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Summary. It  is shown that the transformation x~---~flx+c~ ( m o d l )  
(/3> 1, 0 < ~ <  1) on [0, 1] has unique maximal measure. 

w O. Introduction 

In this paper we consider two classes of piecewise monotonic transformations f 
on I = [ 0 ,  1].The first one is the class of all (1,f) such that I = J i U J z , J 1 , J  2 a re  

disjoint intervals and f / J l , f / J  2 are continuous and strictly increasing. Further- 
more we assume that ( J 1 , J 2 )  is a generator for ( I , f )  and that h t o p ( f ) > 0 .  The 
second one is the class of transformations f :  x~--~flx+e(mod 1) on I where f l> 1 
and 0 < e < l .  

An invariant measure # on ( I , f )  is called maximal if its entropy h(/2) is equal 
to the topological entropy htop(f) of (I,f),  or equivalently, if h(#) is greater than 
or equal to the entropy of every other invariant measure on (I , f ) .  The two 
classess of transformations above have always at least one maximal measure, 
because they are expansive. For definitions see [3]. 

We show that in the first case above there are at most  two ergodic maximal 
measures and characterize those f ' s  which have unique maximal measure. In the 
second case, for f :  x ~--~fl x + c~ (rood 1), we have always unique maximal measure. 

To this end we use the results proved in [-2]. For  every ( I , f )  a subshift S M of 
finite type (M is the corresponding transition matrix) over a countable alphabet 
D is constructed there such that X M and (1,f)  have isomorphic sets of maximal 
measures. Hence it suffices to consider the problem of uniqueness of the 
maximal measure for S M. A tool for this is the theorem cited in w 1 which 
contains also a description of other results from [2]. Furthermore,  for the above 
two classes of transformations the transition matrices M are derived which are 
considered as oriented graphs. The results of this paper are proved in w 2. We 
determine conditions for M such that S M can have more than one maximal 
measure (Lemmas 2 and 3) and characterize the ( I , f )  of the first class above 
which give rise to such an M (Theorem 1), Then we prove that such an M 
cannot occur for f :  x~--~flx + o~ (rood 1) (Theorem 2). 
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w 

We begin with a short  descript ion of the me thods  deve lopped  in [2]. We have a 

piecewise m o n o t o n i c  t r ans fo rmat ion  f on 1, i.e. I = @ J~, Ji disjoint intervals,  
i ~ l  

such tha t  f/J~ is cont inuous  and strictly increasing. F u r t h e r m o r e  we need that  
(Ji)lai<_, is a genera tor  for (l,f) and that  h top(f )>0.  The  f -expans ion  
(p: ( I , f ) - + N  + = { 1, 2 . . . .  , n} • is defined by ~o(x)= i o i 1 i2. . . ,  where i k is the n u m b e r  
i of  the interval  Ji such that  fk(x)sJ i. If  Jk=(r,s), set ak=lim~0(t)  and _b k 
= l i r a  ~o(t). Define t~ 

i t s  
, ~ ;  = { X ~ 2 2  + . aXm ~ ra __ cr X-XmXm+ l Xm+ 2...<b ~ for all m > 0 } ,  

where ~ denotes the shift t r ans fo rmat ion  and < the lexicographic  order ing in 
Z~ +. Then  (p is an order  preserving i somorph i sm modu lo  small sets (cf. w of  [2]) 
be tween (I,f) and (22;, a). In part icular ,  (I,f) and (~)-, a) have i somorphic  sets of  
measures  with max ima l  entropy.  

N o w  divide _a ~ into initial segments  of  b~'s, which can be done  in a unique 
way, because b J is the only e lement  a m o n g  the bk's which begins with j, and 
denote  the lengths of  these segments  by r(i, 1), r(i, 2), .. . ,  i.e. we have  for m > 0  

i - J O<k<r( i ,m+l ) - l ,  j ~ - a r ( i .  1 ) + . . . + r ( i , m  ) ar(i, 1)+...+r( i m ) + k _ _ b k .  ' __  _ i and 
i j 

ar(i ,  1)+. . .  +r ( i ,m+ 1) =# b r ( i , m +  1). 

