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On Barrier Problems for the Vibrating String 

E. M. CABANA* 

Barrier problems for the vibrating string forced by plane white noise have 
lead us to derive a generalization of D. Andr6 Reflection Principle, and to apply 
it to solve some particular barrier problems for sums of independent symmetric 
random variables, and for processes with independent symmetric increments, 

The main results, concerning the solution of the problems about the vibrating 
string, are stated and proved in w 3. The generalization of the Reflection Principle 
is Theorem 1.1, and w 2 is devoted to obtain some steps for the proofs in w 3, by 
applying Theorem 1.1. 

No attempt is made in this paper to describe further applications of the 
generalized Reflection Principle. 

1. Reflection 

On a partially ordered finite set (A, _<) a family of independent symmetric 
random variables X={X~I~A } is defined. The partial sums S={S~Ic~EA } are 
defined by 

(1) 

and any function go: A ~ R defines a functional 

go (S) = Z go (a) S~ (or go (X) = Z go (~) X~). 
a~A a~A 

To each go we associate its support ~(go)={algo(a):~0} and its past ~(go)= 
[a [there exists some fl such that a < fi ~ SP(go)}. 

Let g be a family of real functions on A. The collection (3~fl, -~2 . . . . .  5~fm) of 
subfamilies of f f  is said to be an ordered partition of ~ bounded by the family .:;If 
of real functions on A, when 

(i) ~ c~ 5~j = 0 for i =4= j (i, j = 1, 2, ..., m) and 0 ~ ='~, and 
i=1 

(ii) there is a function T: Y ~ 3 i g  such that for each i=1,  2 . . . .  ,m and each 
go ~ ~i ,  the functional Z defined by 

satisfies 

where 

X (X) = T o (S) - go (S) 

6~(Z) ~ ~ = 0 (2) 

h_<_i 
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Theorem 1.1. Let X be a family of independent symmetric random variables on 
the partially ordered set (A, <=), and let ~ be a finite family of real functions on A 
with an ordered partition (9fit, ..., ~ffm) bounded by ~ Then, for each real constant a, 

P {max q~ (S) > a} __< 2 P {max q~ (S) > a}. (3) 
Oe~, ~ q~egf' 

h - 1  

Proof Set E = {max q~ (S) > a}, E h ---- 0 {max q~ (S) < a} c~ {max q~ (S) > a} (h = 

1, 2 . . . . .  m), F =  {max q~(S)>a}, and call Oh, o, a random function in ~ such that, 
(o~o'f 

for e) ~ Eh, the inequality Oh, o~ (S) > a (4) 

holds. (The function Oh has to be choosed in such a way that the sets appearing 
below are events. But this is easy to obtain because ~- is finite; for instance, if 
the functions q~ in ~ are arbitrarily ordered, one can define 0h as the first function 
in ~h for which the condition (4) holds, if any, and, say, the last function in 9 f  h 
when no one satisfies (4).) 

Then 
P(F)=P(Fc~E)=P Fc~ U Eh = P(Eh)P(FIEh), 

\ h = l  h = l  

and P(FIEh)> P(TOh(S)> a lEh); this requires the probability P(Eh) to be positive, 
in order to be defined, but if P(Eh)=0 the corresponding term in the sum may be 
omitted. 

Now TOh(S)=Oh(S)+x(X) with X satisfying (2). Then, if ~4i is the a-field 
generated by the variables {Xa]c~s~}, z(X) is a symmetric random variable 
independent of sJ h. On the other hand, the event E h is S/h-measurable, hence 

P(TOh(S)>aIEh)> P(z(X)>O) P(Oh(S)>a]Eh) >1, 

and combining this with the previous relations we obtain 

m 

n(r) >= �89 ~ P(Eh) 
h = l  

and (3) follows. 

