Existence of Proper Conditional Probabilities

K. MUSIAŁ

Introduction

Let (X, \mathcal{A}, P) be a probability space and let \mathcal{B} be a sub- σ -algebra of \mathcal{A} . It is well known that even if there exists a regular conditional probability (r.c. p.) on \mathcal{A} , given \mathcal{B} , it is not necessarily proper (Blackwell and Ryll-Nardzewski [2]).

It is shown in this paper that under some assumptions on *P*-null sets in \mathscr{B} there exist σ -algebras $\mathscr{A}_0 \subset \mathscr{A}$ and $\mathscr{B}_0 \subset \mathscr{A}_0 \cap \mathscr{B}$ such that $\mathscr{A}_0 \sim \mathscr{A}$ (*P*/ \mathscr{A}) and $\mathscr{B}_0 \sim \mathscr{B}(P/\mathscr{A})$ and there exists a proper r.c.p. on \mathscr{A}_0 , given \mathscr{B}_0 .

The theorems proved here generalize the ones of Pfanzagl's paper [7] and the proofs seem to be simpler.

Moreover under some assumptions about separability of σ -algebras under consideration there is given a full condition for the existence of a r.c.p. and a proper r.c.p.

Besides, there is given a simple characterisation of Blackwell spaces (Rao) which employs the proper r.c.p.-ies.

1. Definitions and Basic Lemmas

Let (X, \mathscr{A}, P) be a probability space. For given two subsystems $\mathscr{B} \subset \mathscr{A}$ and $\mathscr{C} \subset \mathscr{A}$ we shall write $\mathscr{B} \subset \mathscr{C}(P/\mathscr{A})$ if for any $B \in \mathscr{B}$ there exists $C \in \mathscr{C}$ such that $P(B \triangle C) = 0$. We shall write $\mathscr{B} \sim \mathscr{C}(P/\mathscr{A})$ if $\mathscr{B} \subset \mathscr{C}(P/\mathscr{A})$ and $\mathscr{C} \subset \mathscr{B}(P/\mathscr{A})$. In this paper by an *algebra* we shall always understand a σ -algebra and by a measure the probability measure. If $\mathscr{B} \subset \mathscr{A}$ is an algebra then a set $D \in \mathscr{B}$ with P(D) > 0 is a P/\mathscr{B} -atom if $B \in \mathscr{B}$ and $B \subset D$ together imply P(B) = 0 or P(B) = P(D). P/\mathscr{B} is purely atomic if the union of all P/\mathscr{B} -atoms has measure 1, P/\mathscr{B} is nonatomic if P/\mathscr{B} -atoms do not exist.

Let $\mathscr{A}_0 \subset \mathscr{A}$ and $\mathscr{B} \subset \mathscr{A}$ be arbitrary algebras. A regular conditional probability (r.c.p.) on \mathscr{A}_0 , given \mathscr{B} , is a function $P(\cdot, \cdot/\mathscr{B}): \mathscr{A}_0 \times X \to [0, 1]$ such that

- (i) $P(\cdot, x/\mathscr{B})$ is a measure on \mathscr{A}_0 for all $x \in X$,
- (ii) $P(A, \cdot /\mathcal{B})$ is \mathcal{B} -measurable for all $A \in \mathcal{A}_0$,
- (iii) $\int_{B} P(A, x/\mathscr{B}) P(dx) = P(A \cap B)$ for all $A \in \mathscr{A}_{0}$ and $B \in \mathscr{B}$.

A r.c.p. $P(\cdot, \cdot/\mathscr{B})$ on \mathscr{A}_0 is proper if $P(B, x/\mathscr{B}) = X_B(x)$ for all $B \in \mathscr{B} \cap \mathscr{A}_0$, $x \in X$.

For any $A \subset X$ let $A^1 = A$ and $A^0 = X - A$. If $\{A_{\gamma}\}_{\gamma \in \Gamma}$ is a family of subsets of X, then we shall call them σ -independent if for any sequence $\{\delta_n\}_{n=1}^{\infty} \in \{0, 1\}^{\aleph_0}$ and for any sequence $\{A_{\gamma_n}\}_{\gamma_n \in \Gamma}$ we have $\bigcap_{n=1}^{\infty} A_{\gamma_n}^{\delta_{\gamma_n}} \neq \emptyset$.