Similary divide _b 2 into initial segments  of  _a~'s, and denote  their lengths by 
s(j, 1), s(j, 2) . . . . .  Condiser  the set 

D={(A,i,k),(B, i,k): l<i<-_n,k>=l}={A,B) x {1 . . . .  ,n )  •  

identify (A, i, k )=(B ,  i, k) for 1 <_k<_r(i, 1)=s(i ,  1) and also 

(A,i,p+k)=(A,j,q+k)Vk>=l, ifapai=aqaJ, p= ~ r(i,m),q= ~ r(j,m) 
m=l m=l (1.1) 

(B,i ,p+k)=(B,j ,q+k)Vk>l,  ifaPbi=aqb~,p= ~ s(i,m),q= ~ s(j,m). 
m = l  m = l  

Together  with the following ar rows D becomes  a graph  M. 
(A, i, k)--* (A, i, k + 1), (B,j, k) ~ (B,j, k + 1). 
Ifk=r(i, 1)+ ... +r(i, m) for some m, then 
(A, i, k)-* (B,j, r(i, m) + 1), where j = i ar(i, 1 )+ . . .+r ( i ,m- -  1) 

i j and (A, i, k)~(A,  t, 1)=(B,  t, 1) for ak <t <br(i,m). 
If  k=s(j, 1)+ ... +s( j ,  m) for some m, then 
(S, j, k) -*  (A, i, s (j, m) + 1 ), where  i = b~(~. 1 ) +... + s(j., m - 1) 
and (B,j, k)~(A,  t, 1)=(B,  t, 1) for a'5(j,m)<t<b~. 

The graph  looks like this 
~ -  - ~ .  -~ . . . .  {(A, 1, k)I 

"~ �9 --~ �9 --, . . . .  {(B, 1, k)} 

j .  ~ . - , .  ~ -  - , -  - - , .  �9 �9 { ( A ,  n ,  k ) }  

" ~  . . . . .  - , -  - - ,  - - .  - - , .  ~ .  {(B, n, k)} 

0.2) 
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Only the arrows (A, i, k)-~(A, i, k+ 1) and (B,j, k)--,(B,j, k+ 1) are indicated in 
this picture. 

Set ZM={Y_~D:~: there is an arrow from Yl to yi+lVi~Z}. Then (~,~r), the 
natural extension of (X}, a), and (Zu, o-) are isomorphic modulo small sets. In 
particular (Zr a) and (X~t, a) and hence also (I,f) and (X~t, a) have isomorphic 
sets of maximal measures. 

Divide M into irreducible subgraphs M1, M 2 . . . .  and denote the correspond- 
ing subshifts of r M by 2~t,. We consider M as 0-1 matrix with index set D, Mjk 
= 1 iff there is an arrow j -~  k. 

Theorem. (i) htop(ZM)= log r(M) (spectral radius of the/1-operator M). 
(ii) Every ergodic maximal measure is concentrated on a Z~, satisfying r(Mi) 

=r(M) (the ergodic maximal measures are the extremal points of the compact 
convex set of all maximal measures). 

(iii) There is at most one (ergodic) maximal measure on every such 2;Me 
Our goal is to apply these results to special piecewise monotonic transfor- 

mations. The simplest nontrivial example is the fi-transformation x~--~fix (mod 1) 
for f i > l .  Let n be so that f l<n<f l+l  and e the fl-expansion of 1. Then a i 
=i1111.. .  for l<_i<n, b i= i e  for l<_i<-n-1 and b"=e. Z~ becomes ~ -  
= {x_sX+,'akx<--eVk}. Using the identifications (1.1) we get for n=3  the follow- 
ing graph 

~ i ~  e_= 313121... 

There are e i arrows starting at the i - t h  point of the row. This gives an 
irreducible graph (cf. [1]). Hence the fl-shift 22~ has unique maximal measure. 

One sees that, due to the identifications, only one of the 2n rows has 
remained. In the next more complicated case we consider the situation where 
there are two remaining rows. 

