
random variable Moo=limM,.  It is clear that ]ITM[[2<[[M]I2 . M is said to be 

t~toO 
purely discontinuous if M is orthogonal to every U-bounded,  continuous mar- 
tingale. This amounts to saying that M is the limit (in the L 2-norm) of U-bounded  
martingales M ~ the sample functions of which have bounded variation on [0, oo]. 
The martingales T M  i possess the same property, and therefore if M is purely 
discontinuous, so is TM. 
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M can be uniquely decomposed as M = M r  d, where M ~ and M a are L 2- 
bounded, M c is continuous and M d purely discontinuous. We obviously have 
T M  = T(M ~) + T(Md), T (M ~) is continuous and T(M a) purely discontinuous from 
the above. Therefore this must be the unique decomposition of TM. 

The increasing process [M, M] is defined as 

[M, M], = ( M  ~, M~), + ~ (AMs) 2 
s < t  

where AMs is the jump of M at s. This formula shows at once that [TM, TM] = 
T([M, M]). 

If C is an "elementary"  predictable process, i.e. if there exist times 

0 = t 0 < t l . . .  < tn : -  Ct3 , 

and random variables Co . . . .  , c, such that c k is ~k-measurable for k = 0  . . . . .  n, 
and C, = Ck for tk < t < tk+ 1, then an elementary computation shows immediately 
that T ( C . M ) = T C .  TM. If we call L2(M)the set of all predictable processes C 
such that the norm 

is finite, then the stochastic integral operator C~--~ C - M  is a continuous operator 
from L 2 (M) to the space of L2-bounded martingales, and the "elementary" 
predictable processes CeL2(M) are dense in L2(M). The norm of T C  in L2(TM) 
is at most that of C in L2(M), and the relation T ( C . M ) =  TC.  T M  extends by 
continuity to all CeL2(M). This completes the proof of the L2-bounded case. 

Next we assume that M is a local martingale, and we consider a sequence 
(T,) of stopping times satisfying the conditions of Definition 1. As in Proposition 1, 
we set J,  = inf{u >= 0: z. >__ T~}, and we denote by M ~ the martingale M stopped at 
T., by N ~ the martingale N stopped at J..  We have N ~ = T M  ~, because T is con- 
tinuous. 

The process M" is an uniformly integrable martingale, but not an L2-bounded 
one. However, it is shown in [3] that the stopping times T~ can be chosen in such a 
way that one can write 

M" = H" + V" 

where H" is an L2-bounded martingale, and V" an uniformly integrable martingale, 
the sample functions of which have bounded variation on [0, ~ ] ,  and even 

[i ] E ldV~l < ~ ( [ 3 ] , P r o p o s i t i o n 4 ) . W e s e t T H " = K " ,  T V " = W  ". 

The martingales /-/" and V" aren't uniquely determined, but the continuous 
part of H" is uniquely determined, since V ~ has bounded variation. Let us denote 
it by M ~c. We define M c as the unique continuous local martingale which coincides 
with M "c for 0 < t < T,. We have from the above T(M "~) = T(H "~) = K "~ = N "~, and 
therefore T(M~)=N ~. Defining M n as M - M  c, we have T(Ma)=N n. We have, 
also from the results on U-bounded martingales, T ( ( M  ~, M~))= ( N  ~, N~), if we 
define ( M  c, M ~) as the process which coincides with ( M  "c, M"~> for 0 <  t <  T,. 
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When M is locally square integrable, we can take V"= 0 for every n, and define 
( M , M )  as the process which coincides with (M", M") for 0___t_<T.. Then we 
have T((M, M)) = (N, N).  

We define [M,m]t  as (Me, Me)t+ ~(AM~) 2. It is obvious that T([M, M]) 
= IN, U]. ~--<' 

Let C be a predictable locally bounded process: this means that the stopping 
times T, can be chosen in such a way that the processes C"=(Cr^T.I(r.>ot, ~ )  
are uniformly bounded in absolute value (by constants which may depend on n). 
Then if we set D = TC, the processes D"= (Dr ̂  s. I(j. > 0~, tS~) are smaller in absolute 
value than TC", and therefore D is locally bounded. The stochastic integral C. M 
is defined as the local martingale which coincides for 0_< t < T, with C". M " =  
C". H" + C". V", where C"./4" has been defined above, and C". V" is an ordinary 
Stieltjes integral. It can be shown that it depends neither on the decomposition 
M " = H " +  V", nor on the stopping times T,. It follows from the results on L z- 
bounded martingales that T(C". H") = TC". TH", and it is obvious that T(C". V") 
=TC". TV". Therefore T(C".M")-~ TC". TM", and letting n tend to infinity, 
that T(C. M) = TC. TM. This completes the proof. 

