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Maximal Measures for Simple Piecewise
Monotonic Transformations

Franz Hofbauer
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Summary. It is shown that the transformation x—pfx+a (mod1)
(f>1,020<1) on [0, 1] has unique maximal measure.

§ 0. Introduction

In this paper we consider two classes of piecewise monotonic transformations f
on I={0,1].The first one is the class of all (I,f) such that I=J,0J,,J,,J, are
disjoint intervals and f/J,,f/J, are continuous and strictly increasing. Further-
more we assume that (J,,J,) is a generator for (I,f) and that h (f)>0. The
second one is the class of transformations f: x—pgx+a(mod 1) on I where §>1
and 0Za<1.

An invariant measure g on (I,f) is called maximal if its entropy h(u) is equal
to the topological entropy h,,,(f) of (I,f), or equivalently, if h(u) is greater than
or equal to the entropy of every other invariant measure on (I, f). The two
classess of transformations above have always at least one maximal measure,
because they are expansive. For definitions see [3].

We show that in the first case above there are at most two ergodic maximal
measures and characterize those f°s which have unique maximal measure. In the
second case, for f: x—fx+o(modl), we have always unique maximal measure.

To this end we use the results proved in [2]. For every (I,f) a subshift X, of
finite type (M is the corresponding transition matrix) over a countable alphabet
D is constructed there such that X, and (I,f) have isomorphic sets of maximal
measures. Hence it suffices to consider the problem of uniqueness of the
maximal measure for X,,. A tool for this is the theorem cited in §1 which
contains also a description of other results from [2]. Furthermore, for the above
two classes of transformations the transition matrices M are derived which are
considered as oriented graphs. The results of this paper are proved in §2. We
determine conditions for M such that X,, can have more than one maximal
measure (Lemmas 2 and 3) and characterize the (I,f) of the first class above
which give rise to such an M (Theorem 1), Then we prove that such an M
cannot occur for f: x+— B x +a(mod 1) (Theorem 2).
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§1.

We begin with a short description of the methods developped in [2]. We have a

piecewise monotonic transformation f on I, ie. I= ] J;, J; disjoint intervals,

i=1
such that f/J; is continuous and strictly increasing. Furthermore we need that
(J)1<i<y 18 a generator for (I,f) and that h,,(f)>0. The f-expansion
o:(LA—Zr={1,2,...,n}Nis defined by ¢(x)=i,i,i,..., where i, is the number
i of the interval J; such that f*(x)eJ,. If J,=(r,s), set a*=Ilim¢(t) and b
=lim ¢(z). Define e
tts
Zi={xel 1@ S0 X=Xy Xy 1 Xpyy 2o D™ fOr all m20},

where ¢ denotes the shift transformation and =< the lexicographic ordering in
2+, Then ¢ is an order preserving isomorphism modulo small sets (cf. §0 of [2])
between (I,f) and (27, o). In particular, (1,f) and (27, ¢) have isomorphic sets of
measures with maximal entropy.

Now divide @' into initial segments of b”s, which can be done in a unique
way, because b’ is the only element among the b¥s which begins with j, and
denote the lengths of these segments by r(i, 1), r(i,2), ..., i.e. we have for m=0
a;(i,1)+...+r(i,m)+k=bfc; Osk=r@,m+1)—1, J= 86 1 rim and
Oii, 1y 5o rom+ D) F Db m e 1) ]

Similary divide »’ into initial segments of g”s, and denote their lengths by
5(G, 1), s(j, 2), .... Condiser the set

D={(A4,1,k),(B,i,k):12ign k=1}={4,B} x {1, ...,n} xN,
identify (A, i, k)=(B,i, k) for 1=k =<r(i,1)=s(i, 1) and also

(4,i,p+k)=(4,j,q+kVkz 1, if e?d'=c'a),p= Y r(i,m),q= Y r(j,m)
m=1 m=1 (1.1)

(B,i,p+k)=(B,j,q+k)\Vk=1,if 6?b' =0/, p= > s(i,m),q= ) s(j,m).
m=1 m=1

Together with the following arrows D becomes a graph M.
(4, L k)= (A, i, k+1),(B,j, k) > (B, ], k+1).
Ifk=r(, 1)+... +7(i,m) for some m, then
(4,1, k)— (B, j,r(i,m)+1), where j=dy; 1), rim_1)
and (4,1, k)—(A4,t,1)=(B, t,1) for a, <t <bl; ,,-
If k=s(j, 1)+ ... +s(j, m) for some m, then
(B>j: k)_)(An ia S(ja m)+ 1)’ Where l:béu D+...+s(f,m—1)
and (B, j, k) —(A4,t,1)=(B,t, 1) for ay; ,,<t<bi.