Consider any piecewise monotonic transformation with n=2.  We assume 
that the end point of J1 is mapped to 1 and that the initial point of J2 is 
mapped to 0. We can reduce all other cases to this case taking away wandering 
sets and fixed points. For example consider the following graph of a n f  We take 
away (x, 1], where x = f (end  point of J1). (x, 1) is a wandering set and 1 is a fixed 
point, f (x)  < x, otherwise (J1, J2) is no generator. 

__ , -  d,__'L J 
71-,,, 7--1 

V V l  I 
x 1 
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Let a a = a  be the expansion of 0 and b 2 =b that of 1. Then b l =  lb  and a 2 =2_a. 
Set rk=r(1, k) and Sk=S(2, k). By (1.1) we identify (A, 2, k +  1)=(A, 1, k) for k > r  1 
and (B, 1, k +  1)=(B, 2, k) for k>=s, and get the graph 

r 1 r 2 r 3 
g �9 

�9 = - O  ~ O -  ~ �9 - - - - -"-"~ �9 ....... a=111211. . .  

b=21212. . .  
(1.3) 

s I s 2 

Also the transformation x~-,f lx + c~ (mod 1) for fl > 1 and 0 < c~ < 1 gives such 
diagrams. Again let a s = a  be the expansion of 0 and b"=b the expansion of 1 (n 
so that c ~ + f l < n < e + f l + l ) .  Then a i = i a  for 2<_i<n and bi=ib_ for l_<i_<n-1.  
Again set rk=r(1, k) and Sk=S(n, k). By (1.1) we identify (A, i , k + l ) = ( A ,  1, k) for 
k>r(i ,  1) and 2<_i<_n and (B, i, k+  1) =(B, n, k) for k>s(i ,  1) and 1 < i n n -  1. 
We get (for n = 4) 

r 1 r 2 

o ~ o ~ o  = �9 . . . . . . .  a=12412. . .  

. . . . . . . .  b=41314. . .  

s 1 5 2 

(1.4) 

We shall denote the points in the first row by c k = (A, 1, k), the points in the last 
row by dk=(B,n,k) ,  and the remaining points by e z , . . . , G _  ~. Set A(i,j)  
={Ck: i <=k <=j} (A(i, oo)= {Ck: i <=k}) and B(i , j )= {dk: i <=k <=j}. 

Hence in the cases we want to consider in this paper we have 
D={Ck, dk, e / k > l , 2 < j < n - 1 }  (for n = 2  there are no ej) and M has the fol- 
lowing arrows 

Ck--*Ck+l, dk---~dk+ 1 ( k > l )  

crl+...+r~-+drk and ej for arl+...+rk<j<brk_ 1 (k=>l) 
(1.5) 

ds~+...+s--+cs~ and ej for as~_l<j<bsl+...+s~ ( k > l )  

G-~c l ,d~  and ej for 2 < j < n - 1  (2<_k<_n-1). 

Furthermore by (1.1) we can identify (u, v>0)  

Cpq_k =Cq+kVk ~ 1, if a ; a =  aq a, p = r  1 + ... +r,,, q = r  t +. . .  +G 
(1.6) 

dp+k =dq+kVk >= 1, if crPb= erqb, p =s  1 + ... + s,, q = s  1 + ... + G. 

The two Z M arising from M with and without identifications are then isomor- 
phic. 
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For  the r i and si, which denote the lengths of  initial segments of  v b (1 _< v _< n 
- 1 )  in a and of  u a  ( 2 < u < n )  in b__ respectively, we have the following lemma. 
Remark  that 

a__,b_eZf, which becomes {x_eZ+ :a<crkx<bVk  >O}. (1.7) 

L e m m a  1. There are maps P, Q" N--~Nw{0} ,  such that 

r k = s ~ + . . . + s v ( k ) + l  

sk = r  1 -~ ... -k rQ(k) q- 1 

for k > l 
(t.8) 

for k > l. 

Proof We prove only the first statement. Suppose that  1 +s 1 + ... +s  m <rk< 1 
+ S l + . . . + S m +  1 for some m. We have arl+...+r~_l+~=bj 1 for l < j  __< rk --1, 
art+...+~k<br~_ 1 and bs,+...+~m+l=al_l for 1 <_l<--Sm+ 1 --1 by definition of r k, s,,. 