2. Weak Martingales 

Definition 2. A stochastic process M = (Mr, q~t) is said to be a weak martingale 
if there exists an increasing sequence (T.) of stopping times of the ~r family such 
that 

i) for each n there exists a right continuous, uniformly integrable martingale 
M " =  (Mr", ~r) such that M r = M'~ for 0 < t < T,. 

ii) lira T, = + ~ .  
n 

For shortness, we shall say in this paper that a stopping time T reduces a 
right continuous process M=(Mt, ~,) if there exists a uniformly integrable 
martingale H = ( H ,  q~r) such that //~=M~ for 0 < t <  T. Since (H,^ T) still is a 
uniformly integrable martingale, we can always assume that H is stopped at time 
T. Note that the word "reduces" isn't used here in the same sense as in [3], where 
it was demanded that H,=M t also for t =  T on {T>0}. If T reduces M, so does 
any stopping time S ~ T. 

It is obvious that a local martingale is a weak martingale. Also, if (Mt, ~t) is 
a weak martingale, so is (Mr ̂  ~., q~t) for any stopping time T. 

The following theorem is the reason for considering weak martingales. 

Theorem 2. I f  M = ( M .  ~ )  is a weak martingale, then for every change of time 
T= (~r, rr), TM is also a weak martingale. 

Proof Denote by Tn, M", stopping times and martingales satisfying the con- 
ditions of Definition 2. As in the proof of Proposition 1, set N~ = M~,, 

J ,= in f{u :  z . >  T,}. 

We have seen in that proof that, t < J, implying v, < T,, for t < J,,  we have 
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N. n m n where the process ( s, ~ s ) = (  ~, ~s) is an uniformly integrable martingale 
according to Doob's optional sampling theorem. This means that the stopping 
times J, reduce (Ns, ~s), which is therefore a weak martingale. 

We are going now to investigate the properties of weak martingales. 

Lemma 4. Let M = (Mr, ~t) be a right continuous process. Assume there exists a 
sequence (S,) of stopping times reducing M (not necessarily increasing) such that 
lim S, = + oo a.e. Then M is a weak martingale. 

Proof The stopping times 7-.'-- inf S m increase, reduce M, and converge a.e. 
m>n 

to + oo. To get stopping times which increase everywhere to + oo (as in Defini- 
tion 2), remark that any positive random variable equal a.e. to a stopping time is 
itself a stopping time (since all null sets belong to ~o). Then set T,--7-.' for all n 
if lira Tk' = + o% and T, = + ov for all n otherwise. These stopping times satisfy 

k 
the conditions of Definition 2. 

Lemma 5. Assume M =(Mr, ~t) be a right continuous process. Assume there 
exists an increasing sequence (R,) of stopping times, such that lim R, = + oo and 

that for each n there exists a weak martingale M" equal to M for 0 <_<_ t < R,. Then 
M is a weak martingale. 

Proof Replacing if necessary R, by R, A n for all n, we may assume that the 
stopping times R, are finite. Let then R', be a stopping time reducing M", such 
that P {R',< R,} <2-" ,  and let S, be R', A R," S,, reduces M ", and since M; =Mr 
for all t < S, it also reduces M. On the other hand, according to the Borel-Cantelli 
lemma we have lira S, = + oo a.s. We conclude the proof with an application of 
Lemma 4. 

The following result is useful for many purposes. Semimartingales are defined 
in [3], but the meaning of this word will anyway be clear from the proof. 

Proposition 3. Let T reduce the weak martingale (Mr, ~t), and let M T be the 
process (M t ̂  T, ~t). Then M r is a semimartingale. 

Proof Let (Ht, ~ t )=H be an uniformly integrable martingale, such that 
H e = M  t for 0=  t <  T. We may assume that H is stopped at time T. Since H is 
uniformly integrable, we have H t -  E [H~ [ ~J .  Set 

H~ + : E [ n+ l  8,3, HF = e [ H ; I ~ , ] .  

These are two positive martingales, uniformly integrable. Next, set 

Yt + =H+ I(t<T}, Yt- =Itt- I(~<T}. 

These are now two positive supermartingales, belonging to the class (D), which 
therefore have decompositions in Doob's sense 

y,+=g+-v, +, Y, -=~--v , - .  

Here U + and U-  are two uniformly integrable martingales, and V +, V- two 
predictable, integrable increasing processes. Set U = U + - U  -, an uniformly 
integrable martingale; V= V- - V +, a predictable process whose sample functions 
have bounded variation on [0, oo], and remark that Yt + -  Yt-= MtI~t < T/" There 
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comes: 
M r =  U~ + V~ + M r  I~ ~= r~ = Ut + Wt. 

The sample functions of W have bounded variation on [0, oo], but their total 
variation in general isn't integrable. This decomposition shows that M r is indeed 
a semimartingale in the sense of [3]. 