(1.2)

The graph looks like this

B e I e SR {(B,n,k)}



Maximal Measures for Simple Piecewise Monotonic Transformations 291

Only the arrows (4,1, k)—(A4,i,k+1) and (B,j, k)—(B,j, k+1) are indicated in
this picture.

Set X, ={yeD*: there is an arrow from y; to y,,,VieZ}. Then (X, 0), the
natural extension of (X7}, ¢), and (X, o) are isomorphic modulo small sets. In
particular (X, ¢) and (2, o) and hence also (I,f) and (Z),, 5) have isomorphic
sets of maximal measures.

Divide M into irreducible subgraphs M,, M,, ... and denote the correspond-
ing subshifts of X, by X,,. We consider M as 0-1 matrix with index set D, M,
=1 iff there is an arrow j— k.

Theorem. (i) h,,,(X,)=logr(M) (spectral radius of the I'-operator M).

(i) Every ergodic maximal measure is concentrated on a X, satisfying r(M,)
=r(M) (the ergodic maximal measures are the extremal points of the compact
convex set of all maximal measures).

(iii) There is at most one (ergodic) maximal measure on every such X, .

Our goal is to apply these results to special piecewise monotonic transfor-
mations. The simplest nontrivial example is the S-transformation x+— Bx (mod 1)
for f>1. Let n be so that f<n<p+1 and e the f-expansion of 1. Then &
=illll... for 1<i<n, b'=ie for 1Li<n—1 and b'=e. 27 becomes X
={xeX | :6*x<eVk}. Using the identifications (1.1) we get for n=3 the follow-
ing graph

e=313121...

GLE,

™\

There are e; arrows starting at the i—th point of the row. This gives an
irreducible graph (cf. [1]). Hence the B-shift X ;5 has unique maximal measure.

One sees that, due to the identifications, only one of the 2n rows has
remained. In the next more complicated case we consider the situation where
there are two remaining rows.

Consider any piecewise monotonic transformation with n=2. We assume
that the end point of J; is mapped to 1 and that the initial point of J, is
mapped to 0. We can reduce all other cases to this case taking away wandering
sets and fixed points. For example consider the following graph of an f. We take
away (x, 1], where x =f (end point of J,). (x, 1) is a wandering set and 1 is a fixed
point. f(x) < x, otherwise (J,,J,) is no generator.
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Let @' =a be the expansion of 0 and b?=b that of 1. Then b'=1b and a?=2a.
Set r,=r(1, k) and s,=s(2, k). By (1.1) we identify (4,2, k+1)=(A, 1,k) for k=r,
and (B, 1, k+1)=(B, 2, k) for k=s, and get the graph

r1 I'z |'3
. e -~ e ® o> oeeee « g=111211...
T o
. ' ° ' @ — > ovecee b=21212...

$1 s2

Also the transformation x+—fx-+a(mod1) for f>1 and O<a<1 gives such
diagrams. Again let g* =g be the expansion of 0 and b"=p the expansion of 1 (n
so that a+f<n<a+p+1). Then g’=ig for 2<i<n and b'=ib for 1<i<n—1.
Again set r,=r(1, k) and s, =s(n, k). By (1.1) we identify (4, i, k+1)=(A4, 1, k) for
k=r(i,1) and 2<i<n and (B,i,k+1)=(B,n,k) for k=s(i,1) and 1 <i<n-—1.
We get (for n=4)

r

1 2

r

o0~ >0~ ... a=12412...

