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On the Weak Convergence of Superpositions
of Point Processes

PETER JAGERS®

1. A Continuity Theorem

Let X be a g-compact, second countable space and .#(X) the set of non-
negative Radon Borel measures on X, i.e., elements of .#(X) are defined on the
Borel algebra 4 (X) and finite on compact sets. Denote by % the set of continuous
functions X — R with compact support and endow .# (X) with the vague topology,
generated by neighborhoods V(f,, ..., f,, & w={ve#(X); |vf;—nfil<e 1<j<n},
neZ,, f;€%x,e>0. Here and in the sequel puf=|fdpu.

Harris [5, p. 1111f.] has shown that probability measures on cylinder algebras
in .#(X) can be defined through projective systems satisfying obvious additivity
and continuity conditions. In the present case his proof simplifies since compact-
ness arguments may be used instead of completeness. Also the probability meas-
ures may be defined on the vague Borel algebra, #(.#).

For any Borel probability measure on .# (X), define its characteristic functional
[71 x(P) on %y as the function

f— | " P(dy)
H(X)
If y(P)y=x(Q), fi,..., bk, t=(t1,...,t,)eR" and P, . is the distribution of
Bt eos St
By 5%y, X)) =P{ued (X); pfi=x; 15j<n};
then

10)( 1) =1P)( Sus) =] eripian= [ r, .

Therefore P and Q give the same measure to sets {ue.#(X); (uf;, ..., uf,)eE} neZ_,
fi€%k, E€R", and so to all sets in the o-algebra generated by those sets. By second
countability this g-algebra contains (and equals) #(.#).

On the set of Borel probability measures we study weak convergence: P, —— P
iff for any bounded continuous f: #(X)— R, [ fdE,— { fdP.

Theorem 1 [cf. 7,9]. B —2> P if and only if x(B)— x(P).
Proof. Since, for fe¥%,, p— ¢'*/ is continuous and bounded (though complex
valued) the necessity is obvious.

* This paper was written during a visit at the Department of Statistics, Stanford University,
California, USA, with the partial support of the National Science Foundation grant GP-15909.
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The Sufficiency. By o-compactness there is a sequence of compact sets {K;}
such that K;cK? , (° denotes “interior of”) and X = UK By Urysohn’s

lemma thereisto each je Z | a k;e %y satisfying0<k; < 1, k; IK =land S(k)<K9,
(for any real or complex function f, S(f) is its support) If now teR, then
x(B)(tk)— x(P)(tk;) by assumption. Therefore, B, {nk;< x} converges to P{uk;<x}
in all continuity points of the latter.

Let ¢>0 be given. By the convergence there is to each jeZ, an A; such that
Bink;>A;}<e27/ foralln.

:)8

H=

j

is closed and B(H)>1—¢. If, for fe%x, n(f)=inf{j; S(f)=Kj}, then n(f)< oo,
since U K{ covers S(f) and therefore so does UKO for some n. Hence, for

j=1
€%by, uecH

Jeb H SIS ke SN SN Apry < 0.

In other words, H is vaguely bounded and for that reason [1, p.192] compact.
Thus, {B} is tight. By [1, p.194] the vague topology on .#(X) is metrizable and
so Prohorov’s theorem in the form given in [2, p.37] implies that the sequence
is sequentially compact. But it can have only one limit point, P determined by
1(P). Q.E.D.

{uk;<A;}

1

2. Convergence to the Poisson Process

Consider now a probability space (©, & P)and a triangular array {{,,, ..., &, .}
neZ, of measurable independent functions (Q, &) — (.#(X), B(.4)), such that the
range of each £;, is actually contained in the set of integer or infinite valued
measures. Such functions Q — .#(X), we call point processes.

A particularly interesting point process is the Poisson process: If £A4,, ..., ¢4,
neZ,, A;e%(X) are independent as soon as 4, ..., 4, are disjoint and

pea=p=1 e

for all bounded (i.e. contained in some compact set), A€ Z(X) and some Ae.#(X),
then ¢ is a Poisson process with intensity A. That this process is the only one
satisfying different sets of “natural” assumptions is well known [6 and §8].

A triangular array of point processes is called infinitesimal if for any compact
K lim max P{éj,, Kz=1}=0.

n-oo 1Zj<

Assumption 1. lim Z P{¢;, K=2} =0 for all compact sets K.

n—»ao

Assumption 2a. There is a Radon measure 4 on X such that for any bounded
Borel set 4 '
Z P{éJnA: 1} —>/1Aa
j=1

as n— 0.
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If K is compact and i}, A=P{{;(AnK)=1, £, K=1}, then A}, is a finite
measure and so is the sum e
=2 A
j=1

and we weaken 2a to:

Assumption 2b. For each compact K the sequence {4X} is weakly convergent
in the sense that A¥ f— X f if fe%,, S(f)cK.