2. Some Barrier Problems 

Theorem 2.1. I f  A =(1, ..., ml) x (1 . . . .  , m2) x- . .  x (1, ..., my) with the partial 
order (i l ,  . . . ,  iv)--<_(jl, " ' , J r )  if and only if ih~Jh ( h = l  .... , v), and {X~]e~A} is a 
family of independent symmetric random variables with partial sums {S~[c~eA}, then 

P {max S~> a} < 2 ~ P {S(m 1 ....... )> a}. (1) 

Proof When v= 1, the present theorem reduces to D. Andr5 Reflection 
Principle for sums of independent symmetric random variables. The conclusion 
follows from Theorem 1.1 with ~={(P l ,  -.., q),,1}, q)i(S)-=Si,Jf~= {q0~} (i= 1, 
2 . . . .  , m 0 and ~f  = ~r 

The case v =2 has already been proved directly and applied to solve barrier 
problems for stationary Gaussian processes with non-negative convex covariances 
in [2]. 
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In order to prove the general case, set B(h)={e=( i l , . . . , i v ) [~eA , iv=h } 
(h = 1, ..., m~); it suffices to show that 

P{max S~>a} < 2 P [  max S,>a}  (2) 
~EA "aeB(m,,) 

and to apply finite induction. The inequality (2) follows from Theorem 1.1 with 
~ =  {q~leeA}, 9~(S)=S~(c~eA), ~ =  {q)~r~ee(h)} (h= 1 . . . .  , m0 and ~=~emv; 
this ends the proof of the Theorem. 

Given the linear array of independent symmetric random variables X1, ..., Xn, 
let us extend it to the whole integer line by defining X i = 0 for i=< 0 or i>  n. The 
partial sums S h = ~ X i remain unchanged on (1, ..., n) and constant on (..., - 1, 0) 

i<h 
and (n, n+  1, ...), vanishing on the former set. 

A functional of the form 

~o(S)= ~ (Si_~a--Si_h_~a) ( 0 < h < k )  (3) 
v =  - o o  

will be called a [k]-aceumulated doublet of length h. 

For a plane array {XijIi=l , . . . ,m;  j = l ,  ..., n}, we make the analogous 
extension by defining Xij=O for (i, j)6(1, ..., m)x (1 . . . . .  n) and the partial sums 
Sag = ~ Y' Xij are now defined on the whole integer plane. 

i<h j<k 

A functional of the form 

q)(S):  ~ (Si_vk, j+vk--Si_h_vk, j+h+vk) (0<[hl<k) (4) 
v = - - o o  

will be called a [k]-accumulated plane doublet of length Ihl. The sum i+ j  will be 
called the index of the accumulated plane doublet (4). 

It will be noticed that for sufficiently big [vl, the corresponding term in (3) or 
(4) becomes irrelevant, that is, the accumulated doublets (3) and (4) can be con- 
sidered as finite sums. 

The following theorems solve barrier problems for accumulated doublets. The 
restriction to be imposed on the length could be relaxed, but it was chosen in view 
of the applications in w 3. 

Theorem 2.2. I f  o~ is the family of all [k]-accumulated doublets of length not 
greater than k/2, corresponding to the array 2(1, X 2 . . . . .  X n of independent sym- 
metric random variables with partial sums {Si} , then for each a > O, 

P{max ~o (S) > a} < 8 P { S , > a } .  
" ~ 0 ~  

Proof On the square (1, ..., k)x (1, ..., k), we define the arrays Y~j, Z~j by 
Y/j=Z~j=0 for i+j4=k+ 1, and 

Yi, k + l - i :  ~ Xi+vk 
v~ - oo 

oo 

' - + v k '  
v 
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It is easily seen that every accumulated doublet appearing in F is a partial 
sum in one at least of the arrays, hence 

P{max(D(S)>a}<P f~max ~ ~ Yi, y>a + P ~ m a x  ~ ~Zi ,~,>a 
r ~i , j<k i~=1 j ' = l  [ i , j<k  i'~1 j ' = l  

and since k k k k n 

E E j=E Ezlj=Exi=so, 
i=1 s=l i=1 j=l i=1 

the inequality (1) with v =2 leads to the required conclusion. 

Theorem 2.3. I f  ~ is the family of all [k]-accumulated plane doublets cor- 
responding to the array {Xij } (1 < i < m, 1 < j< n) of independent symmetric random 
variables with partial sums {Sij}, then for each a > O, 

P{max(D(S)>a}<64P m.>~-  

Proof. It will be assumed without loss of generality, that the terms in the 
accumulated doublets are paired in such a way that the lengths are always not 
greater than k/2. Let us notice first that the family F is finite, because the sub- 
families ~ = {(D ~ 1  the index of q) is p} are obviously finite, and for p >m + n, 

m+n+k 
~r Then ~ =  ~ ~ l  and we shall prove first that the collection 

p = l  

(~p)v=x ...... +.+k is an ordered partition of ~ bounded by the family ~ of all 
differences + (D'-T- (D" of [k]-accumulated doublets of the same length not greater 
than k/2, where (D' is associated to the array {Si,li= 1, ..., m} and (D" is associated 
to the array {Smsl J = 1, ..., n}. 