3

¢ (1.4)
“
.——».——-».———».———» 000000 Zl=41314
Sy 52

We shall denote the points in the first row by ¢, =(4, 1, k), the points in the last
row by d,=(B,n k), and the remaining points by e,,...,e, ;. Set A())
={c 12k=j} (A, 0)={c,: i=k}) and B(Q, j)={d,: iZk<j}.

Hence in the cases we want to consider in this paper we have
D={c,,dy,e;: k21,25j<n—1} (for n=2 there are no ¢;) and M has the fol-
lowing arrows

Co Crp 1y > Ay (kz1)

¢t yn—d, ande;fora, . ., <j<b, _, (kz1) (1.5)
g, .o—C, and e fora, ;<j<b,, .. (k=) '
e,—cy,dyande;for 2<j<n—1  (25k=n—1).
Furthermore by (1.1) we can identify (u, v =0)
Cpr=Co i Vh21, if 6fa=0c"a p=r +...+7r,q=r +...+7, (16)
dy =d, V21, if 6?b=0%b,p=5,+...+5,4=5;+... +5,. '

The two X,, arising from M with and without identifications are then isomor-
phic.
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For the r; and s;, which denote the lengths of initial segments of vh (1Zv=<n
—1)in g and of ug (2=u=<n) in b respectively, we have the following lemma.
Remark that

a,beX 7, which becomes {xeX:a<c¢*x<bVk=0}. (1.7)
Lemma 1. There are maps F,Q: N —>NuU {0}, such that

fe=s;t.. tspgytl for k=1

(1.8)
S=ri+...+tropt+tl for kz1.

Proof. We prove only the first statement. Suppose that 1+s,+...+s, < <1
+s;+...+s,., for some m. We have a, . .,  .;=b, , for 1Sj<n—1,
a4 4 1 <b,_jyand b, . ., =a_,for IZI<s,  ,—1 by definition of ,, s,,.

Setting j=s,+ ... +s,+I+1 we have because r,—s;,— ... —s,—1<s,, ., —1
Qb brnestss botsptict =0 _q for 1SISh—s,—...—s, =2 (=j=<r—1) and
ar1+...+rk<ark—s1‘...—sm—Z'

If r,.—s,—...—s,—2=0, we have a, , ,, <a,=1, a contradiction, and
gh e tsib st 2 g g g contradiction to (1.7), in case of r,—s, —...—s,,
—22=1. The lemma is proved.

This lemma shows that, if an arrow goes from B(1, o) to ¢;, then i=s, =7,
+...+7gu+ 1 and hence by (1.5) and i — 1 =r; +... + 1y, there is an arrow from
the point ¢, , before c; to B(1, co). This will be used several times in the sequel.

We want to describe another thing which will be important, namely how one
can regain g and p from M. This can be done by induction. a,=1, by=n. r;>1
and s,>1 is a contradiction to (1.8). Hence suppose r;=1. Then a, is the
number such that there are arrows ¢, —e; for a, <j<b, in (1.5). If a,...a,_, and
by...b,_, are already determined, where p=r,+...+r,+1 and g=s,+... +5,
+1 (the above step is for i=0and k=0),7,, ,>s,+...+s,+1and s, ., >r, +...
+r;+1 is again a contradiction to (1.8). Supposing r;,  <s,+...+s,+1, we
have by the definition of r,, ; that a,...a,_,,,., =bg...b, , _,, which is already
known, and a,_,,,,,, is the number such that there are arrows ¢, , ..  —e;
for a  <j<b L in (1.5).

p—1+4r.+ Piti—

§2.

To apply the above theorem we have to divide M into irreducible subgraphs. If
M is reducible we can divide D into two disjoint subsets D, and D, such that
there may be transition from D, to D,, but not from D, to D,. D, is not empty.
Suppose ¢,eD, and [ is the smallest integer with this property. Then
A(l, ©)=D,, because there is no transition from D, to D,. If there is no arrow
from A(l, o) to B(1, o), then D,=A(l, c0) has spectral radius 1 and hence we
can take it away. We assume that there is such an arrow and hence ad, eD,.
Again let m be the smallest integer with this property. As above B(m, co)<D,
and D, = A(l, co)uB(m, ).
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Let A, be the largest real solution of 2/*™—2'—A"=0 and M,=M/D,. We
have

