Maximal Measures for Simple Piecewise Monotonic Transformations

Franz Hofbauer
Mathematisches Institut der Universität, Strudlhofgasse 4, A-1090 Wien

Summary. It is shown that the transformation $x \mapsto \beta x+\alpha(\bmod 1)$ ($\beta>1,0 \leqq \alpha<1$) on $[0,1]$ has unique maximal measure.

§0. Introduction

In this paper we consider two classes of piecewise monotonic transformations f on $I=[0,1]$. The first one is the class of all (I, f) such that $I=J_{1} \cup J_{2}, J_{1}, J_{2}$ are disjoint intervals and $f / J_{1}, f / J_{2}$ are continuous and strictly increasing. Furthermore we assume that $\left(J_{1}, J_{2}\right)$ is a generator for (I, f) and that $h_{\text {iop }}(f)>0$. The second one is the class of transformations $f: x \mapsto \beta x+\alpha(\bmod 1)$ on I where $\beta>1$ and $0 \leqq \alpha<1$.

An invariant measure μ on (I, f) is called maximal if its entropy $h(\mu)$ is equal to the topological entropy $h_{\text {top }}(f)$ of (I, f), or equivalently, if $h(\mu)$ is greater than or equal to the entropy of every other invariant measure on (I, f). The two classess of transformations above have always at least one maximal measure, because they are expansive. For definitions see [3].

We show that in the first case above there are at most two ergodic maximal measures and characterize those f 's which have unique maximal measure. In the second case, for $f: x \mapsto \beta x+\alpha(\bmod 1)$, we have always unique maximal measure.

To this end we use the results proved in [2]. For every (I, f) a subshift Σ_{M} of finite type (M is the corresponding transition matrix) over a countable alphabet D is constructed there such that Σ_{M} and (I, f) have isomorphic sets of maximal measures. Hence it suffices to consider the problem of uniqueness of the maximal measure for Σ_{M}. A tool for this is the theorem cited in $\S 1$ which contains also a description of other results from [2]. Furthermore, for the above two classes of transformations the transition matrices M are derived which are considered as oriented graphs. The results of this paper are proved in $\S 2$. We determine conditions for M such that Σ_{M} can have more than one maximal measure (Lemmas 2 and 3) and characterize the (I, f) of the first class above which give rise to such an M (Theorem 1). Then we prove that such an M cannot occur for $f: x \mapsto \beta x+\alpha(\bmod 1)$ (Theorem 2).

§1.

We begin with a short description of the methods developped in [2]. We have a piecewise monotonic transformation f on I, i.e. $I=\bigcup_{i=1}^{n} J_{i}, J_{i}$ disjoint intervals, such that f / J_{i} is continuous and strictly increasing. Furthermore we need that $\left(J_{i}\right)_{1 \leqq i \leq n}$ is a generator for (I, f) and that $h_{\text {top }}(f)>0$. The f-expansion $\varphi:(I, f) \rightarrow \Sigma_{n}^{+}=\{1,2, \ldots, n\}^{\mathbb{N}}$ is defined by $\varphi(x)=i_{0} i_{1} i_{2} \ldots$, where i_{k} is the number i of the interval J_{i} such that $f^{k}(x) \in J_{i}$. If $J_{k}=(r, s)$, set $\underline{a}^{k}=\lim _{t \downarrow r} \varphi(t)$ and \underline{b}^{k} $=\lim _{t \uparrow s} \varphi(t)$. Define

$$
\Sigma_{f}^{+}=\left\{\underline{x} \in \Sigma_{n}^{+}: \underline{a}^{x_{m}} \leqq \sigma^{m} \underline{x}=x_{m} x_{m+1} x_{m+2} \ldots \leqq \underline{b}^{x_{m}} \text { for all } m \geqq 0\right\}
$$

where σ denotes the shift transformation and \leqq the lexicographic ordering in Σ_{n}^{+}. Then φ is an order preserving isomorphism modulo small sets (cf. $\S 0$ of [2]) between (I, f) and $\left(\Sigma_{f}^{+}, \sigma\right)$. In particular, (I, f) and $\left(\Sigma_{f}^{+}, \sigma\right)$ have isomorphic sets of measures with maximal entropy.

Now divide \underline{a}^{i} into initial segments of \underline{b}^{j} 's, which can be done in a unique way, because \underline{b}^{j} is the only element among the \underline{b}^{k} s which begins with j, and denote the lengths of these segments by $r(i, 1), r(i, 2), \ldots$, i.e. we have for $m \geqq 0$ $a_{r(i, 1)+\ldots+r(i, m)+k}^{i}=b_{k}^{j}, \quad 0 \leqq k \leqq r(i, m+1)-1, \quad j=a_{r(i, 1)+\ldots+r(i, m)}^{i} \quad$ and $a_{r(i, 1)+\ldots+r(i, m+1)}^{i} \neq b_{r(i, m+1)}^{j}$.

Similary divide \underline{b}^{j} into initial segments of \underline{a}^{i} s, and denote their lengths by $s(j, 1), s(j, 2), \ldots$ Condiser the set

$$
D=\{(A, i, k),(B, i, k): 1 \leqq i \leqq n, k \geqq 1\}=\{A, B\} \times\{1, \ldots, n\} \times \mathbb{N},
$$

identify $(A, i, k)=(B, i, k)$ for $1 \leqq k \leqq r(i, 1)=s(i, 1)$ and also

$$
\begin{align*}
& (A, i, p+k)=(A, j, q+k) \forall k \geqq 1, \text { if } \sigma^{p} \underline{a}^{i}=\sigma^{q} \underline{q}^{j}, p=\sum_{m=1}^{u} r(i, m), q=\sum_{m=1}^{v} r(j, m) \tag{1.1}\\
& (B, i, p+k)=(B, j, q+k) \forall k \geqq 1, \text { if } \sigma^{p} \underline{b}^{i}=\sigma^{q} \underline{b}^{j}, p=\sum_{m=1}^{u} s(i, m), q=\sum_{m=1}^{v} s(j, m)
\end{align*}
$$

Together with the following arrows D becomes a graph M.

$$
(A, i, k) \rightarrow(A, i, k+1),(B, j, k) \rightarrow(B, j, k+1)
$$

If $k=r(i, 1)+\ldots+r(i, m)$ for some m, then
$(A, i, k) \rightarrow(B, j, r(i, m)+1)$, where $j=a_{r(i, 1)+\ldots+r(i, m-1)}^{i}$
and $(A, i, k) \rightarrow(A, t, 1)=(B, t, 1)$ for $a_{k}^{i}<t<b_{r(i, m)}^{j}$.
If $k=s(j, 1)+\ldots+s(j, m)$ for some m, then

$$
\begin{aligned}
& (B, j, k) \rightarrow(A, i, s(j, m)+1) \text {, where } i=b_{s(j, 1)+\ldots+s(j, m-1)}^{j} \\
& \text { and }(B, j, k) \rightarrow(A, t, 1)=(B, t, 1) \text { for } a_{s(j, m)}^{i}<t<b_{k}^{j} .
\end{aligned}
$$

The graph looks like this

Only the arrows $(A, i, k) \rightarrow(A, i, k+1)$ and $(B, j, k) \rightarrow(B, j, k+1)$ are indicated in this picture.