Setting j = s  1+. . .  + s ~ + l + l  we have because r k - s  1 -  ... - s  m-l__<sm+ 1 - 1  
a~t+... + . . . .  + ~ l + . . . + ~ + l + l = a l _ l  for l<_l<_rk--Sl--.. .--Sm--2 ( ~ j < l ~ - - l )  and 

art+...+~k<ark st-.., sm 2' 
If  rk--Sl - - . . . - -Sm--2=O, we have a~t+...+~ < a o = l ,  a contradict ion,  and 

c~,.t+...+ . . . .  +~l+"+s~+2a<_a,  a contradict ion to (1.7), in case of  r k - s ~ - . . . - s  ~ 
- 2 > 1. The lemma is proved. 

This l emma shows that, if an ar row goes from B(1, oe) to % then i = s k = r  ~ 
+ ... +rer 1 and hence by (1.5) and i - 1 = q  + ... +re(k) there is an ar row from 
the point  c~_ 1 before c~ to B(1, o9). This will be used several times in the sequel. 

We want to describe another  thing which will be important ,  namely how one 
can regain a_ and b_ from M. This can be done by induction, a 0 = 1, bo=n. r~ > 1 
and s ~ > l  is a contradict ion to (1.8). Hence suppose q = l .  Then al is the 
number  such that there are arrows Cx--, e~ for a~ < j  < b o in (1.5). If  ao... ap_ ~ and 
bo... bq_ 1 are already determined, where p = r ~ + . . .  + r~ + 1 and q = s i -[- ... ~- Sk 
+ 1  (the above step is for i = 0  and k=O), r ~ + l > s l + . . . + s k + l  and s k + l > r x + . . .  
+ r i + l  is again a contradict ion to (1.8). Supposing r~§  we 
have by the definition of ri+ 1 that  ap...ap_2+ . . . .  =bo.. .b . . . .  -2,  which is already 
known, and ap_,+~,+, is the number  such that there are a r r o w s  Cr~+...+r~+---~ej 
for ap_l+ . . . .  < j < b  . . . .  -1 in (1.5). 

w 

To apply the above theorem we have to divide M into irreducible subgraphs. If 
M is reducible we can divide D into two disjoint subsets D 1 and D 2 such that  
there may  be transit ion from D1 to D2, but not  f r om/ )2  to D~. D z is not  empty. 
Suppose q~D 2 and l is the smallest integer with this property.  Then 
A(l, oo)cD2,  because there is no transit ion from D 2 to D 1. If  there is no ar row 
from A(1, oo) to B(1, or), then D 2 =A(1, 00) has spectral radius 1 and hence we 
can take it away. We assume that there is such an ar row and hence a dm~D 2. 
Again let m be the smallest integer with this property.  As above B(m, o o ) c D  2 
and D2=A(1 , ov)wB(m, oe). 
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Let  2 0 be the largest  real  so lu t ion  of  21+m--21--Rm=O and  M 2 = M / D  2. We 
have 

L e m m a  2. r ( M 2 ) ~  J~o. Equality holds, iff there are i, j, such that 

r l + . . . + r i _ ~ = l - 1  , s l + . . . + s j _ l = m - 1  and 
(2.1) 

S j = S j + I - - . . . - - 1  ~ r i = r i + l . ~ . . . - ~ m .  

Proof W e  can assume tha t  there  a re  a r rows  arr iv ing at  c t and  dm. If  not,  let 1' > l 
and  m'>m be the smal les t  integers,  such that  there  are a r rows from B(m, or) to 
Cr, and  f rom A(l, o0) to din,. Then  we can never  re turn  f rom A(l', oo)wB(m', 00) to 
c t . . . .  , c v_ ~ and  to d m, ..., dm,_ t and  hence we can take  away  this poin ts  from 
D 2 wi thout  changing  the spect ra l  rad ius  of  M 2. Hence,  if we have p roved  the 
resul t  with this a ssumpt ion ,  r(M2)__<20<20, where  2 o is the largest  so lu t ion  of 
2V+m'--2V--2m'=0.  NOW we assume tha t  there  are  a r rows ar r iv ing  at c~ and  

dr,, i.e. there  a re  i, j ,  such tha t  l = s, = ra + . . .  + r i_ 1 + 1 and  m = r~ = s l  + . . .  + s t_ 1 
+ 1 for some u, v (cf. L e m m a  1). I f  now (2.1) is satisfied, we have a z +ma_= crla_ and 
aZ+~b-amb,_- _ i.e. ck+,,=c k for k>_l_ and  dk+z=dg for k>m= (cf. (1.1)). We  get the 
fol lowing g raph  for M 2. 