Note that A%/4} K (K) may be interpreted as the probability distribution of a
point placed by the process £;, in K.

Now let Assumption 1 be satisfied and assume that 15— A for all compacts
K. If C<K, then for any Ae %

IKANC)= Y P{EMANCAK)=1,¢, K=1}

j=1

= i[P{éjn(Am O=1¢,C=1;-P{{;,(4nO)=1,{;, C=1,{;,K22}]

=1

CICA)= 3 PENAN O)=1,¢, C=1,¢, K22},
j=1

Since the sum is a measure, whose total mass tends to zero, it follows that
i¥(en C)=1°. And by o-compactness there is exactly one Ae.#(X) such that
A=) (snK)for all K.

If X is a topological group and each £, is stationary in the sense that for any
xeX, A, Be B(X)

P (A+x)=1, ;(B+x)=1}=P{{;,(A)=1, {;(B)=1},
then A must be Haar measure.

Theorem 2. Let {¢,,, ..., ¢, .} neZ . be an infinitesimal array of independent
point processes in a o-compact, second countable space. Let Assumptions 1 and 2b

be satisfied. Then, and only then, does the distribution of n,= Z &;n tend weakly to

the Poisson process with intensity A, where 4=sup lim A¥ ( weak fimit ).

K noow

Note. The strengthening of 2b to 2a is necessary and sufficient for setwise

convergence in the sense that for each set 4, #,(4)= i ¢, A tend in distribution
j=1

to the number of points in 4 of a Poisson process with intensity A [cf. 4]. This

may be shown by the methods used in the following proof.

Proof. The Sufficiency. Let II, be Poisson measure on (.#(X), B(#)) with
intensity A. Set =Py, ' and B,=P¢&;;'. By Theorem 1 the weak convergence
P — [T, follows from y(P)— 7(171)

Ifg= Z a;1,,, A;bounded and disjoint, then

j=

xUT)(g)= HGXP {A4;(e—1)}= epr (e'#® — 1) A{dx).

j=1
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Since fe % can be uniformly approximated by simple functions
. + ® I3
1UL)(f)=exp [ (€7@ ~1) A(dx)=exp | ("~ Aif~'(du),
X —

which is the canonical representation of an infinitely divisible (actually compound
Poisson) characteristic function.

Wfite ¢jn(t):X(gn)(tf)a t€R> ¢n= n ¢jn' We ShOW that (bn(t)_)X(H}.)(tf)a
teR: j=1
Take t,>1 and ¢>0. By infinitesimalty there is an n, such that for |t|<t,

dn=
and nzn, 1—¢;,(0l<e j=1,...,m,.

In the usual way we can take the logarithm of ¢,(t), |t|<t,, choosing the branch
that makes ¢~ log ¢,(t) continuous and vanishing at zero.

108 (0= Y- 10g 8,1 3, [8,(6)~ 11,0

By direct computations, for some C
ROISCe Y |1 —d; ()| SCe Y {1~ B,(dp)
j=1 j=1

<2Ce Y [ 11—V PLE, =1, &, S()=1} +o(l)

—2Ce||1—eV™) 1(dx).
Hence lim r,(£)=0.

Similarly, for t>0

03 [ wfBdm= [ 173D Ex)+o().

j=1|ufl<t ) <t

And so by classic theory [3, p. 528ff.], it follows that
¢ () > xU1)(f) teR

if and only if
23 P{E,, fedty > 1 ~(d) (1
vaguely, =
WICHENEITEC I P @
p]

is a continuity point of u — A {f >u},

Y PSSO SE i 1<0 )
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is a continuity point of u — A4 {f <u}, and ¢* 1f ~'(dt) is a canonic measure on R,
as is evidently the case:

+th2 AfTHAOZNFI?AS(f) < 0.

For (1) let ¢: R — R be continuous with compact support:
2§ 90) £ P&y, fediy= 3§ e )1/)* Baldid
= Z | oW uf) Budu+ Z I ouf)us)? Baidp.

j=1pS(f)=1 j=1uS(f)z2
The absolute value of the last sum equals

n

u‘ufESQ>¢) Jj=1
as n—ao0.

And the first sum is

il }.E(POf(x)[f(X)]z P{ijn(dx);—l’ éjn S(f)ZI}
= [0/ LT £ = [ oS WIS ).
Similarly,
'ilp{é""f “0= ZP (S >6 8, S(N)=1}+ iP{éjnf», £nS()22},

yields (2) and a corresponding relation (3).
The Necessity. If there is weak convergence, then [3] (1), (2), and (3) hold since

e O

+ o
lim E[e"™/]=exp | (¢“—~1)Af~'(du) teR, fe%b.
Let K <X be compact. There is ge%y such that 0=g=<1, g|K=1 and so by (2)

limsup ¥ P{&, K22}<lim Y P{&,g>3=/{g>}=0.
n—w j=1

n— 0 j=1

Obviously 3 is a continuity point of u— A{g>u}. Now let fe%y with §(f)c=K
and a=| f|. Then

[ f00) A {dx)= i [ ) P{E,udx)=1,¢,,K=1}

=§ ) uP{éj,,fedu}—i | uP{¢;, fedu, &;, K22}

i=1 uza i1 jul’za
— | f(x) A¥(dx), as n—oo0,

showing the weak convergence of AX to A(+ " K).