Lemma 2. r(M,)< .. Equality holds, iff there are i, j, such that

roteetr_y=1-1, s;+..+s;,_=m-1 and 2.1

s;=s; 1 =..=lL r=r i =..=m

Proof. We can assume that there are arrows arriving at ¢; and d,,. If not, let I' =/
and m'=m be the smallest integers, such that there are arrows from B(m, o) to
¢y, and from A(l, o0) to d,,.. Then we can never return from A(l, 00) U B(m’, o0) to
¢y--sCp_y and to d,,,...,d,,_, and hence we can take away this points from
D, without changing the spectral radius of M,. Hence, if we have proved the
result with this assumption, r(M,) <A, <4,, where 1j is the largest solution of
ArFm Q' jm =0. Now we assume that there are arrows arriving at ¢, and
d,,ie. there are i, j, such that [=s,=r +...+7,_;+1land m=r,=s,+...+s;_,
+1 for some u, v (cf. Lemma 1). If now (2.1) is satisfied, we have ¢'*"a=¢'a and
d*mh=a"b, ie. ¢, =c, for k=l and d,_,=d, for kzm (cf. (1.1)). We get the
following graph for M,.

/\ .
@ ccceee ® m points
(2.2)
0= irerriirrreiiees S0 [ points

Hence the characteristic equation for M, is '™ —A'—1"=0 and r(M,)=4,.

If (2.1) is not satisfied we have r,=mVkz=i and s, ZIVkZj, i, j as above
(otherwise there would be transition from D, to D,) and there is at least one
r(g2i) or s,(h=j) with r,>m(=r,z1+m because of (1.2)) or s,> (=5, 2] +m
because of (1.2)). We show that M, has then a spectral radius strictly less than
Ao-

First we compute the spectral radius of M, for the case r,=mVk=i, s,
=IVkzj, k+h and s,=m+1 As above (2.2) we get the diagram (identifications
for o.m+l QZO’IQ and O_2m+(h-j+2)lb:0_2m+(h—j+1)lb)

-~ .
O oo ® m points
@ —mcoso—p@ — 3 vosccsscene — -t e ) Il o s — -
.o L ] L X o ] . cee L ]
— ——— e —

[ | l+m I
We get the characteristic polynomial

P(A):;L(h—j+2)l+2m__/l(h—j+2)l+m_;(h-j+1)l+2m

h—j h—j
_ Z Je—j=r+204m_ ol {4 Z A==+ Dl+m
=1 f=1

+1+A(h-j+1)l+2m
__:/l(haj-# 1)l+m(ﬂl+m—ﬂ.l——)vm)—‘r/le—/ll.
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It is easy to see that P(4)= A7 >0 for all A=4,. Hence the largest solution of
P(2)=0 is less than 4, ie. r(M,)<A,. The same argument holds if r,=l+m
instead of s,=m+/. For the general case we can find a minimal g=i or a
minimal hzj such that r,=Il+m or s,=I+m respectively. We consider the
second case. The first one is similar. Denote the matrix corresponding to (2.3) by
M, (without identifications). We show r(M,)<r(M,). Let N* and N7 be the
numbers of blocks of length k admitted by M, and M, respectively and
beginning with xeD,. It suffices to show | M%||, =sup N¥<2||M¥|, =2sup N%.

To this end set R,=r +..+r, S,=s;+..+s, and D'={cg .4,
ds,,, u=i,v2j}. We show by induction that N} <N%, if xeD'. Let x=dg .,
(the case x=cy ., is similar). Cancelling the first t:=s,,, elements, which are
equal in all M,-blocks beginning with x, we get Ny=N}_,+Ni_,, where y
=ds,, 16D and z=¢,  =cg . ., 16D (Lemma 1). Here is a picture of the
relevant part of M.