Lemma 1. Let $\{A_{\gamma}\}_{\gamma \in \Gamma}$ be a family of σ -independent sets which belong to \mathscr{A} . For any $\Gamma_0 \subset \Gamma$ there exists a proper r.c.p. on $\mathscr{A}_0 = \sigma(\{A_{\gamma}\}_{\gamma \in \Gamma})$, given $\mathscr{B} = \sigma(\{A_{\gamma}\}_{\gamma \in \Gamma_0})$.

Proof. For $\Gamma_0 = \Gamma$ this is obvious. If $\Gamma_0 \neq \Gamma$ we may assume that the set $\Gamma - \Gamma_0$ is ordered by ordinals $\gamma < \gamma_0$.

We put $P_0(B, x/\mathscr{B}) = X_B(x)$ for $B \in \mathscr{B}$; clearly P_0 is a proper r.c.p. on \mathscr{B} , given \mathscr{B} .

Let us make inductive assumption that for a certain $\gamma_* < \gamma_0$ a family of consistent proper r.c. p.-ies $P_{\varepsilon}(\cdot, \cdot/\mathscr{B})$ on $\mathscr{A}_{\varepsilon} = \sigma(\{A_{\gamma}\}_{\gamma < \varepsilon}, \mathscr{B})$, for all $\varepsilon < \gamma_*$ is already constructed (consistency is used here in the meaning that for every $x \in X$ the measures $\{P_{\varepsilon}(\cdot, x/\mathscr{B})\}_{\varepsilon < \gamma_*}$ are consistent in the sense of Kolmogorov).

It is our aim now to define a proper r.c. p. $P_{\gamma_*}(\cdot, \cdot/\mathscr{B})$ on \mathscr{A}_{γ_*} , being an extension of all P_{ε} for $\varepsilon < \gamma_*$.

Case 1. γ_* is a limit ordinal. Then we take as P_{γ_*} the common extension of all P_{ε} for $\varepsilon < \gamma_*$. It is easy to see, that P_{γ_*} has all required properties.

Case 2. $\gamma_* = \gamma_1 + 1$. We have already built a proper r.c.p. $P_{\gamma_1}(\cdot, \cdot/\mathscr{B})$ on \mathscr{A}_{γ_1} . Let f(x) be any conditional probability of the set A_{γ_1} , given \mathscr{A}_{γ_1} (let us observe, that $A_{\gamma_1} \notin \mathscr{A}_{\gamma_1}$). We can choose f(x) such that $0 \leq f(x) \leq 1$.

In view of the independence of algebras \mathscr{A}_{γ_1} and $\sigma(A_{\gamma_1})$, the function $\overline{P}(\cdot, \cdot/\mathscr{A}_{\gamma_1})$ defined on $\mathscr{A}_{\gamma_*} \times X$ by

$$P(E \cap A_{\gamma_1} \cup F \cap A_{\gamma_1}^0, x/\mathscr{A}) = \mathsf{X}_E(x) f(x) + \mathsf{X}_F(x) (1 - f(x))$$

for $E \in \mathscr{A}_{y_1}$ and $F \in \mathscr{A}_{y_1}$, is a proper r.c.p. on \mathscr{A}_{y_2} , given \mathscr{A}_{y_1} .

Now, the function $P_{\gamma_*}(\cdot, \cdot/\mathscr{B})$ defined for arbitrary $A \in \mathscr{A}_{\gamma_*}$ by

$$P_{\gamma_*}(A, x/\mathscr{B}) = \int P(A, u/\mathscr{A}_{\gamma_1}) P_{\gamma_1}(du, x/\mathscr{B})$$

is a proper r.c.p. on \mathcal{A}_{γ_*} , given \mathcal{B} . It is easy to see that P_{γ_*} is an extension of P_{γ_1} .