Set $\Sigma_{M}=\left\{\underline{y} \in D^{\mathbb{Z}}\right.$: there is an arrow from y_{i} to $\left.y_{i+1} \forall i \in \mathbb{Z}\right\}$. Then $\left(\Sigma_{f}, \sigma\right)$, the natural extension of (Σ_{f}^{+}, σ), and (Σ_{M}, σ) are isomorphic modulo small sets. In particular $\left(\Sigma_{f}, \sigma\right)$ and $\left(\Sigma_{M}, \sigma\right)$ and hence also (I, f) and $\left(\Sigma_{M}, \sigma\right)$ have isomorphic sets of maximal measures.

Divide M into irreducible subgraphs M_{1}, M_{2}, \ldots and denote the corresponding subshifts of Σ_{M} by $\Sigma_{M_{i}}$. We consider M as $0-1$ matrix with index set $D, M_{j k}$ $=1$ iff there is an arrow $j \rightarrow k$.

Theorem. (i) $h_{\text {top }}\left(\Sigma_{M}\right)=\log r(M)$ (spectral radius of the l^{1}-operator M).
(ii) Every ergodic maximal measure is concentrated on a $\Sigma_{M_{i}}$ satisfying $r\left(M_{i}\right)$ $=r(M)$ (the ergodic maximal measures are the extremal points of the compact convex set of all maximal measures).
(iii) There is at most one (ergodic) maximal measure on every such $\Sigma_{M_{i}}$.

Our goal is to apply these results to special piecewise monotonic transformations. The simplest nontrivial example is the β-transformation $x \mapsto \beta x(\bmod 1)$ for $\beta>1$. Let n be so that $\beta \leqq n<\beta+1$ and \underline{e} the β-expansion of 1 . Then \underline{a}^{i} $=i 1111 \ldots$ for $1 \leqq i \leqq n, \underline{b}^{i}=i \underline{e}$ for $1 \leqq i \leqq n-1$ and $\underline{b}^{n}=\underline{e}$. Σ_{f}^{+}becomes Σ_{β}^{+} $=\left\{\underline{x} \in \Sigma_{n}^{+}: \sigma^{k} \underline{x} \leqq \underline{e} \forall k\right\}$. Using the identifications (1.1) we get for $n=3$ the following graph

There are e_{i} arrows starting at the i-th point of the row. This gives an irreducible graph (cf. [1]). Hence the β-shift Σ_{β}^{+}has unique maximal measure.

One sees that, due to the identifications, only one of the $2 n$ rows has remained. In the next more complicated case we consider the situation where there are two remaining rows.

Consider any piecewise monotonic transformation with $n=2$. We assume that the end point of J_{1} is mapped to 1 and that the initial point of J_{2} is mapped to 0 . We can reduce all other cases to this case taking away wandering sets and fixed points. For example consider the following graph of an f. We take away $(x, 1]$, where $x=f$ (end point of $\left.J_{1}\right) .(x, 1)$ is a wandering set and 1 is a fixed point. $f(x) \leqq x$, otherwise $\left(J_{1}, J_{2}\right)$ is no generator.

Let $\underline{a}^{1}=\underline{a}$ be the expansion of 0 and $\underline{b}^{2}=\underline{b}$ that of 1 . Then $\underline{b}^{1}=1 \underline{b}$ and $a^{2}=2 \underline{a}$. Set $r_{k}=r(1, k)$ and $s_{k}=s(2, k)$. By (1.1) we identify $(A, 2, k+1)=(A, 1, k)$ for $k \geqq r_{1}$ and $(B, 1, k+1)=(B, 2, k)$ for $k \geqq s_{1}$ and get the graph

Also the transformation $x \mapsto \beta x+\alpha(\bmod 1)$ for $\beta>1$ and $0<\alpha<1$ gives such diagrams. Again let $\underline{a}^{1}=\underline{a}$ be the expansion of 0 and $\underline{b}^{n}=\underline{b}$ the expansion of 1 (n so that $\alpha+\beta \leqq n<\alpha+\beta+1$). Then $\underline{a}^{i}=i \underline{a}$ for $2 \leqq i \leqq n$ and $\underline{b}^{i}=i \underline{b}$ for $1 \leqq i \leqq n-1$. Again set $r_{k}=r(1, k)$ and $s_{k}=s(n, k)$. By (1.1) we identify $(A, i, k+1)=(A, 1, k)$ for $k \geqq r(i, 1)$ and $2 \leqq i \leqq n$ and $(B, i, k+1)=(B, n, k)$ for $k \geqq s(i, 1)$ and $1 \leqq i \leqq n-1$.
We get (for $n=4$)

We shall denote the points in the first row by $c_{k}=(A, 1, k)$, the points in the last row by $d_{k}=(B, n, k)$, and the remaining points by e_{2}, \ldots, e_{n-1}. Set $A(i, j)$ $=\left\{c_{k}: i \leqq k \leqq j\right\}\left(A(i, \infty)=\left\{c_{k}: i \leqq k\right\}\right)$ and $B(i, j)=\left\{d_{k}: i \leqq k \leqq j\right\}$.

Hence in the cases we want to consider in this paper we have $D=\left\{c_{k}, d_{k}, e_{j}: k \geqq 1,2 \leqq j \leqq n-1\right\}$ (for $n=2$ there are no e_{j}) and M has the following arrows

$$
\begin{align*}
& c_{k} \rightarrow c_{k+1}, d_{k} \rightarrow d_{k+1} \quad(k \geqq 1) \\
& c_{r_{1}+\ldots+r_{k}} \rightarrow d_{r_{k}} \text { and } e_{j} \text { for } a_{r_{1}+\ldots+r_{k}}<j<b_{r_{k}-1} \quad(k \geqq 1) \tag{1.5}\\
& d_{s_{1}+\ldots+s_{k}} \rightarrow c_{s_{k}} \text { and } e_{j} \text { for } a_{s_{k}-1}<j<b_{s_{1}+\ldots+s_{k}} \quad(k \geqq 1) \\
& e_{k} \rightarrow c_{1}, d_{1} \text { and } e_{j} \text { for } 2 \leqq j \leqq n-1 \quad(2 \leqq k \leqq n-1) .
\end{align*}
$$

Furthermore by (1.1) we can identify ($u, v \geqq 0$)

$$
\begin{align*}
& c_{p+k}=c_{q+k} \forall k \geqq 1, \text { if } \sigma^{p} \underline{a}=\sigma^{q} \underline{a}, p=r_{1}+\ldots+r_{u}, q=r_{1}+\ldots+r_{v} \tag{1.6}\\
& d_{p+k}=d_{q+k} \forall k \geqq 1, \text { if } \sigma^{p} \underline{b}=\sigma^{q} \underline{b}, p=s_{1}+\ldots+s_{u}, q=s_{1}+\ldots+s_{v} .
\end{align*}
$$

The two Σ_{M} arising from M with and without identifications are then isomorphic.