The sets Np appearing in the definition of ordered partition are now 

~p={(i,j)liWj<p} (p=l ,  ...,m-t-n-t-k). 

For each (i, j), let us define (Dij(S)= Sij; then the transformation 

T(Di j = (Din "q- (Dmj -- (Dmn 
has the property 

9~ (Dis) ~ ~i+ j = O, 

even when i (or j) is greater or equal than m (or n) because in that case T(D~s-(Dis 
vanishes and it may be assumed 6e(T(Dij - (Dis)=0. Now any member (D of ~v is 
a linear combination (D = ~ 7ij (Dis of elements of {(Dis]i+j = p} and we extend T by 

T(E ~ij (Dij) = E ~)ij T(Dij 

hence the family {T(DI(De~} closes the ordered partition ~ ,  ..., O~m+ .. But it is 
readily verified that {T(D](De~} is precisely ~,, therefore Theorem 1.1 gives the 
estimate 

P {max (D (S) > a} < 2P {max (D (S) > a}. 
qj~o~- q~ e oaf 

m+n+k--2 
1 indeed, g f fp+k=~forp>=m+n_land there fore~  = ~ ~ ,  but  we do not  need here such 

a precise descript ion,  p= 1 
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Let us call now i f '  and ~-" the families of [k]-accumulated doublets associated 
to {Si,} and {S,q} respectively. Then 

P{maxq~(S)>a}<Ptmax q~'(S)>2}+P{~,max,[q~"(S)[>2} 
~0 e o~'f I q~ eo~ 

a . a 
<2P~maxq~(S)>--~+2P~maxq~ (S) > - - ~ ,  
- ( ~ ' ~ '  2 J ( ~ " ~ "  2 J 

and from Theorem 2.2 we have 

P~max~o' (S)>2}<8P{S, . .>2}  

hence 

P{max  ~o(S)>a} <32P Sin,> ~ 

and the conclusion follows. 

The conclusions of Theorem 2.1, 2.2 and 2.3 can be extended to processes with 
independent symmetric increments, depending on a continuous parameter, 
provided that the information about finite or denumerable sets of values of the 
process describes the behavior of the process itself in regard with barrier problems. 
This is the case for separable processes and for processes with continuous paths. 
The following corollaries will extend the above conclusions to the latter restricted 
case, but similar proofs could be carried out for separable processes. 

In what follows, processes X(t) (O<t<T) with continuous paths and in- 
dependent and symmetric increments will be considered. It is well known that 
the assumptions of continuity and independence imply that the increments are 
Gaussian, so that it is enough to assume that the increments are centered (around 
a zero mean) in order to obtain the symmetry. 

We shall also consider processes X(x, y) (0 < x < M, 0 <= y < N) with continuous 
paths and independent and symmetric double increments X(x2, Yz ) -X(x ,  Y2)- 
X(xz, Yl)+X(xl, YO associated to intervals (x~ <x<x2, Yl <Y~Y2). In this con- 
text, independence and continuity also imply that increments are Gaussian. 

In both cases, the increments correspond to the variables X i or Xij in the 
discrete case, and the values of the process correspond to the partial sums S i or 
Sij. Since we want the values of the process to be precisely the sum of the increments, 
we shall impose initial conditions X(0) = 0 or X(0, y) = X(x, 0) = 0 for 0 < x < M, 
0 < y < N. An important example of such processes are Wiener integrals 

t 

X(t) = ~f(~) db (~), X(x, y)= ~ f(~, q) dfl(~, q) 
0 (0, x) x (0, y) 

with respect to a Brownian motion b or a plane Brownian motion fl 2. 