Having the described procedure accomplished we obtain a proper r.c.p. on \mathcal{A}_0 , given \mathcal{B} .

Proposition 1 (Tarski). If N is a set of cardinality m, such that $m^{\aleph_0} = m$ then there exist 2^m of σ -independent subsets of N.

This is a particular case of Hilfssatz 3.16 from [10].

Proposition 2. Let (N, \mathcal{C}) be any measurable space, such that \mathcal{C} contains $m \ge c$ disjoint sets. If the spaces (N, \mathcal{C}) and $(N, \mathcal{C})^{\aleph_0}$ (the product symbol has the usual meaning) are isomorphic, then there exists in (N, \mathcal{C}) a family of cardinality m of σ -independent and measurable subsets.

The idea of the proof is analogous to that from [5].

2. Main Theorems

Theorem 1. Let P/\mathscr{A} be a measure on an algebra \mathscr{A} . Let us assume that $\mathfrak{m} \geq \aleph_0$ is the smallest cardinality of a dense subset of \mathscr{A} in Frechet-Nikodym's metric. Let \mathfrak{n} be the smallest cardinal number such that $\mathfrak{n}^{\aleph_0} = \mathfrak{n}$ and $\mathfrak{m} \leq 2^{\mathfrak{n}}$, and let \mathscr{B} be any subalgebra of \mathscr{A} . If P/\mathscr{B} is either purely atomic, or \mathscr{B} contains a P-null set N of cardinality \mathfrak{n} , such that all its subsets belong to \mathscr{B} then for some algebra $\mathscr{A}_0 \subset \mathscr{A}$ with $\mathscr{A}_0 \sim \mathscr{A}(P/\mathscr{A})$ and for some algebra $\mathscr{B}_0 \subset \mathscr{B} \cap \mathscr{A}_0$ with $\mathscr{B}_0 \sim \mathscr{B}(P/\mathscr{A})$ there exists a proper r.c.p. on \mathscr{A}_0 , given \mathscr{B}_0 . K. Musiał:

Proof. If P/\mathscr{B} is purely atomic, this is trivial; the function $P(\cdot, \cdot/\mathscr{B})$ defined by

$$P(A, x/\mathscr{B}) = \sum_{n=1}^{\infty} \frac{P(A \cap E_n)}{P(E_n)} X_{E_n}(x),$$

where E_n , n=1, 2, ... are P/\mathscr{B} -atoms and $\bigcup_{n=1}^{\infty} E_n = X$, is a proper r.c. p. on \mathscr{A} , given $\sigma(\{E_n\}_{n=1}^{\infty}) \sim \mathscr{B}(P/\mathscr{A})$.

The rest of the proof is devoted to the case, when \mathcal{B} contains a *P*-null set *N* such that card N = n, and all subsets of *N* are in \mathcal{B} .

Suppose the family $\{A_{\gamma}\}_{\gamma \in \Gamma}$ with card $\Gamma = \mathfrak{m}$ is dense in \mathscr{A} . We may assume that there exists $\Gamma_0 \subset \Gamma$ such that $A_{\gamma} \in \mathscr{B}$ for $\gamma \in \Gamma_0$, and $\{A_{\gamma}\}_{\gamma \in \Gamma_0}$ is dense in \mathscr{B} .

By Proposition 1 there is a family $\{N_{\gamma}\}_{\gamma \in \Gamma}$ of σ -independent subsets of N.

For any $\gamma \in \Gamma$ let

$$C_{\gamma} = A_{\gamma} \cap N^0 \cup N_{\gamma} \cap N.$$

Of course for every $\gamma \in \Gamma$ we have $C_{\gamma} \in \mathscr{A}_{\gamma}$ and $C_{\gamma}^{\delta_{\gamma}} \cap N \neq \emptyset$, where $\delta_{\gamma} = 0$ or 1. Moreover, for $\gamma \in \Gamma_0$ we have $C_{\gamma} \in \mathscr{B}$.

From this remark and the σ -independence of N_{γ} , $\gamma \in \Gamma$, it follows that all C_{γ} , $\gamma \in \Gamma$ are σ -independent.