For the r_{i} and s_{i}, which denote the lengths of initial segments of $v \underline{b}(1 \leqq v \leqq n$ $-1)$ in \underline{a} and of $u \underline{a}(2 \leqq u \leqq n)$ in \underline{b} respectively, we have the following lemma. Remark that

$$
\begin{equation*}
\underline{a}, \underline{b} \in \Sigma_{f}^{+} \text {, which becomes }\left\{\underline{x} \in \Sigma_{n}^{+}: \underline{a} \leqq \sigma^{k} \underline{x} \leqq \underline{b} \forall k \geqq 0\right\} \text {. } \tag{1.7}
\end{equation*}
$$

Lemma 1. There are maps $P, Q: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$, such that

$$
\begin{array}{ll}
r_{k}=s_{1}+\ldots+s_{P(k)}+1 & \text { for } k \geqq 1 \tag{1.8}\\
s_{k}=r_{1}+\ldots+r_{Q(k)}+1 & \text { for } k \geqq 1 .
\end{array}
$$

Proof. We prove only the first statement. Suppose that $1+s_{1}+\ldots+s_{m}<r_{k}<1$ $+s_{1}+\ldots+s_{m+1}$ for some m. We have $a_{r_{1}+\ldots+r_{k-1}+j}=b_{j-1}$ for $1 \leqq j \leqq r_{k}-1$, $a_{r_{1}+\ldots+r_{k}}<b_{r_{k}-1}$ and $b_{s_{1}+\ldots+s_{m}+l}=a_{l-1}$ for $1 \leqq l \leqq s_{m+1}-1$ by definition of r_{k}, s_{m}.

Setting $j=s_{1}+\ldots+s_{m}+l+1$ we have because $r_{k}-s_{1}-\ldots-s_{m}-1 \leqq s_{m+1}-1$ $a_{r_{1}+\ldots+r_{k-1}+s_{1}+\ldots+s_{m}+l+1}=a_{l-1}$ for $1 \leqq l \leqq r_{k}-s_{1}-\ldots-s_{m}-2\left(\Rightarrow j \leqq r_{k}-1\right)$ and $a_{r_{1}+\ldots+r_{k}}<a_{r_{k}-s_{1}-\ldots-s_{m}-2}$.

If $r_{k}-s_{1}-\ldots-s_{m}-2=0$, we have $a_{r_{1}+\ldots+r_{k}}<a_{0}=1$, a contradiction, and $\sigma^{r_{1}+\ldots+r_{k-1}+s_{1}+\ldots+s_{m}+2} \underline{a}<\underline{a}$, a contradiction to (1.7), in case of $r_{k}-s_{1}-\ldots-s_{m}$ $-2 \geqq 1$. The lemma is proved.

This lemma shows that, if an arrow goes from $B(1, \infty)$ to c_{i}, then $i=s_{k}=r_{1}$ $+\ldots+r_{Q(k)}+1$ and hence by (1.5) and $i-1=r_{1}+\ldots+r_{Q(k)}$ there is an arrow from the point c_{i-1} before c_{i} to $B(1, \infty)$. This will be used several times in the sequel.

We want to describe another thing which will be important, namely how one can regain \underline{a} and \underline{b} from M. This can be done by induction. $a_{0}=1, b_{0}=n . r_{1}>1$ and $s_{1}>1$ is a contradiction to (1.8). Hence suppose $r_{1}=1$. Then a_{1} is the number such that there are arrows $c_{1} \rightarrow e_{j}$ for $a_{1}<j<b_{0}$ in (1.5). If $a_{0} \ldots a_{p-1}$ and $b_{0} \ldots b_{q-1}$ are already determined, where $p=r_{1}+\ldots+r_{i}+1$ and $q=s_{1}+\ldots+s_{k}$ +1 (the above step is for $i=0$ and $k=0$), $r_{i+1}>s_{1}+\ldots+s_{k}+1$ and $s_{k+1}>r_{1}+\ldots$ $+r_{i}+1$ is again a contradiction to (1.8). Supposing $r_{i+1} \leqq s_{1}+\ldots+s_{k}+1$, we have by the definition of r_{i+1} that $a_{p} \ldots a_{p-2+r_{i+1}}=b_{0} \ldots b_{r_{i+1}-2}$, which is already known, and $a_{p-1+r_{i+1}}$ is the number such that there are arrows $c_{r_{1}+\ldots+r_{i+1}} \rightarrow e_{j}$ for $a_{p-1+r_{t+1}}<j<b_{r_{i+1}-1}$ in (1.5).

To apply the above theorem we have to divide M into irreducible subgraphs. If M is reducible we can divide D into two disjoint subsets D_{1} and D_{2} such that there may be transition from D_{1} to D_{2}, but not from D_{2} to $D_{1} . D_{2}$ is not empty. Suppose $c_{l} \in D_{2}$ and l is the smallest integer with this property. Then $A(l, \infty) \subset D_{2}$, because there is no transition from D_{2} to D_{1}. If there is no arrow from $A(l, \infty)$ to $B(1, \infty)$, then $D_{2}=A(l, \infty)$ has spectral radius 1 and hence we can take it away. We assume that there is such an arrow and hence $a d_{m} \in D_{2}$. Again let m be the smallest integer with this property. As above $B(m, \infty) \subset D_{2}$ and $D_{2}=A(l, \infty) \cup B(m, \infty)$.