+

G z

X X’ y
If k<t, N7=1<N% Otherwise, as y,zeD’, we have by induction that
N}_,£Nj_,and Ni_,<N}_,, hence

Ni=Ni_ +Ni_. 2.4)

Now we consider the case v+1h. The arguments for v+ 1=~h are the same
replacing ! by I+m. Because s, ; =/ there must be an arrow in M, from a point
in B(S,+1,S,,,) to ¢;.Let x'=dg ,, be the first such point (#<I). Then
X ¢, ...z is an admissible block in M, of length t—I+2. Hence N?¥
=Ny .., =N¢ ,+N?_, and N ,=NZ_,_,.,=N:_,, because |—t'=0. Tog-
ether with (2.4) we have N7 > N3. Now let x=d; _, ;. ,¢D". Then (2.4) is proved
as above with t=s,,, —w and the same y, zeD'. Therefore N¥<2 sup NZ. For

xeD' this follows from N7 < N?. This implies sup N¥<2 sup N¥. Hence we have
r(M,)=r(M,) <A, and the lemma is proved. ~ x

Now we consider the case (1.3) and the case (1.4) only, if E={(4,i,1)
=(B,i,1): 2ZiZ<n—1}={e,,e;,...,¢, ;} is an irreducible subset of M. We can
consider the two rows D\E for themselves (there is no transition back to E) and
D, and D, are subsets of D\E.

Recall A(i,j)={c,:iL£k<j} and B(i,j)={d,: i=k<j}. In the following we
shall identify c, with its index k and similar for d,. It will be always clear,
whether k is ¢, or d,. We have D, =A(1,1—1)uB(1,m—1). Set M,=M/D,.

Lemma 3.7(M )= A, or=1.r(M,)=1, iff there is an integer t with (t+2)m>1>(t
+1)m and, setting q=1—(t+1)m and p=(+2)m—1 (l.e. p+q=m, (p+q)(t+1)
+q=1), iff there are i, j such that r\ +...4+r,_ =p—1,s,+...+s;_;=q—1 and r,
=l 1= N (== =, =P+, 5;=P and r(M/A(1,p—1)UB(1,q—1))
=1 (or the same with the roles of m and |, r, and s, exchanged).
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Proof. Let i,eA(1,1—1) be the smallest point, where an arrow from B(l,m—1)
arrives, and j,eB(l,m—1) the smallest point, where an arrow from A(1,/—1)
arrives. Let j,eB(l,m—1) and i,eA(l,!—1) be the smallest points, where these
arrows start to i, and j, respectively. We can take away A(l,i, —1) and B(1,j,
—1), because we can never return to these points. If i, <i, (j, <j;) we have taken
away i,(j,) and also the arrow starting there. We take now the earliest point in
B(j,,m—1)(A(i,,!—1)), where an arrow from A(1,/—1)(B(1,m—1)) arrives, and
call it again j, (i,;). We get also a new i, (j,). If i; =i, and j; =j, and there is no
other arrow arriving in A(i,,i,) from B(l,m—1) or in B(j,,j,) from A(l,m—1),
then A(i,,i,)UB(j,,j,) is an irreducible subset of D, with spectral radius 1 (the
corresponding shift space is a periodic orbit). Hence we can take away this set.
Now take for i,,j, the earliest points in A(i,+1,/—1) and B(j,+1,m~—1) re-
spectively, where arrows arrive as above and repeat this procedure. There are
two cases. We reach the points ¢,_; and 4,,_, without having found another
arrow from B(1,m—1) into A(i,,i,) or from A(1,!—1) into B(j,,j,). Then r(M,)
=1. Or we find i,,j,,i,,j, (we choose i,,j; minimal and for these we take the
smallest i,,j,, where arrows go to j,,i, respectively) and a j;eB(j,,j,)
(j;€A(i,,1,)), we choose again minimal, and an iyeA(i,,I—1) (i;eB(j;,m—1))
such that there is an arrow from i, to j;. We do not consider the case in
brackets. It is similar and corresponds to the result with the roles of m and [, r,
and s, exchanged. Furthermore M/A(l,i, —1)uB(1,j, —1) has spectral radius 1.