f 
m poin ts  

1 po in ts  

(2.2) 

Hence  the charac te r i s t ic  equa t ion  for M 2 is 2 l + m -  2 l -  2 m= 0 and  r ( M 2 ) = 2  0. 

If  (2.1) is not  sat isfied we have  rk>mVk>i  and  Sk>=IVk>j, i, j as above  
(otherwise there would  be t rans i t ion  f rom 1) 2 to D1) and  there  is at  least  one 
rg(g>i) or Sh(h>j) with r g > m ( ~ r g > l + m  because  of  (1.2)) or  Sh>l(~Sh>I+m 
because  of  (l.2)). We  show that  M 2 has  then a spectra l  rad ius  s tr ict ly less than  

~o. 
F i rs t  we compu te  the spectra l  r ad ius  of  M z for the case rk=mVk>i ,  s~ 

=IVk>=j, k ~ h  and  sh=m+l. As above  (2.2) we get the d i a g r a m  ( ident i f icat ions 
for a "+~ a=a~ a and c72rn+(h-j+ 2 ) l b = f f 2 m + ( h - j +  l ) lb )  

e ~  rn points 

. . . . . . . . . . . . .  

I [ I+m I 

W e  get the  charac ter i s t ic  p o l y n o m i a l  

P(2) = 2 (h-~+ 2 ) / +  2m __ ~b(h--j+ 2 ) l + m  __ 2(h- - j+ 1) I+  2m 

h--j  h--j  
- -  2 ) ' ( h - - J - - f + 2 ) l + m - - ' ~ l - - l +  Z 2 ( h - - J - - f + l ) l + m  

f = l  f = l  

~- 1 _~,~(h--j+ l)l+ 2m 

= )~(h -- j + 1)l + m (z~l + m __ 21 __ 2rn) _~/~l + m __ •l. 

(2.3) 
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It is easy to see that  P ( 2 ) > 2 ~ > 0  for all 2 > 2  o. Hence the largest solution of  
P ( 2 ) = 0  is less than 2o, i.e. r ( M 2 ) < 2  o. The same argument  holds if r g = l + m  
instead of s h = m + l .  For  the general case we can find a minimal  g > i  or a 
minimal  h > j  such that  r g > l + m  or S h > l + m  respectively. We consider the 
second case. The first one is similar. Denote  the matrix corresponding to (2.3) by 
M h (without identifications). We show r(M2)<=r(Mh). Let N~ and ~r~ be the 
numbers  of blocks of length k admit ted by M 2 and M h respectively and 
beginning with x ~ D  2. It  suffices to show II M~ II1 = sup X~ < 2 I[ M~ I11 = 2 sup N~. 

x x 

To this end set R,  = r 1 + . . .  + r,,  S~ = sl + . . .  + sv and D' = {CRy+ 1, 
�9 ~ N k, if x~D' .  Let x = d s ~ + l  ds~+l u > i , v > j } .  We show by induct ion that  N k <  ~~ 

(the case X=CR,+I is similar). Cancelling the first t :=s~+ 1 elements, which are 
x _ _  y z equal in all ME-blocks beginning with x, we get N k - - N k _ t + N k _ t ,  where y 

=ds~+~+l~D' and z = c  . . . .  =cRe~+~+leD '  (Lemma 1). Here is a picture of the 
relevant par t  of  M 2. 