2 Plane Brownian motion is defined in [l] and will be referred in w 3. 
2 Z. Wahrscheinlichkeitstheorie verw. Geb ,  Bd. 22 
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The next corollary is the continuous analogue of Theorem 2.1 for v=2. The 
formulation could be done as well for any v, and it is restricted to v = 2 to simplify 
the notations. It should be observed that the analogue for v= 1 is D. Andr6 
Reflection Principle for Brownian motion, and the inequality can in this case be 
replaced by equality; but this cannot be extended for other values of v, as it is 
easily verified. 

Corollary 2.1. Let {X(x, y)lO<_x<_M, O< y< N} be a (Gaussian) process with 
continuous paths and independent centered (and symmetric) increments, with initial 
values X(O, y)= X(x, 0)=0 for all O<_x<_M, 0__<y__<N. Then 

P {0 suP~tX(x' y) > a} < 4 P {X(M, N)> a}. 
O < y = < N  

Proof Let A, be the set of all vertices of the partition of[0, M ] x  1-0, N] obtained 
as the product of the partitions into 2" equal parts of the sides. The restriction of 
X to A n gives a set of partial sums of the increments of X, hence Theorem 2.1 for 
v = 2 gives 

P{ max X(x, y)>a} < 4 P  {X(M, N)>a} (5) 
(x, y)~An 

and since 
lira { max X(x, y) > a} = {o sup X(x, y)> a}, 
n~oo (x,y)~An <x<=M 

O<_y<=N 

we obtain the required result passing to the limit in (5). 

The next statements require the analogue of accumulated doublets for the 
continuous case. Given X(t) (O<t<T) we shall extend it to the whole line by 
setting X(t)= 0 for t <0  and X(t)= X(T) for T< t. Then [k]-accumulated doublets 
of length h are defined to be the functionals of the form 

q0(X)= ~ X ( t - v k ) - X ( t - h - v k )  
v ~  - c o  

where h, k are real numbers satisfying 0 < h < k .  In the same way, given X(x, y) 
(0_< x N M, 0__< y_-< N) we shall extend the domain to the whole plane by setting 
X(x, y)= X(x a M, y/x N) for x, y > 0, and X =0  otherwise. Then [k]-accumulated 
plane doublets of length h are defined to be the functionals 

q)(X)= ~ X ( x - v k ,  y + v k ) - X ( x - h - v k ,  y+h+vk) 
v = - - o o  

where h, k are real numbers such that 0<  ]h I <k, and x + y  will be said to be the 
index. 

We are in position now to formulate the analogues of Theorems 2.2 and 2.3. 

Corollary 2.2. Given a ( Gaussian) process {X(t)) ~ [0, T] } with continuous paths 
and independent centered (and symmetric) increments, starting from X(0)= 0, the 
inequality 

P {sup to (X) > a} <= 8 P {X(T)> a} 

holds for each a > 0  when ~ is the family of all [k]-accumulated doublets of 
length not greater than k/2. 
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Corollary2.3. Given a (Gaussian) process {X(x, y)[O<_x<_M, O< y< N} with 
continuous paths and independent centered (and symmetric) increments, starting 
from X(O, y) = X(x, O) = O, the inequality 

P { s u p ~ p ( X ) > a } < 6 4 P { X ( M , N ) > 2 }  

holds for each a > 0  when Z is the family of all [k]-accumulated plane doublets. 

As it was observed above, the assumptions indicated in the parentheses are 
superflous. We omit the proofs of both corollaries since they use the same ideas 
than the proof of Corollary 2.1. 

3. The Vibrating String 

The equation of the position u(t, z) at time t of an undamped vibrating string 
of length L, at the point of abscissa z, is 

0 2 U (t, Z)/~ t 2 = 0 2 U (t, Z)/O Z 2 ~- F(t, z) (1) 

when the external force is F. It is well known that when the string starts from rest 
at t = 0 (u (0, z) = Ou (0, z)/O t = O, 0 <= z <= L) and is tied at both ends (u (t, O) = u (t, L) = O, 
t>O), the solution of( l ) i s  

u(t, z ) = ~  Zt,=(~, f)F(T, f) d~ (-c, f) (2) 

where Zt, z denotes the function described in Fig. 1, defined by 

k = - - o O  

{: 
0~, = (4 ~) = otherwise, 

/~ is plane Lebesgue measure, and the integral is extended to the whole plane. 