We prove j,=j,. Suppose j; >j,. j;isthe end point of an arrow, hence j; =r,
=S +...+Spyy + 1 for some k (cf. (1.2) and Lemma 1). Hence at j;—1=s,+...
+5p;, there begins an arrow ending at i,e A(1,/—1) say. i, =i,, otherwise we
have a contradiction to the minimality of i;. If i, =i, we have a contradiction to
the minimality of j,. Hence i, >i,. As above there is an arrow from i,—1 to
B(1,m—1). If this point is not i,, we get a j3€B(j,,/3), j5 <Jjs, as end point of the
arrow and this contradicts the minimality of j,. We have the picture

I 2y i
@ — 3 cecrcccccscssane — @ — @ — - sescace —
i i i

Set P=aqa, ...a; _, and Q=Dbyb,...b; _,. We have no arrow from A(i;,i,~1)
to B(l,m—1), because this is either a contradiction to the fact that no arrow
goes from A(i,,i,) to B(1,j, — 1) or to the minimality of i, or to the minimality of j.
Hence a;, _, ... a;, _, is the initial segment ub, ... b; _,=uQ of b* for some u with
12u<n—1 (u=1 in case (1.3)) (cf. (1.2)). Using again (1.2) and the fact that no
arrow goes to E we get that g=PuQ(v—1)... and b=QvPuQ...vPuQuvP(u
+1)... for some v with 2<v=<n (v=2 in case (1.3)). Hence ¢ "1=/1*1 p=
QuvP(u+1)...>b, a contradiction to pe X7 (cf. §1).
Therefore j,=j,. We get the picture

3 .
@ —»creos @ - cscrecscensss — 2@ 2j,+w points

(2.5)
=TT i, points



Maximal Measures for Simple Piecewise Monotonic Transformations 297

The characteristic equation for (2.5) is A2 *h*w _Jiitw_1=0, As (2.5) is a
subgraph of M, j,+i;—1=j,<m—1 and i, +2j, +w—1=i;</—1. Hence the
largest solution of the above equation is greater than or equal to 4, and hence
r(M )= A,. Equality holds, iff i, +j,=m, i; +2j,+w=I and there are no more
arrows than indicated in (2.5). If w=0 we have the picture

I Jy

Ve —~— Ay — )

@ sessccscces — @ —@ —— 3 cscccvoscss —m@

If w>0 there are arrows going from A(i, + 1, i;—j,) to B(1, o), which must go to
D, in case of equality. These arrows must end at d,,eD,, because, if one of them
ends at a later point, it can end earliest at d;_,, (from d,, to d,,,,_, there is an
initial segment of g} and hence A(i,+1, i;—j,;) must contain a block of length /
+m (cf. (1.2)), which is impossible (i; <[). Hence A(i,+1,i;—j,) consists of ¢
initial segments of b, each of length m, for some ¢, i.e. w=tm.

Set p=i, and g=j, (we get p+g=m and (p+q)(t+1)+¢g=I). The properties
about r, and s in case of equality are casily deduced.

From Lemmas 2 and 3 we get

Theorem 1. In the case n=2, X} has more than on maximal measure, iff

a=PIOIX1X ... 1X1QI1X1X1X ... and

tiimes

b=02P2V2V2Y...

or vice versa, where X =Q2P and Y=P1Q1X1X ... 1X1Q and P and Q are blocks
such that M/A(l,p—1)UB(1,qg—1) has spectral radius 1 (p=length of 2P, ¢
=length of 1Q). In this case there are exactly two ergodic maximal measures.

Proof. This follows immediately from the lemmas. Choose suitable biocks P and
Q and add initial segments of 1p and 2g respectively, according to the equations
for r, and s, in the case of equality in Lemmas 2 and 3 to get a and b. In no
other case it can happen that r(M;)=r(M,).

In this case of more than one maximal measure one sees that M, is irreducible
(cf. the proof of Lemma 2) and that M, consists of irreducible parts, all with
spectral radius 1, except one, which has spectral radius equal to r(M,)=r(M) (cf.
the proof of Lemma 3). Now apply the theorem in §1. There is at least one
maximal measure on X, and on X,,,, because they are shift spaces with finite
alphabet, hence expansive.

Corollary 1. If in the case n=2 the graph of f is symmetric with respect to (%/3),
then f has unique maximal measure.

Proof. In this case we have a,=1, if b,=2 and a;=2, if b,=1. This implies r,=s,
for all k and hence /=m in the construction of D; and D, at the beginning of §2.
The result follows from Theorem 1.
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Corollary 2. If in the case n=2 f/J, and f/J, are linear, then f has unique maximal
measure.