Let us notice that because of P(N)=0, we have

$$\sigma(\{A_{\gamma}\}_{\gamma\in\Gamma_0})\sim\sigma(\{C_{\gamma}\}_{\gamma\in\Gamma_0})(P/\mathscr{A}).$$

The last relation together with the assumed fact that

$$\sigma(\{A_{\gamma}\}_{\gamma\in I_0})\sim \mathscr{B}(P/\mathscr{A})$$

gives us the equivalence

$$\sigma(\{C_{\gamma}\}_{\gamma\in\Gamma_0})\sim \mathscr{B}(P/\mathscr{A}).$$

In the similar way we can prove that

$$\sigma(\{C_{\gamma})_{\gamma\in\Gamma})\sim\mathscr{A}(P/\mathscr{A}).$$

Putting $\mathscr{A}_0 = \sigma(\{C_{\gamma}\}_{\gamma \in \Gamma})$ and $\mathscr{B}_0 = \sigma(\{C_{\gamma}\}_{\gamma \in I_0})$, we have, by Lemma 1, the desired result.

Theorem 2. Let P/\mathscr{A} be a measure on an algebra \mathscr{A} . Let us assume that $\mathfrak{m} \geq \aleph_0$ is the smallest cardinality of a dense subset of \mathscr{A} in Frechet-Nikodym's metric. Let $\mathfrak{n} \geq \mathfrak{m}$ be the smallest cardinal number such that $\mathfrak{n}^{\aleph_0} = \mathfrak{n}$, and let \mathscr{B} be any subalgebra of \mathscr{A} . If P/\mathscr{B} is either purely atomic or \mathscr{B} contains a P-null set N of cardinality \mathfrak{n} and there is a subalgebra $\mathscr{C} \subset \mathscr{B}$ such that the measurable spaces $(N, \mathscr{C} \cap N)$ and $(N, \mathscr{C} \cap N)^{\aleph_0}$ are isomorphic and $\mathscr{C} \cap N$ contains \mathfrak{n} disjoint sets then for some algebra $\mathscr{A}_0 \subset \mathscr{A}$ with $\mathscr{A}_0 \sim \mathscr{A}(P/\mathscr{A})$ and for some algebra $\mathscr{B}_0 \subset \mathscr{B} \cap \mathscr{A}_0$ with $\mathscr{B}_0 \sim \mathscr{B}(P/\mathscr{A})$ there exists a proper r.c.p. on \mathscr{A}_0 , given \mathscr{B}_0 .

Proof. Using Proposition 2 we can prove this theorem in the same manner as the first one.

3. The Separable Case

In this section by a *separable* algebra we shall mean an algebra which is σ -generated and contains points. If \mathscr{A} is a separable algebra, then $A \in \mathscr{A}$ is an \mathscr{A} -atom if $A_1 \in \mathscr{A}$ and $A_1 \subset A$ implies $A_1 = \emptyset$ or $A_1 = A$.

As a special case of Theorem 1 we obtain the theorem proved by Pfanzagl in [7].

Theorem 3. Let P/\mathcal{A} be a measure on an algebra \mathcal{A} , which is the completion of a separable algebra. Let \mathcal{B} be a subalgebra of \mathcal{A} contining all P-null sets from \mathcal{A} . If P/\mathcal{B} is either purely atomic or \mathcal{A} contains a P-null set of the cardinality c then for some algebra $\mathcal{A}_0 \subset \mathcal{A}$ with $\mathcal{A}_0 \sim \mathcal{A} P/\mathcal{A}$ and for some algebra $\mathcal{B}_0 \subset \mathcal{A}_0 \cap \mathcal{B}$ with $\mathcal{B}_0 \sim \mathcal{B} P/\mathcal{A}$ there exists a proper r.c.p. on \mathcal{A}_0 , given \mathcal{B}_0 .