(t,z) 

) 
) 

o 
Z 

Fig. 1. Diagram of the function Xt, = 
2* 
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If the forcing term is a plane white noise 

F(t, z)= 0 2 fl(t, z)/~t ~3z = Off(t, z)/O#, 

(2) must be replaced by the stochastic integral 

u(t, z)= Z,,z (3) 

A better description of (3) is given in [1], but in order to perform our calcula- 
tions, it is enough to state here that for bounded measurable sets A, B, the integrals 
j~ d/~, ~ d//are centered Gaussian variables with variances #(A), #(B) and covari- 
A B 

ance # (An B), and that the resulting process u (t, z) given by (3) has continuous paths 
(a. s.). We shall use this occasion to emphasize that plane and linear Brownian 
motions can be defined with respect to measures other than the Lebesgue one, and, 
except perhaps for the continuity of paths, the properties remain the same, taking 
the new measure the place of Lebesgue measure in the computation of variances 
and covariances. 

Let us consider now two barrier problems for the vibrating string (3) forced 
by white noise. 

Problem 1. To find an upper bound for the probability 

P { sup u (t, z) > a} (4) 
O<_z<.L 

for each a>O, t>O. 

Problem 2. To find an upper bound for the probability 

V sup u(t, z)>a} (5) 
O<z<L,O<_t<T 

for each a > O. 
Our first step in solving Problem 1 will be to represent the process u(t , ' )  in a 

suitable form. 

Lemma 3.1. Let us define the function f on [0, L] • [0, L] by 

for 0 <= x + y < L, the brackets denoting the integral part, and 

ft(x, y)=O for x + y > L .  

Then, if db is a plane white noise on [0, L] x [0, L] with respect to the measure with 
density Act (instead of Lebesgue measure), the process ~ db (O<_z<=L) is 

[O, z l x [ O , L - z ]  

equivalent to the process u(t, z) given by (3), that is, both processes have the same 
distributions. 

The proof, which we omit here, is made by direct computation of the covari- 
ances. 
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Lemma 3.2. When t is an integer multiple k L/2 of the half-length the distribution 

of the u(t, z) is the same than the conditional distribution of V~  L w(z/L) given that 
the Wiener process w satisfies w (1) = 0. 

Proof When t = k L/2, ft (x, y) = k for 0 < x + y < L, hence E (u (t, zl) u (t, z2) ) = 
k(z 1 A Z E ) ( L - z  1 V Z2). On the other hand, given the Wiener process w we set 

w ( y ) = y w ( 1 ) + ( w ( y ) - y w ( 1 ) )  (6) 

and since E(w(1 ) (w(y ) - y  w(1)))=0, the parenthesis in (6)is independent of w(1). 
Therefore 

E { (]/#k L) 2 (w (z l /L)  - Z 1 W (1)/L)(w (zz/L) - z 2 w (1)/L)} 

= k L 2 (  zlAz2L z l z 2 )  2 

as it was to be shown. 

Theorem 3.1. Let ~a(a 2) be the probability 

a ] / ~  ff e 2 0 -2 du 

that a centered Gaussian variable with variance 0 2 be greater than a. Then: 

(i) 4@.(L t) is an upper bound of (4); 

(ii) given any 6>0 ,  there exists a constant A a such that A a ~ ( g ( t ) + 6 )  is an 
upper bound of (4), where 

g (t) = L t/2 + n (t) 

and n (t) is the periodic function of period L, defined by 

n ( t )= t ( l t [ -L /2 )  ( - L / 2 < t < L / 2 ) ;  

(iii) for any positive integer k, 

P {0 s_<UzpLU (k L/2, z)> a} = P {oS_<UPx w(z) > a/Ilk L[w(1) = 0}, 

where w is a Wiener process. 

Proof Using the representation of Lemma 3.1, part (i) follows from Corol- 
lary 2.1, and part  (iii) is a direct consequence of Lemma 3.2. 

In order to prove (ii) let us consider the continuous function 

x y 
F,(x, y)= S de S 

0 0 

whose maximum for x + y = L  is precisely g(t). Then the interval [0, L]  can be 
parti t ioned by points 0 = z o < z~ < . . -  < z v = L in such a way that  for i = 1, 2, . . . ,  p, 
Ft(zl, L - z i _ l ) < g ( t ) + 6 ,  and therefore, using Corollary 2.1, it follows that  

P{ sup u( t , z )>a}<4~. (Fdz i ,  L - Z i _ l )  ) 
z i _ l  <z<_z~ 
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hence 
P{ sup u(t ,z)>a}=P { sup u(t,z)>a} 

O<z<<_L i-- z i - l < z < z l  

P 

__< 4 ~ @~ (F t (z~, L - z~_ 1)) <-- 4 p q~. (g (t) + 6). 
i = I  

The partition depends on 6, and so does in particular the coefficient Ao=4 p. 
This ends the proof of the Theorem. 