Proof. If not, we have by Theorem 1 that g=PI1Q1X ... 1X1Q1X1X ... and b
=Q2P2Y2Y... Suppose f/J, has slope 4 and f/J, has slope u. Applying f to a
subinterval of J, or J, means to muitiply its length by 4 or u respectively. The
isomorphism ¢ between (I, f) and (X7, g) is order preserving, hence intervals in
27 (with respect to the lexicographic ordering) correspond to intervals in 1. If
[x y]is an interval in 27 and x,=y, (ic. ¢ ~“N[x, y])=J; or J,), then denoting

the length of ¢~ (([x, y])c:I by [[x, y]l we have [o[x,y]|=AI[x, y1I, if xg=yp,=1
and =u[x, y]l, if xq=y,=2. Set a=4"u*, where u is the number of 1 and v the
number of 2 in P and let B be the same number for Q. We consider the following
intervals

R=[gp*t21-1+10+d 4 1p]=[1X1X...,1X2Y2Y...]
and
S=[2a,06” 1" 1p]=[2Y1X1X..,2Y2Y..],

where p=1length of 2P and g=Iength of 1Q. Set r=|R| and s=1§].
oPTiR=RUS, ie r(Apaf)=r+s
P T2t PtAS = RS,  ie s(AuafytlAif=r+s.
From this we get because of r+0 and s+0.
Apapytip—(Apapyrp—1=0. (2.6)
Now consider the intervals

F=[O.3p+3q—-1b,o_p+q«1g]

:[!Xt._..llg1Q2Y2Y...,1X1XZ... 1X101X1X ...]
G=[g?P+2a-1p gp+2a-1+1P D g =[1X1X ... 1X102Y2Y...,1X1X ...]
H=[g?*171 g 0?P+24=1 p] |
=[1X1Xt... 1X1Q1X1X...,1X1Xt... 1X1Q2Y2Y...]
and set again f=|F|, g=|G| and h=|H|.
it PTIF =G, e f(Auapyif=g
T 1G=FUHUG, ie gAuaf)=f+h+g.
From this we get
gllpapy*tAp—(Apap)y—11=h(Zpa ) ip

and together with (2.6) we have h=0, a contradiction, because ¢~'(H) has
distincet end points. The corollary is proved.
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Theorem 2. The transformation x+—f x+a(mod 1), f>>1 and 0=<a <1, has unique
maximal measure.

Proof. The number n of intervals J; is so that a+f<n<a+f+1. n=2is a
special case of Corollary 2. For n=3 set E={(4,i,1)=(B,i,1): 2Zign—1}
={e,,...,e,_1}. We have transition from every element of E to every element of
E. Hence for n=4 the irreducible subset of D containing E has spectral radius
2n—222 and the remaining part of D has spectral radius <2 (if it has spectral
radius equal to 2 one computes easily that n=4, g has to be 13333 ... and b has
to be 42222 ..., ie. =2, a=1, a case which is not allowed).

The case n=3 remains. If E={e,} is an irreducible subset of D, i.e. the only
arrow ending at E is that starting at E, then M/E has spectral radius 1 and so it
suffices to consider D\E. We can apply Lemmas 2 and 3. If there should be
more than one irreducible subset of D\E with the same spectral radius the
lemmas imply

a= PulQu X.. t+1Xut+2Qut+3xut+4X
and
b=Qv,Pv,Yv, Y...,

where v, ~u; =1, v;—u, ,=1foriz3, u,—v,=u,, ;—v,=—1and y;—v,=—1
for i=3 and i%¢+3. Otherwise there would be transition back to E. Set u; =u
and v, =v. Then v,=u+1,v,=vforiz3,u,=u, ;=v—1,u;=ufori=3 and i=¢
+3. We have four cases (u,v)=(1,2), (2,3), (1,3), (2,2) (u=3 and v=1 are not
possible, because there is the end of an initial segment). In the first two cases one
can proceed exactly as in Corollary 2. The other two cases are

a=P1Q2X1X ... 1X1Q2X1X1X ..., b=Q3P2Y3Y3Y...
and
a=P2Q1X2X ...2X2Q1X2X2X ..., b=Q2P3Y2Y2Y....