Proposition 4. Let M = (Mr, ~t) be a weak martingale. For each stopping time T, 
denote by M r the weak martingale (Mr^ r, ~t). Let C =( Ct, ~t) be a locally bounded 
predictable process. There is an unique weak martingale C. M such that, for any 
stopping time T reducing M, C. M is equal for 0 <_ t<_ T to the stochastic integral 
C. M r of C with respect to the semimartingale M r. 

Proof Let us assume that T reduces M, and keep the notation of the pre- 
ceding proof. We first recall that C. M r is defined as C. U +  C. W(the second one, 
an ordinary Stieltjes integral), which depends only on M r, not on the decomposi- 
tion M r =  U + W (see [3]). It follows from the behaviour of stochastic integrals 
under stopping that, if (T,) is an increasing sequence of stopping times reducing 
T, such that T,-+ o% the processes C. M T" and C. M T" +' agree for 0 < t < T,, and 
therefore can be pasted together into one single process C.M. The only non 
obvious remaining point is the fact that C. M is a weak martingale. To see that, 
we come back to T reducing M and to the preceding notations. We have 

Ht = Ut + V, + Hr I{t >= T}. 

Therefore, C . M  r and C . H  agree for 0__<t< T. The latter one being a local mar- 
tingale, the result follows from Lemma 5. 

The decomposition of M r =  U+ W in Proposition 3 allows the definition 
of other intrinsic elements connected with M. For instance, the continuous part 
of U doesn't depend on the decomposition, only on M r. and therefore one can 
show the existence of a unique continuous local martingale M c, such that for any 
stopping time T reducing M we have M~ = Uf for t < T. We can also define 

[M, M]s = ( M  c, MC)s + ~ (AMs) 2. 
s<t 

However, as we shall see below, there exist sample continuous weak martingales 
such that M~=0, I-M, M] =0, and thus we cannot characterize the stochastic 
integrals C. M by an identity involving the brackets [ , ], as in [3] for the local 
martingale case. 

A counter-example. After the rather satisfactory Theorem 2, and Propositions 3 
and 4, which mean that the process deduced from a local martingale by means 
of a change of time still has some pleasant properties, we shall investigate another 
problem, with rather disquieting results. 

The problem is the following: how far reaching is the generalization we have 
done of the notion of a local martingale ? For instance, is every weak martingale, 
which belongs to the class (D), a true martingale (as in the case of local martingales) ? 
We shall see that the answer is negative. 

We start with the following elementary result: let (Xt) a Poisson process of 
parameter 2, with respect to its natural family of a-fields ~t, such that X o =0. 
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Let S be its first jump time (an exponential r.v. of parameter 4). Then an easy 
computation shows 

E [ S _ I I ~ t ] = { t  i f t < S  

S 1 - w -  if t>S. 

This is an uniformly integrable martingale. Consider now on a suitable probability 
space a sequence of such independent Poisson processes (X~), with parameters 2n 
tending to 0. Let Sn be the first jump time of the process (X~). Let ~, the a-field 
generated by the random variables X~ for all n and s = t, and all sets of measure 0. 
Set M~-:t, M =(Mr, ~t). It isn't difficult to see that the family (~t) is right con- 
tinuous. We also find, using independence, that 

1 
E Sn-  let  = t  if t<Sn, Sn-~-~ if t>S n. 

Otherwise stated, Sn reduces M. Now take for instance An = n-3; then 

E P {Sn<:n} =E (1-e -n~) 
n n 

converges, and the Borel-Cantelli lemma implies that S .  ~ ~ a . s .  According to 
Lemma 4, M is a weak martingale, a result which doesn't correspond to our 
expectation. Stopping M at a fixed time u, we get an example of a bounded weak 
martingale, sample continuous, which isn't a martingale. This example is due to 
P. A. Meyer. 

Acknowledgement. The author is indebted to Professor P.A. Meyer for suggesting a detailed 
study of the weak martingales, after reading a first draft of this paper. 

References 
1. Dambis, K.E.: On the decomposition of continuous submartingales. Theor. Probab. Appl. 10, 

438-448 (1965). 
2. Doob, J.L.: Stochastic processes. New York: Wiley 1953. 
3. Dade, C.D., Meyer, P.A.: Int6grales stochastiques par rapport aux martingales localles, Universit6 

de Strasbourg, Lecture notes in Mathematics, vol. 124. Berlin-Heiddberg-New York: Springer 1970. 
4. Kazamaki, N.: Some properties of martingale integrals. Ann. Inst. Henri Poincar6 (to appear). 
5. Meyer, P.A.: Probabilit6s et potentiel. Paris: Hermann 1966. 

N. Kazamaki 
Mathematical Institute 
T6huku University 
Sendai/Japan 

(Received February 1, 1971) 