Assuming the separability of \mathscr{A} in the sense of Frechet-Nikodym, we obtain such a theorem:

Theorem 4. Let P/\mathscr{A} be a measure on a separable in the sense of Frechet-Nikodym algebra \mathscr{A} . Let \mathscr{B} be any subalgebra of \mathscr{A} . If P/\mathscr{B} is either purely atomic or \mathscr{B} contains a P-null set N of the cardinality c and an algebra \mathscr{C} such that the measurable space $(N, \mathscr{C} \cap N)$ is standard (cf. Parthasarathy [6]) then for some algebra $\mathscr{A}_0 \subset \mathscr{A}$ with $\mathscr{A}_0 \sim \mathscr{A} P/\mathscr{A}$ and for some algebra $\mathscr{B}_0 \subset \mathscr{A}_0 \cap \mathscr{B}$ with $\mathscr{B}_0 \sim \mathscr{B} P/\mathscr{A}$ there exists a proper r.c.p. on \mathscr{A}_0 , given \mathscr{B}_0 .

Of course, this theorem holds for any \mathscr{A} containing a dense subfamily of cardinality not greater than continuum.

Now we shall generalize another theorem of the paper [7] (Proposition 3 in [7]).

We begin with an easy observation:

Proposition 3. Let P/\mathscr{A} be a measure on an algebra \mathscr{A} . If there exists a r.c.p. $P(\cdot, \cdot/\mathscr{B})$ on \mathscr{A}_0 , then for every σ -generated algebra $\mathscr{C} \subset \mathscr{A}_0 \cap \mathscr{B}$ there exists a set $N_{\mathscr{C}} \in \mathscr{B}$ such that P(N)=0 and $P(C, x/\mathscr{B})=X_C(x)$ for every $C \in \mathscr{C}$ and $x \in X - N_{\mathscr{C}}$.

Theorem 5. Let \mathscr{A} be arbitrary algebra and let $\mathscr{A}_0 \subset \mathscr{A}$ and $\mathscr{B} \subset \mathscr{A}$ be such that there exists a σ -generated algebra $\mathscr{C} \subset \mathscr{A}_0 \cap \mathscr{B}$ such that every set from \mathscr{A}_0 is a union of atoms of \mathscr{C} . Then a r.c. p. on \mathscr{A}_0 , given \mathscr{B} exists iff there exists a set $N \in \mathscr{B}$ such that P(N)=0, and $\mathscr{A}_0 \cap N^0 \subset \mathscr{B} \cap N^0$.

Proof. Suppose $P(\cdot, \cdot/\mathscr{B})$ is a r.c.p. on \mathscr{A}_0 . In virtue of Proposition 3 there exists a set $N \in \mathscr{B}$ such that P(N) = 0 and $P(C, x/\mathscr{B}) = X_C(x)$ for all $C \in \mathscr{C}$ and $x \in X - N$. Thus, for every \mathscr{C} -atom e_x we have $P(e_x, y/\mathscr{B}) = X_{e_x}(y)$ for every $x \in X - N$.

It means that

$$P(A, x/\mathscr{B}) = \begin{cases} 1 & \text{if } x \in A \cap N^0 \\ 0 & \text{if } x \in A^0 \cap N^0. \end{cases}$$

But from the property of a r.c.p. we have $\{x: P(A, x/\mathscr{B})=1\} \cap \mathscr{B}$, so that $A-N=\{x: P(A, x/\mathscr{B})=1\}-N\in \mathscr{B}$. And so we have proved that $\mathscr{A}_0 \cap N^{\circ} \subset \mathscr{B} \cap N^0$.

The converse implication is almost trivial. In fact the function $P(\cdot, \cdot/\mathscr{B})$ defined for any $A \in \mathscr{A}_0$ by

$$P(A, x/\mathscr{B}) = \begin{cases} X_{A-N}(x) & \text{if } x \in X - N \\ P(A) & \text{if } x \in N \end{cases}$$

is a r.c.p. on \mathscr{A}_0 , given \mathscr{B} .

Corollary 1. Suppose $\mathcal{A}_0 \cap \mathcal{B}$ contains a separable algebra. Then a r.c.p. on \mathcal{A}_0 , given \mathcal{B} , exists iff there exists a set $N \in \mathcal{B}$ such that P(N) = 0 and

$$\mathscr{A}_0 \cap N^0 \subset \mathscr{B} \cap N^0.$$

If $\mathscr{A}_0 \notin \mathscr{B}$ then N is an uncountable set.