Set R=[gr20+Dta-14 1p] S=[2a,6°*1"1p], U=[g?+r0t+b+a-1473p7
V=[3a,cPtP¢+2+4-1p1 in the first case and R=[g?PtP¢+N+a=1,49p]
S = [3@,0‘“"1 1[_,] U= [G(p+q)(t+1)+q lg 11_7],[/ [zg’a(p+q)(t+2)+q 1L)]1nthesec-
ond case. Then
g?TTR=RUS, e pP*ir=r+s,
O.(p+q)(t+1)+qS:=UUV; ie. [3(”+‘1)(’+1)+'15=u+v,
o? MU =RuUS, le fPHlu=r+s,
O.(p+q)(t+1)+qV:=UUV; ie. ﬁ(p+q)(t+l)+qv=u_|_u.
We get ﬁ(p+q)(t+ 1)+q_ﬁ(p+q)t+q_1=0_
Now take F=[g*?*9p, g7 "9g], G=[g??"22p, P D¢+ D +ag]
H=[¢?"%g, 6?P*21p] in both cases. We have
0'("+‘1)’+qF=G, ie. ﬁ(”+q)'+qf=g

6?TiG=FUHUG, 1lie p**ig=f+h+g.
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We get g(BPT9e+D+a_ gptarta_ ()=} ge+0'+4 gnd hence h=0, a contradic-
tion as in Corollary 2.

Therefore there must be an arrow from D\E to E, say from (4,1,I—1)=c¢,_,
where we choose [ minimal. . Then the irreducible subset D, of D containing
EUA(1,1—1) has spectral radius greater than or equal to the largest solution of
A'—A=1—1=0. By Lemma 2 the spectral radius of D\ D, is less or equal to this
number and equality holds only, if D, =EuA(1,I-1),r,=1,ifr;+...+7,2! and
s, =1 for all k. This implies ¢'g=222... and b=3a,...a, ,(a,_;+1)ay...q, ,
(a;_;+1)ag .... Because of the minimality of /a, ... a;,_, has to be 122 ... 21. The
last 1 is because of the arrow to E, the 2’s are because a 1 would imply an
earlier arrow to E and a 3 contradicts ¢'~! g = a. Therefore

a=12...21222... and b=312...2212...2212...221 ...
I3 =1 T~1 1

We proceed again as in Corollary 2. Take

R=[c¢'"'a1b], S=[2ac'b], U=[d'g2b]l, V=[3ab].
We have

cR=UuV, ¢'S=RUS, csU=UuV and ¢'V=RUS, Iie.
Br=u+v, fs=r+s, Pu=ut+v and Po=r+s.

From this it follows that f'—p'-1—1=0. Now take F=[ch ¢ 'a], G
=[d'b,¢'al]. We have 6G=[cb,6'a]. ¢/ 'F=G, GcaG and 6G\G=FURUS,
ie. ff-1f=g and g(f—1)=f-+r+s or f(B'—p'~'—1)=r+s. Hence r+s=0, a
contradiction. The theorem is proved.

An example of a function in the case n=2 with 2 ergodic maximal measures
can be found in part IT of [2]. The graph of a function f is constructed there
such that ¢=111212121... and b=2211211211 ..., the simplest case of Theo-
rem 1. It is not difficult, to find for every ¢>0 an f with these g and b such that
there is a subinterval K of I, f/K is linear with slope A, f/I\K is linear with
slope ¢ and |A— p| <& One sees that the transformation x+ f x +a(mod 1) is not
far away from having more than one maximal measure.

References

1. Hofbauer, F.: p-shifts have unique maximal measures. Monatsh. Math. 85, 189-198 (1978)

2. Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive
entropy I, II. Israel J. Math. 34, 213-237 (1979)

3. Denker, M., Grillenberger, Ch., Sigmund, K.: Ergodic theory on compact spaces. Lectures notes
in Mathematics 527. Berlin-Heidelberg-New York: Springer 1976

Received February 5, 1979; in revised form November 20, 1979