Let λ_{0} be the largest real solution of $\lambda^{l+m}-\lambda^{l}-\lambda^{m}=0$ and $M_{2}=M / D_{2}$. We have

Lemma 2. $r\left(M_{2}\right) \leqq \lambda_{0}$. Equality holds, iff there are i, j, such that

$$
\begin{gather*}
r_{1}+\ldots+r_{i-1}=l-1, \quad s_{1}+\ldots+s_{j-1}=m-1 \quad \text { and } \tag{2.1}\\
s_{j}=s_{j+1}=\ldots=l, \quad r_{i}=r_{i+1}=\ldots=m .
\end{gather*}
$$

Proof. We can assume that there are arrows arriving at c_{l} and d_{m}. If not, let $l^{\prime} \geqq l$ and $m^{\prime} \geqq m$ be the smallest integers, such that there are arrows from $B(m, \infty)$ to $c_{l^{\prime}}$, and from $A(l, \infty)$ to $d_{m^{\prime}}$. Then we can never return from $A\left(l^{\prime}, \infty\right) \cup B\left(m^{\prime}, \infty\right)$ to $c_{l}, \ldots, c_{l^{\prime}-1}$ and to $d_{m}, \ldots, d_{m^{\prime}-1}$ and hence we can take away this points from D_{2} without changing the spectral radius of M_{2}. Hence, if we have proved the result with this assumption, $r\left(M_{2}\right) \leqq \lambda_{0}^{\prime}<\lambda_{0}$, where λ_{0}^{\prime} is the largest solution of $\lambda^{l^{\prime}+m^{\prime}}-\lambda^{l^{\prime}}-\lambda^{m^{\prime}}=0$. Now we assume that there are arrows arriving at c_{l} and d_{m}, i.e. there are i, j, such that $l=s_{u}=r_{1}+\ldots+r_{i-1}+1$ and $m=r_{v}=s_{1}+\ldots+s_{j-1}$ +1 for some u, v (cf. Lemma 1). If now (2.1) is satisfied, we have $\sigma^{l+m} \underline{a}=\sigma^{l} \underline{a}$ and $\sigma^{l+m} \underline{b}=\sigma^{m} \underline{b}$, i.e. $c_{k+m}=c_{k}$ for $k \geqq l$ and $d_{k+l}=d_{k}$ for $k \geqq m$ (cf. (1.1)). We get the following graph for M_{2}.

Hence the characteristic equation for M_{2} is $\lambda^{l+m}-\lambda^{l}-\lambda^{m}=0$ and $r\left(M_{2}\right)=\lambda_{0}$.
If (2.1) is not satisfied we have $r_{k} \geqq m \forall k \geqq i$ and $s_{k} \geqq l \forall k \geqq j, i, j$ as above (otherwise there would be transition from D_{2} to D_{1}) and there is at least one $r_{g}(g \geqq i)$ or $s_{h}(h \geqq j)$ with $r_{g}>m\left(\Rightarrow r_{g} \geqq l+m\right.$ because of (1.2)) or $s_{h}>l\left(\Rightarrow s_{h} \geqq l+m\right.$ because of (1.2)). We show that M_{2} has then a spectral radius strictly less than λ_{0}.

First we compute the spectral radius of M_{2} for the case $r_{k}=m \forall k \geqq i, s_{k}$ $=l \forall k \geqq j, k \neq h$ and $s_{h}=m+l$. As above (2.2) we get the diagram (identifications for $\sigma^{m+l} \underline{a}=\sigma^{l} \underline{a}$ and $\left.\sigma^{2 m+(h-j+2) l} \underline{b}=\sigma^{2 m+(h-j+1) l} \underline{b}\right)$

We get the characteristic polynomial

$$
\begin{aligned}
P(\lambda)= & \lambda^{(h-j+2) l+2 m}-\lambda^{(h-j+2) l+m}-\lambda^{(h-j+1) l+2 m} \\
& -\sum_{f=1}^{h-j} \lambda^{(h-j-f+2) l+m}-\lambda^{l}-1+\sum_{f=1}^{h-j} \lambda^{(h-j-f+1) l+m} \\
& +1+\lambda^{(h-j+1) l+2 m} \\
= & \lambda^{(h-j+1) l+m}\left(\lambda^{l+m}-\lambda^{l}-\lambda^{m}\right)+\lambda^{l+m}-\lambda^{l} .
\end{aligned}
$$

It is easy to see that $P(\lambda) \geqq \lambda_{0}^{m}>0$ for all $\lambda \geqq \lambda_{0}$. Hence the largest solution of $P(\lambda)=0$ is less than λ_{0}, i.e. $r\left(M_{2}\right)<\lambda_{0}$. The same argument holds if $r_{g}=l+m$ instead of $s_{h}=m+l$. For the general case we can find a minimal $g \geqq i$ or a minimal $h \geqq j$ such that $r_{g} \geqq l+m$ or $s_{h} \geqq l+m$ respectively. We consider the second case. The first one is similar. Denote the matrix corresponding to (2.3) by M_{h} (without identifications). We show $r\left(M_{2}\right) \leqq r\left(M_{h}\right)$. Let N_{k}^{x} and \tilde{N}_{k}^{x} be the numbers of blocks of length k admitted by M_{2} and M_{h} respectively and beginning with $x \in D_{2}$. It suffices to show $\left\|M_{2}^{k}\right\|_{1}=\sup N_{k}^{x} \leqq 2\left\|M_{h}^{k}\right\|_{1}=2 \sup \tilde{N}_{k}^{x}$.
To this end set $R_{u}=r_{1}+\ldots+r_{u}, \quad S_{v}=s_{1}+\ldots+s_{v} \quad$ and $\quad D^{\prime}=\left\{\begin{array}{l}x \\ c_{R_{u}+1}\end{array}\right.$, $\left.d_{S_{v}+1}: u \geqq i, v \geqq j\right\}$. We show by induction that $N_{k}^{x} \leqq \tilde{N}_{k}^{x}$, if $x \in D^{\prime}$. Let $x=d_{S_{v}+1}$ (the case $x=c_{R_{u}+1}$ is similar). Cancelling the first $t:=s_{v+1}$ elements, which are equal in all M_{2}-blocks beginning with x, we get $N_{k}^{x}=N_{k-t}^{y}+N_{k-t}^{z}$, where y $=d_{S_{v+1}+1} \in D^{\prime}$ and $z=c_{s_{v+1}}=c_{R_{Q(v+1)}+1} \in D^{\prime}$ (Lemma 1). Here is a picture of the relevant part of M_{2}.