Corollary 2. Let \mathscr{A} be arbitrary algebra and let $\mathscr{B} \subset \mathscr{A}$ contains a separable algebra. Then a r.c.p. on \mathscr{A} , given \mathscr{B} , exists iff there exists a set $N \in \mathscr{B}$ such that P(N)=0 and $\mathscr{A} \cap N^0 = \mathscr{B} \cap N^0$. If $\mathscr{A} \neq \mathscr{B}$ then N is an uncountable set.

We shall come back now to proper r.c.p.-ies.

Theorem 6. Let \mathscr{A} be arbitrary algebra and let $\mathscr{A}_0 \subset \mathscr{A}$ and $\mathscr{B} \subset \mathscr{A}$ be such that every set from \mathscr{A}_0 is a union of sets from $\mathscr{A}_0 \cap \mathscr{B}$. Then a proper r.c. p. on \mathscr{A}_0 , given \mathscr{B} , exists iff $\mathscr{A}_0 \subset \mathscr{B}$.

Proof. Suppose $P(\cdot, \cdot/\mathscr{B})$ is a proper r.c.p. on \mathscr{A}_0 . For every $C \in \mathscr{A}_0 \cap \mathscr{B}$ and each $x \in X$ we have $P(C, x/\mathscr{B}) = X_C(x)$. Thus for every $A \in \mathscr{A}_0$ we have $P(A, x/\mathscr{B}) = X_A(x)$. So it must be $\mathscr{A}_0 \subset \mathscr{B}$.

The converse implication is obvious.

Corollary 3. If $\mathcal{A}_0 \cap \mathcal{B}$ contains all points then a proper r.c.p. on \mathcal{A}_0 , given \mathcal{B} , exists iff $\mathcal{A}_0 \subset \mathcal{B}$.

If \mathscr{A} is separable $\mathscr{A}_0 = \mathscr{A}$ and \mathscr{B} is arbitrary separable subalgebra of \mathscr{A} then we obtain a characterisation of Blackwell spaces (for definition see Rao).

Corollary 4. If \mathscr{A} is a separable algebra, then (X, \mathscr{A}) is Blackwell space iff for every separable algebra $\mathscr{B} \subset \mathscr{A}$ there exists a proper r.c.p. on \mathscr{A} , given \mathscr{B} .

Acknowledgement. The author would like to thank Prof. C. Ryll-Nardzewski for many valuable remarks.

References

- 1. Blackwell, D.: On a class of probability spaces. Proc. Third Berkeley Sympos. math. Statist. Probab. 2, 1-6 (1956).
- Ryll-Nardzewski, C.: Non-existence of everywhere proper conditional distributions. Ann. math. Statistics 34, 223-225 (1963).
- 3. Doob, J. L.: Stochastic processes. New York: Wiley 1953.
- 4. Halmos, P.R.: Measure theory. Princeton: Van Nostrand 1962.
- Marczewski, E.: Ensembles indépendants et leurs applications à la théorie de la mesure. Fundamenta Math. 35, 13-28 (1948).
- 6. Parthasarathy, K.R.: Probability measures on metric spaces. New York and London: Academic Press 1967.
- Pfanzagl, J.: On the existence of regular conditional probabilities. Z. Wahrscheinlichkeitstheorie verw. Geb. 11, 244–256 (1969).
- Pierlo, W.: Compact systems of sets. Lecture Notes in Mathematics 16. Berlin-Heidelberg-New York: Springer 1966.
- 9. Rao, B.V.: Studies in Borel structures. Doctor thesis. Indian Statistical Institute. Calcutta 1969.
- 10. Tarski, A.: Ideale in vollständigen Mengenkörpern. I. Fundamenta Math. 32, 45-63 (1939).

Kazimierz Musiał Mathematical Institute Polish Academy of Sciences ul. Kopernika 18 Wrocław, Poland

(Received August 11, 1970)