6 P. Jagers:

3. Point Processes on the Line

So far .4 (X) has been endowed with the vague topology. If X is the real line
or some subset of it, each ue #(X) corresponds to a non-decreasing right con-
tinuous function, which we denote by p, too, and vague convergence is convergence
in the continuity points of the limit function.

To be specific, let us take X =[0, 1]. Then the Skorohod J,-topology [2, p.111]
on D[O, 1], relativized to .#(X), is another candidate for a topology on .4 (X).
Obviously, Skorohod convergence implies vague convergence but not vice versa.

However, if the vague limit is a pure step function with all jumps of size one,
then a converse holds. Let d denote the Skorohod metric:

d(u, v)=inf max { sup |uoA(x)—v(x)|, sup |A(x)—x[},
i 0<x=<1 0<x=1

where the infimum is over all strictly increasing continuous 4 with 1(0)=0, A(1)=1,
and let p be the Lévy metric:

pu, v)=inf{y>0; v(x—y)—ySp(x)Sv(x+y)+y forall x}.

It is known that p metrizes the vague topology. Now assume that p is constant
except for jumps at 0<x; <---<x,<1, p(x;)—pu(x;—)=1, that v is an integer
valued non-decreasing function and that p(u,v)<h where h>0 is smaller than
one and smaller than %2r£1ii£1n(xirx,-_1). Then for 0= x<xq, v(x—h)Su(x)+h=h

or v(x—h)=0. Hence, if y, is the place of the first jump of v, then y, =x—h. But
for x=x,, v(x +h)= u(x,)—h, which means that v(x)= 1 and so x; —h<y; <x; +h.
Also, v(x, +h) < p(x; +2h)+h=1+h, implying that v(y,)—v(y; —)=1. By induc-
tion it follows that v has n jumps, too, all of size one, and if y, is the place of the
k™ jump 1<k<n, then |x,—y,|<h. Hence, d(u,v)<h: choose 1 by A(x;)=yx
and linear between x, _; and x;, 1<k<n+1, xg=yo=0, X, 1 =Vur1 =1

It follows that if u is as above, u, is a sequence of integer valued step functions,
and p(u,, ) — 0, then d(u,, p)— 0. To proceed we need a simple lemma. Let S
be any separable space with two metrics d and p. If { B} is a sequence of probability
measures defined on the union of the Borel algebras of (S, d) and (S, p), let B—*%> P
mean weak convergence on (S, d) and correspondingly for B -*25 P,

Lemma. For S, d, p and B, as mentioned, assume that for allse ECS p(s,,s)—0
implies d(s,, s) — 0. Then if B,—2> P, E is p-open, and P(E)= 1, it holds that F,—*%> P.

Proof. The set E is a P-continuity set in (S, p) and so F,(E)— P(E). Let f be
bounded and d-continuous: S — R

{fdB={fdB+ | fdB—|fdP={fdP
E S-E E

since f is p-continuous on E and B,(S~ E) — 0. Now Poisson measures on .4 [0, 1]
give measure one to the set of step functions with jumps only of size one and no
jumps at 0 or 1, provided the intensity 4 is non-atomic, i.e. A{x} =0 for all xe X.
Point processes on [0, 1] are integer valued step functions. Thus, the lemma
and the preceding arguments show that Theorem 2 holds also if .#(X) is given
the Skorohod topology.
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As a simple example, let {;, 1 <i<n be independent Bernoulli variables,

1-P{;,,=0}=P{{,,=1}=An+tom™"), i>0.
Define
[nt]
m©=Y G, 0St<L n=12,...
i=1

Then n, converges Skorohod-weakly to the Poisson process on [0, 1]. In our
context the demonstration of this is direct: Let

_ Cin lé[nt]
5""(‘)_{0 i>[nt].

Each §;, 1 £i<nis a point process on [0, 1] and n,= Y &,,. The array {¢;,, ..., &,0)
i=1

is infinitesimal: iz

A

P{fin(1)§1}=%+o(n“l)»>0.

¥ P{E, (122} =0

for all n and

d ) [n1] :
ZP{éin(t)=1}=ZP{Cin=1}=Tl+[nt]0(n H—oit, 0<r<1.
i=1 i=1
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