If $k \leqq t, N_{k}^{x}=1 \leqq \tilde{N}_{k}^{x}$. Otherwise, as $y, z \in D^{\prime}$, we have by induction that $N_{k-t}^{v} \leqq \tilde{N}_{k-t}^{y}$ and $N_{k-t}^{z} \leqq \tilde{N}_{k-t}^{z}$, hence

$$
\begin{equation*}
N_{k}^{x} \leqq \tilde{N}_{k-t}^{y}+\tilde{N}_{k-t}^{z} . \tag{2.4}
\end{equation*}
$$

Now we consider the case $v+1 \neq h$. The arguments for $v+1=h$ are the same replacing l by $l+m$. Because $s_{v+1} \geqq l$ there must be an arrow in M_{h} from a point in $B\left(S_{v}+1, S_{v+1}\right)$ to c_{l}. Let $x^{\prime}=d_{S_{v}+t^{\prime}}$ be the first such point ($t^{\prime} \leqq l$). Then $x^{\prime} c_{l} c_{l+1} \ldots z$ is an admissible block in M_{h} of length $t-l+2$. Hence \tilde{N}_{k}^{x} $=\tilde{N}_{k-t^{\prime}+1}^{x^{\prime}+1} \geqq \tilde{N}_{k-t^{\prime}}^{c_{t}}+\tilde{N}_{k-t}^{y}$ and $\tilde{N}_{k-t^{\prime}}^{c_{t}} \geqq \tilde{N}_{k-t^{\prime}-t+l}^{z} \geqq \tilde{N}_{k-t}^{z}$, because $l-t^{\prime} \geqq 0$. Together with (2.4) we have $\tilde{N}_{k}^{x} \geqq N_{k}^{x}$. Now let $x=d_{S_{v}+1+w} \notin D^{\prime}$. Then (2.4) is proved as above with $t=s_{v+1}-w$ and the same $y, z \in D^{\prime}$. Therefore $N_{k}^{x} \leqq 2 \sup \tilde{N}_{k}^{z}$. For $x \in D^{\prime}$ this follows from $N_{k}^{x} \leqq \tilde{N}_{k}^{x}$. This implies $\sup N_{k}^{x} \leqq 2 \sup \tilde{N}_{k}^{x}$. Hence we have $r\left(M_{2}\right) \leqq r\left(M_{h}\right)<\lambda_{0}$ and the lemma is proved.

Now we consider the case (1.3) and the case (1.4) only, if $E=\{(A, i, 1)$ $=(B, i, 1): 2 \leqq i \leqq n-1\}=\left\{e_{2}, e_{3}, \ldots, e_{n-1}\right\}$ is an irreducible subset of M. We can consider the two rows $D \backslash E$ for themselves (there is no transition back to E) and D_{1} and D_{2} are subsets of $D \backslash E$.

Recall $A(i, j)=\left\{c_{k}: i \leqq k \leqq j\right\}$ and $B(i, j)=\left\{d_{k}: i \leqq k \leqq j\right\}$. In the following we shall identify c_{k} with its index k and similar for d_{k}. It will be always clear, whether k is c_{k} or d_{k}. We have $D_{1}=A(1, l-1) \cup B(1, m-1)$. Set $M_{1}=M / D_{1}$.

Lemma 3. $r\left(M_{1}\right) \geqq \lambda_{0}$ or $=1 . r\left(M_{1}\right)=\lambda_{0}$ iff there is an integer t with $(t+2) m>l>(t$ $+1) m$ and, setting $q=l-(t+1) m$ and $p=(t+2) m-l($ i.e. $p+q=m,(p+q)(t+1)$ $+q=l)$, iff there are i, j such that $r_{1}+\ldots+r_{i-1}=p-1, s_{1}+\ldots+s_{j-1}=q-1$ and r_{i} $=r_{i+t+1}=q, r_{i+1}=r_{i+2}=\ldots=r_{i+t}=p+q, s_{j}=p$ and $r\left(M_{1} / A(1, p-1) \cup B(1, q-1)\right)$ $=1$ (or the same with the roles of m and l, r_{k} and s_{k} exchanged).

Proof. Let $i_{1} \in A(1, l-1)$ be the smallest point, where an arrow from $B(1, m-1)$ arrives, and $j_{1} \in B(1, m-1)$ the smallest point, where an arrow from $A(1, l-1)$ arrives. Let $j_{2} \in B(1, m-1)$ and $i_{2} \in A(1, l-1)$ be the smallest points, where these arrows start to i_{1} and j_{1} respectively. We can take away $A\left(1, i_{1}-1\right)$ and $B\left(1, j_{1}\right.$ -1), because we can never return to these points. If $i_{2}<i_{1}\left(j_{2}<j_{1}\right)$ we have taken away $i_{2}\left(j_{2}\right)$ and also the arrow starting there. We take now the earliest point in $B\left(j_{1}, m-1\right)\left(A\left(i_{1}, l-1\right)\right)$, where an arrow from $A(1, l-1)(B(1, m-1))$ arrives, and call it again $j_{1}\left(i_{1}\right)$. We get also a new $i_{2}\left(j_{2}\right)$. If $i_{1} \leqq i_{2}$ and $j_{1} \leqq j_{2}$ and there is no other arrow arriving in $A\left(i_{1}, i_{2}\right)$ from $B(1, m-1)$ or in $B\left(j_{1}, j_{2}\right)$ from $A(1, m-1)$, then $A\left(i_{1}, i_{2}\right) \cup B\left(j_{1}, j_{2}\right)$ is an irreducible subset of D_{1} with spectral radius 1 (the corresponding shift space is a periodic orbit). Hence we can take away this set. Now take for i_{1}, j_{1} the earliest points in $A\left(i_{2}+1, l-1\right)$ and $B\left(j_{2}+1, m-1\right)$ respectively, where arrows arrive as above and repeat this procedure. There are two cases. We reach the points c_{l-1} and d_{m-1} without having found another arrow from $B(1, m-1)$ into $A\left(i_{1}, i_{2}\right)$ or from $A(1, l-1)$ into $B\left(j_{1}, j_{2}\right)$. Then $r\left(M_{1}\right)$ $=1$. Or we find $i_{1}, j_{1}, i_{2}, j_{2}$ (we choose i_{1}, j_{1} minimal and for these we take the smallest i_{2}, j_{2}, where arrows go to j_{1}, i_{1} respectively) and a $j_{3} \in B\left(j_{1}, j_{2}\right)$ $\left(j_{3} \in A\left(i_{1}, i_{2}\right)\right)$, we choose again minimal, and an $i_{3} \in A\left(i_{1}, l-1\right)\left(i_{3} \in B\left(j_{1}, m-1\right)\right)$ such that there is an arrow from i_{3} to j_{3}. We do not consider the case in brackets. It is similar and corresponds to the result with the roles of m and l, r_{k} and s_{k} exchanged. Furthermore $M / A\left(1, i_{1}-1\right) \cup B\left(1, j_{1}-1\right)$ has spectral radius 1 .