It should be noticed that, since g (t) is the maximum of Var (u (t, z)) for 0 _< z < L 
(which is attained at z=L/2), there is no bound of (4) holding for all a > 0  such as 
the one obtained in (ii) but with 6 < 0. 

Theorem 3.2. Let q~a be defined as in Theorem 3.1. Then 

(i) 64 q~a/z(LT) is an upper bound of (5), and 
(ii) given any 6>0,  there exists a constant Bo such that B~@~(g(T)+6) is an 

upper bound of (5), where g is the same function appearing in Theorem 3.1. 

Proof. Let us define in 
T+L 

o<_x<_ 1/5 o < _ y < _ - -  
the set 

T+L 

< L 
Ix-y1 S={(x, y) l~2 2-< x + y< L + 2 T - - 7  

and construct the measure #(A)= S dx dy. 
Arts  

A plane Brownian motion/~ with respect to the measure # is introduced, and 
the stochastic process X(x, y)= S d/? is considered. Then our process u(t, z) 

[0, x] x [0, Yl 

I 

I 

y T+L I T 
!/T 

o i- 

Fig. 2. Representation of u(t, z) as an accumulated plane doublet 
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can be obtained as a [] /2L]-accumulated plane doublet for the process X, as is 
shown in Fig. 2, and the terms can obviously be paired so to have a length not 
greater than 1/2L/2. Hence part (i) follows readily from Corollary 2.3. 

As to the second part, let us divide the rectangle 

S =  {(t, z)lO< z< L, O<=t < T} 

into the small regions {Rhlh= 1, 2, ..., p} obtained by intersecting with each of 
the squares 

{ ( t , z ) [ iL / v < t+z<( i+ l )L / v ; jL / v< t - z<( j + l )L / v }  (i, +j=O,  1,2 . . . .  ), 

hence (5) is bounded by 
P 
2 P{  sup u( t ,z)>a}.  

h=l  ( t , z ) eRh  

Given a fixed Rh, the sets Sh, S' h defined by 

sh= N {(~,01z,,z(~,0#~ 
(t, z )~Rh 

and 
S~= U {(~,01zt, z( ~ , 0 * 0 } ' S h ,  

(t, z)~Rh 

induce a decomposition of u(t, z) on R h as the sum of a constant term 

w= 5Iz,, a  
Sh 

and a remainder 
z)- j'j a,8= j'I x,,= 

Sh S~ 

Since g (T) is the maximum of the variance of u (t, z) for (t, z)e S, then Var (w)< g (T), 

hence P {w>2 a} < ~z.(g(T)). (7) 

As to the process v(t, z), the same reasoning used to derive the part (i) of the 
present theorem, now leads to the analogue result 

P{ sup v(t, z) > /z a} _< 64 q}g,/a (a 2) (8) 
(t, z ) e R  h 

= - -  is the area of S~. 

Combining (7) and (8), 

P{ sup u(t, z)>a} <4~,(g(r))+64r 2) 
(t, z )eRh  

is obtained (0 < 2 < 1), and since 

4i~ (g (T)) + 64 4~ o_ z)~/2 (a2) =< 65 ~ (g (T) + 6) 
f o r  

g(T)/22 < g(T)+(~ 
and 

4 o'2/(1 - -  ,~)2 ~ g (T) + 6 

(9) 

(10) 
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we choose 2 such that  (9) holds and then 0 -2 in order  that  (10) also holds (this last 
condit ion imposed on the area of  S~, is obtained with a part i t ion sufficiently fine, 
namely, for v > 8 LT/(g (T) + 6)(1 - 2)2). 

This const ruct ion leads to the bound  65p eb,(g(T)+6) for (5), with the coef- 
ficient B~--65 p depending on 3. 

As in the case of Theorem 3.1, this bound  cannot  be substantially improved 
for all a simultaneously. 
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