We prove $j_{3}=j_{1}$. Suppose $j_{3}>j_{1}$. j_{3} is the end point of an arrow, hence $j_{3}=r_{k}$ $=s_{1}+\ldots+s_{P(k)}+1$ for some k (cf. (1.2) and Lemma 1). Hence at $j_{3}-1=s_{1}+\ldots$ $+s_{P(k)}$ there begins an arrow ending at $i_{4} \in A(1, l-1)$ say. $i_{4} \geqq i_{1}$, otherwise we have a contradiction to the minimality of i_{1}. If $i_{4}=i_{1}$ we have a contradiction to the minimality of j_{2}. Hence $i_{4}>i_{1}$. As above there is an arrow from $i_{4}-1$ to $B(1, m-1)$. If this point is not i_{2}, we get a $j_{3}^{\prime} \in B\left(j_{1}, j_{3}\right), j_{3}^{\prime}<j_{3}$, as end point of the arrow and this contradicts the minimality of j_{3}. We have the picture

Set $P=a_{0} a_{1} \ldots a_{i_{1}-2}$ and $Q=b_{0} b_{1} \ldots b_{j_{1}-2}$. We have no arrow from $A\left(i_{1}, i_{2}-1\right)$ to $B(1, m-1)$, because this is either a contradiction to the fact that no arrow goes from $A\left(i_{1}, i_{2}\right)$ to $B\left(1, j_{1}-1\right)$ or to the minimality of i_{2} or to the minimality of j_{3}. Hence $a_{i_{1}-1} \ldots a_{i_{2}-1}$ is the initial segment $u b_{0} \ldots b_{j_{1}-2}=u Q$ of \underline{b}^{u} for some u with $1 \leqq u \leqq n-1$ ($u=1$ in case (1.3)) (cf. (1.2)). Using again (1.2) and the fact that no arrow goes to E we get that $\underline{a}=P u Q(v-1) \ldots$ and $\underline{b}=Q v P u Q \ldots v P u Q v P(u$ $+1) \ldots$ for some v with $2 \leqq v \leqq n\left(v=2\right.$ in case (1.3)). Hence $\sigma^{j_{2}-i_{1}-j_{1}+1} \underline{b}=$ $Q v P(u+1) \ldots>\underline{b}$, a contradiction to $\underline{b} \in \Sigma_{f}^{+}$(cf. §1).

Therefore $j_{3}=j_{1}$. We get the picture

The characteristic equation for (2.5) is $\lambda^{2 j_{1}+i_{1}+w}-\lambda^{j_{1}+w}-1=0$. As (2.5) is a subgraph of $M_{1}, j_{1}+i_{1}-1=j_{2} \leqq m-1$ and $i_{1}+2 j_{1}+w-1=i_{3} \leqq l-1$. Hence the largest solution of the above equation is greater than or equal to λ_{0} and hence $r\left(M_{1}\right) \geqq \lambda_{0}$. Equality holds, iff $i_{1}+j_{1}=m, i_{1}+2 j_{1}+w=l$ and there are no more arrows than indicated in (2.5). If $w=0$ we have the picture

If $w>0$ there are arrows going from $A\left(i_{2}+1, i_{3}-j_{1}\right)$ to $B(1, \infty)$, which must go to D_{2} in case of equality. These arrows must end at $d_{m} \in D_{2}$, because, if one of them ends at a later point, it can end earliest at d_{l+m} (from d_{m} to d_{l+m-1} there is an initial segment of \underline{a}) and hence $A\left(i_{2}+1, i_{3}-j_{1}\right)$ must contain a block of length l $+m$ (cf. (1.2)), which is impossible ($i_{3}<l$). Hence $A\left(i_{2}+1, i_{3}-j_{1}\right)$ consists of t initial segments of \underline{b}, each of length m, for some t, i.e. $w=t m$.

Set $p=i_{1}$ and $q=j_{1}$ (we get $p+q=m$ and $(p+q)(t+1)+q=l$). The properties about r_{k} and s_{k} in case of equality are easily deduced.

From Lemmas 2 and 3 we get
Theorem 1. In the case $n=2, \Sigma_{f}^{+}$has more than on maximal measure, iff

$$
\begin{aligned}
& \underline{a}=P 1 Q \underbrace{1 X 1 X \ldots 1 X}_{t \text { times }} 1 Q 1 X 1 X 1 X \ldots \text { and } \\
& \underline{b}=Q 2 P 2 Y 2 Y \ldots
\end{aligned}
$$

or vice versa, where $X=Q 2 P$ and $Y=P 1 Q 1 X 1 X \ldots 1 X 1 Q$ and P and Q are blocks such that $M / A(1, p-1) \cup B(1, q-1)$ has spectral radius $1(p=$ length of $2 P, q$ $=$ length of $1 Q$). In this case there are exactly two ergodic maximal measures.
Proof. This follows immediately from the lemmas. Choose suitable blocks P and Q and add initial segments of $1 \underline{b}$ and $2 \underline{a}$ respectively, according to the equations for r_{k} and s_{k} in the case of equality in Lemmas 2 and 3 to get a and \underline{b}. In no other case it can happen that $r\left(M_{1}\right)=r\left(M_{2}\right)$.

In this case of more than one maximal measure one sees that M_{2} is irreducible (cf. the proof of Lemma 2) and that M_{1} consists of irreducible parts, all with spectral radius 1, except one, which has spectral radius equal to $r\left(M_{2}\right)=r(M)$ (cf. the proof of Lemma 3). Now apply the theorem in $\S 1$. There is at least one maximal measure on $\Sigma_{M_{1}}$ and on $\Sigma_{M_{2}}$, because they are shift spaces with finite alphabet, hence expansive.
Corollary 1. If in the case $n=2$ the graph of f is symmetric with respect to $\left(\frac{1}{2} / \frac{1}{2}\right)$, then f has unique maximal measure.
Proof. In this case we have $a_{i}=1$, if $b_{i}=2$ and $a_{i}=2$, if $b_{i}=1$. This implies $r_{k}=s_{k}$ for all k and hence $l=m$ in the construction of D_{1} and D_{2} at the beginning of $\S 2$. The result follows from Theorem 1.

Corollary 2. If in the case $n=2 f / J_{1}$ and f / J_{2} are linear, then f has unique maximal measure.

Proof. If not, we have by Theorem 1 that $\underline{a}=P 1 Q 1 X \ldots 1 X 1 Q 1 X 1 X \ldots$ and \underline{b} $=Q 2 P 2 Y 2 Y \ldots$ Suppose f / J_{1} has slope λ and f / J_{2} has slope μ. Applying f to a subinterval of J_{1} or J_{2} means to multiply its length by λ or μ respectively. The isomorphism φ between (I, f) and $\left(\Sigma_{f}^{+}, \sigma\right)$ is order preserving, hence intervals in Σ_{f}^{+}(with respect to the lexicographic ordering) correspond to intervals in I. If $[\underline{x}, \underline{y}]$ is an interval in Σ_{f}^{+}and $x_{0}=y_{0}$ (i.e. $\varphi^{-1}([\underline{x}, \underline{y}]) \subset J_{1}$ or J_{2}), then denoting the length of $\varphi^{-1}\left(([\underline{x}, \underline{y}]) \subset I\right.$ by $|[\underline{x}, \underline{y}]|$ we have $|\sigma[\underline{x}, \underline{y}]|=\lambda|[\underline{x}, \underline{y}]|$, if $x_{0}=y_{0}=1$ and $=\mu|[\underline{x}, \underline{y}]|$, if $x_{0}=y_{0}=2$. Set $\alpha=\lambda^{u} \mu^{v}$, where u is the number of 1 and v the number of 2 in P and let β be the same number for Q. We consider the following intervals

$$
R=\left[\sigma^{p+2 q-1+t(p+q)} \underline{a}, 1 \underline{b}\right]=[1 X 1 X \ldots, 1 X 2 Y 2 Y \ldots]
$$

and

$$
S=\left[2 \underline{a}, \sigma^{p+q-1} \underline{b}\right]=[2 Y 1 X 1 X \ldots, 2 Y 2 Y \ldots],
$$

where $p=$ length of $2 P$ and $q=$ length of $1 Q$. Set $r=|R|$ and $s=|S|$.

$$
\begin{aligned}
& \sigma^{p+q} R=R \cup S, \text { i.e. } r(\lambda \mu \alpha \beta)=r+s \\
& \sigma^{p+2 q+t(p+q)} S=R \cup S, \\
& \text { i.e. } s(\lambda \mu \alpha \beta)^{t+1} \lambda \beta=r+s .
\end{aligned}
$$

From this we get because of $r \neq 0$ and $s \neq 0$.

$$
\begin{equation*}
(\lambda \mu \alpha \beta)^{t+1} \lambda \beta-(\lambda \mu \dot{\alpha} \beta)^{t} \lambda \beta-1=0 . \tag{2.6}
\end{equation*}
$$

Now consider the intervals

$$
\begin{aligned}
F & =\left[\sigma^{3 p+3 q-1} \underline{b}, \sigma^{p+q-1} \underline{a}\right] \\
& =[\underbrace{1 X 1 X}_{t-1} 1 Q 2 Y 2 Y \ldots, \underbrace{1 X 1 X \ldots 1 X}_{t} 1 Q 1 X 1 X \ldots] \\
G & =\left[\sigma^{2 p+2 q-1} \underline{b}, \sigma^{p+2 q-1+t(p+q)} \underline{a}\right]=[\underbrace{1 X 1 X}_{t} \ldots 1 X 1 Q 2 Y 2 Y \ldots, 1 X 1 X \ldots] \\
H & =\left[\sigma^{\sigma^{p+q-1}} \underline{a}, \sigma^{2 p+2 q-1} \underline{b}\right] \\
& =[\underbrace{1 X 1 X}_{t} \ldots 1 X 1 X 1 X, \underbrace{1 X 1 X 1 X}_{t} 1 Q 2 Y 2 Y \ldots]
\end{aligned}
$$

and set again $f=|F|, g=|G|$ and $h=|H|$.

$$
\begin{aligned}
\sigma^{q+t(p+q)} F=G, & \text { i.e. } f(\lambda \mu \alpha \beta)^{t} \lambda \beta=g \\
\sigma^{p+q} G=F \cup H \cup G, & \text { i.e. } g(\lambda \mu \alpha \beta)=f+h+g .
\end{aligned}
$$

From this we get

$$
g\left[(\lambda \mu \alpha \beta)^{t+1} \lambda \beta-(\lambda \mu \alpha \beta)^{t}-1\right]=h(\lambda \mu \alpha \beta)^{t} \lambda \beta
$$

and together with (2.6) we have $h=0$, a contradiction, because $\varphi^{-1}(H)$ has distinct end points. The corollary is proved.

Theorem 2. The transformation $x \mapsto \beta x+\alpha(\bmod 1), \beta>1$ and $0 \leqq \alpha<1$, has unique maximal measure.

Proof. The number n of intervals J_{i} is so that $\alpha+\beta \leqq n<\alpha+\beta+1 . n=2$ is a special case of Corollary 2. For $n \geqq 3$ set $E=\{(A, i, 1)=(B, i, 1): 2 \leqq i \leqq n-1\}$ $=\left\{e_{2}, \ldots, e_{n-1}\right\}$. We have transition from every element of E to every element of E. Hence for $n \geqq 4$ the irreducible subset of D containing E has spectral radius $\geqq n-2 \geqq 2$ and the remaining part of D has spectral radius <2 (if it has spectral radius equal to 2 one computes easily that $n=4, \underline{a}$ has to be $13333 \ldots$ and \underline{b} has to be $42222 \ldots$, i.e. $\beta=2, \alpha=1$, a case which is not allowed).

The case $n=3$ remains. If $E=\left\{e_{2}\right\}$ is an irreducible subset of D, i.e. the only arrow ending at E is that starting at E, then M / E has spectral radius 1 and so it suffices to consider $D \backslash E$. We can apply Lemmas 2 and 3 . If there should be more than one irreducible subset of $D \backslash E$ with the same spectral radius the lemmas imply

$$
\underline{a}=P u_{1} Q u_{2} X \ldots u_{t+1} X u_{t+2} Q u_{t+3} X u_{t+4} X \ldots
$$

and

$$
\underline{b}=Q v_{1} P v_{2} Y v_{3} Y \ldots,
$$

where $v_{2}-u_{1}=1, v_{i}-u_{t+3}=1$ for $i \geqq 3, u_{2}-v_{1}=u_{t+3}-v_{1}=-1$ and $u_{i}-v_{2}=-1$ for $i \geqq 3$ and $i \neq t+3$. Otherwise there would be transition back to E. Set $u_{1}=u$ and $v_{1}=v$. Then $v_{2}=u+1, v_{i}=v$ for $i \geqq 3, u_{2}=u_{t+3}=v-1, u_{i}=u$ for $i \geqq 3$ and $i \neq t$ +3 . We have four cases $(u, v)=(1,2),(2,3),(1,3),(2,2)(u=3$ and $v=1$ are not possible, because there is the end of an initial segment). In the first two cases one can proceed exactly as in Corollary 2. The other two cases are

$$
\underline{a}=P 1 Q 2 X 1 X \ldots 1 X 1 Q 2 X 1 X 1 X \ldots, \quad \underline{b}=Q 3 P 2 Y 3 Y 3 Y \ldots
$$

and

$$
\underline{a}=P 2 Q 1 X 2 X \ldots 2 X 2 Q 1 X 2 X 2 X \ldots, \quad \underline{b}=Q 2 P 3 Y 2 Y 2 Y \ldots
$$

Set $R=\left[\sigma^{(p+q)(t+2)+q-1} \underline{a}, 1 \underline{b}\right], \quad S=\left[2 \underline{a}, \sigma^{p+q-1} \underline{b}\right], \quad U=\left[\sigma^{(p+q)(t+1)+q-1} \underline{a}, 2 \underline{b}\right]$, $V=\left[3 \underline{a}, \sigma^{(p+q)(t+2)+q-1} \underline{b}\right]$ in the first case and $R=\left[\sigma^{(p+q)(t+2)+q-1} \underline{a}, 2 \underline{b}\right]$, $S=\left[3 \underline{a}, \sigma^{p+q-1} \underline{b}\right], U=\left[\sigma^{(p+q)(t+1)+q-1} \underline{a}, 1 \underline{b}\right], V=\left[2 \underline{a}, \sigma^{(p+q)(t+2)+q-1} \underline{b}\right]$ in thesecond case. Then

$$
\begin{aligned}
\sigma^{p+q} R=R \cup S, & \text { i.e. } \beta^{p+q} r=r+s, \\
\sigma^{(p+q)(t+1)+q} S=U \cup V, & \text { i.e. } \beta^{(p+q)(t+1)+q} s=u+v, \\
\sigma^{p+q} U=R \cup S, & \text { i.e. } \beta^{p+q} u=r+s, \\
\sigma^{(p+q)(t+1)+q} V=U \cup V, & \text { i.e. } \beta^{(p+q)(t+1)+q} v=u+v .
\end{aligned}
$$

We get $\beta^{(p+q)(t+1)+q}-\beta^{(p+q) t+q}-1=0$.
Now take $F=\left[\sigma^{3 p+3 q} \underline{b}, \sigma^{p+q} \underline{q}\right], G=\left[\sigma^{2 p+2 q} \underline{b}, \sigma^{(p+q)(t+1)+q} \underline{a}\right]$, $H=\left[\sigma^{p+q} \underline{a}, \sigma^{2 p+2 q} \underline{b}\right]$ in both cases. We have

$$
\begin{aligned}
\sigma^{(p+q) t+q} F=G, & \text { i.e. } \beta^{(p+q) t+q} f=g \\
\sigma^{p+q} G=F \cup H \cup G, & \text { i.e. } \beta^{p+q} g=f+h+g .
\end{aligned}
$$

We get $g\left(\beta^{(p+q)(t+1)+q}-\beta^{(p+q) t+q}-1\right)=h \beta^{(p+q) t+q}$ and hence $h=0$, a contradiction as in Corollary 2.

Therefore there must be an arrow from $D \backslash E$ to E, say from $(A, 1, l-1)=c_{l-1}$ where we choose l minimal. Then the irreducible subset D_{1} of D containing $E \cup A(1, l-1)$ has spectral radius greater than or equal to the largest solution of $\lambda^{l}-\lambda^{l-1}-1=0$. By Lemma 2 the spectral radius of $D \backslash D_{1}$ is less or equal to this number and equality holds only, if $D_{1}=E \cup A(1, l-1), r_{k}=1$, if $r_{1}+\ldots+r_{k} \geqq l$ and $s_{k}=l$ for all k. This implies $\sigma^{l} \underline{a}=222 \ldots$ and $\underline{b}=3 a_{0} \ldots a_{l-2}\left(a_{i-1}+1\right) a_{0} \ldots a_{l-2}$ $\cdot\left(a_{l-1}+1\right) a_{0} \ldots$. Because of the minimality of $l a_{0} \ldots a_{l-1}$ has to be $122 \ldots 21$. The last 1 is because of the arrow to E, the 2 's are because a 1 would imply an earlier arrow to E and a 3 contradicts $\sigma^{l-1} \underline{a} \geqq \underline{a}$. Therefore

$$
\underline{a}=1 \underbrace{\ldots 2}_{i-2} 1222 \ldots \text { and } \underline{b}=31 \underbrace{2 \ldots 22}_{i-1} 1 \underbrace{2 \ldots 22}_{i-1} 1 \underbrace{2 \ldots 221}_{i-1} \ldots
$$

We proceed again as in Corollary 2. Take

$$
R=\left[\sigma^{l-1} \underline{a}, 1 \underline{b}\right], \quad S=\left[2 \underline{a}, \sigma^{l} \underline{b}\right], \quad U=\left[\sigma^{l} \underline{a}, 2 \underline{b}\right], \quad V=[3 \underline{a}, \underline{b}] .
$$

We have

$$
\begin{gathered}
\sigma R=U \cup V, \quad \sigma^{l} S=R \cup S, \sigma U=U \cup V \quad \text { and } \quad \sigma^{l} V=R \cup S, \quad \text { i.e. } \\
\beta r=u+v, \quad \beta_{S}^{l}=r+s, \quad \beta u=u+v \quad \text { and } \quad \beta^{l} v=r+s .
\end{gathered}
$$

From this it follows that $\beta^{l}-\beta^{l-1}-1=0$. Now take $F=\left[\sigma \underline{b}, \sigma^{l-1} \underline{a}\right], G$ $=\left[\sigma^{l} \underline{b}, \sigma^{l} \underline{a}\right]$. We have $\sigma G=\left[\sigma \underline{b}, \sigma^{l} \underline{a}\right] . \sigma^{l-1} F=G, G \subset \sigma G$ and $\sigma G \backslash G=F \cup R \cup S$, i.e. $\beta^{l-1} f=g$ and $g(\beta-1)=f+r+s$ or $f\left(\beta^{l}-\beta^{l-1}-1\right)=r+s$. Hence $r+s=0$, a contradiction. The theorem is proved.

An example of a function in the case $n=2$ with 2 ergodic maximal measures can be found in part II of [2]. The graph of a function f is constructed there such that $\underline{a}=111212121 \ldots$ and $\underline{b}=2211211211 \ldots$, the simplest case of Theorem 1. It is not difficult, to find for every $\varepsilon>0$ an f with these \underline{a} and \underline{b} such that there is a subinterval K of $I, f / K$ is linear with slope $\lambda, f / I \backslash K$ is linear with slope μ and $|\lambda-\mu|<\varepsilon$. One sees that the transformation $x \mapsto \beta x+\alpha(\bmod 1)$ is not far away from having more than one maximal measure.

References

1. Hofbauer, F.: β-shifts have unique maximal measures. Monatsh. Math. 85, 189-198 (1978)
2. Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy I, II. Israel J. Math. 34, 213-237 (1979)
3. Denker, M., Grillenberger, Ch., Sigmund, K.: Ergodic theory on compact spaces. Lectures notes in Mathematics 527. Berlin-Heidelberg-New York: Springer 1976