.c z 

x x' y 

x ~ x  If  k < t ,  N k = I < N  k. Otherwise, as y , z~D ' ,  we have by induct ion that  
N~_t__< ~Y and " ~~ Nk_ t N i _ t <  Nk_t ,  hence 

N x < N  y . ~~ (2.4) k ~-  k - t  d -  N k - t "  

N o w  we consider the case v + l # h .  The arguments  for v +  1 = h  are the same 
replacing 1 by l+m.  Because s~+ 1 > l  there must  be an arrow in M h from a point  
in B ( S v + I , S , + I )  to c r L e t  x'=dsv+t,  be the first such point  ( t '<l) .  Then 
X / ClCl+ 1 ..Z is an admissible block in M h of length t - l + 2 .  Hence N~ 
_ ~x' > ~c~ ~y ~ct ~z  > ~z - - t '  N k _ t , > N k _ t , _ t + l = N k _ t ,  because 1 >0 .  Tog-  - - N k _ t , + l = N k _ t , + N k _  t and = 
ether with (2.4) we have ~x x N k > N k. N o w  let x = ds, + 1 +we D'. Then (2.4) is proved 
as above with t=s~+ 1 - w  and the same y, zeD' .  Therefore Nk<_2x sup Nk .~z For  

z 

x e D '  this follows from N k < ~x N k. This implies sup N~ =< 2 sup N~. Hence we have 
r(Mz)<=r(Mh)<2 o and the lemma is proved, x 

N o w  we consider the case (1.3) and the case (1.4) only, if E = { ( A , i ,  1) 
= (B, i, 1): 2 _< i _< n -  1 } = {e2, e3, ... , e ,_ 1} is an irreducible subset of  M. We can 
consider the two rows D \ E  for themselves (there is no transit ion back to E) and 
D 1 and D 2 are subsets of D \ E .  

Recall A( i , j )={ck :  i < k < j }  and B( i , j )={dk:  i < k < j } .  In the following we 
shall identify c k with its index k and similar for d k. It will be always clear, 
whether k is c k or d k. We have D 1 =A(1 ,  I - D u B ( I ,  m - 1 ) .  Set M 1 = M / D I .  

L e m m a  3. r(M1) > 2 o oi" = 1. r(M1) = 2 o i f f  there is an integer t with (t + 2) m > 1 > (t 
+ l ) m  and, setting q = l - ( t  + l ) m  and p = ( t  + 2 ) m - 1  (i.e. p + q = m ,  (p+q) ( t  + l) 

+ q = l), i f f  there are i, j such that r I + . . .  + r i_ 1 = P - 1, s 1 + . . .  + s j_ 1 = q - 1 and r i 
=ri+t+  1 =q ,  ri+ 1 = r i + 2 =  ... = r i + t = p + q ,  s j = p  and r ( M l / A ( 1 , p -  1)uB(1, q -  1)) 
= 1 (or  the same with the roles o f  m and l, r k and s k exchanged). 
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Proof Let il~A(1, l - 1 )  be the smallest point, where an arrow from B(1, m - 1 )  
arrives, and j ~ B ( 1 ,  m - 1 )  the smallest point, where an ar row from A ( 1 , / - 1 )  
arrives. Let  j2EB(1, m--1)  and i2~A(1, l - 1 )  be the smallest points, where these 
arrows start to i I and j~ respectively. We can take away A(1, i a -  1) and B(1,j~ 
- 1 ) ,  because we can never return to these points. I f  i 2 < i1(J2 <Ja) we have taken 
away i 2(]2) and also the ar row starting there. We take now the earliest point  in 
B(jl , m -  1) (A(il, l -  1)), where an ar row from A(1, l -  1) (B(1, m - 1)) arrives, and 
call it again Jt  (i0. We get also a new i 2 (J2). If  i 1 __< i 2 and Jl <J2 and there is no 
other  a r row arriving in A(il,iz) from B(1 ,m-1)  or in B(jl,j2) from A(1,m-1) ,  
then A(il,i2)voB(ja,j2 ) is an irreducible subset of  D 1 with spectral radius 1 (the 
corresponding shift space is a periodic orbit). Hence we can take away this set. 
N o w  take for i~,jl the earliest points in A(i 2 + 1, l - 1 )  and B ( j 2 +  1 , m - 1 )  re- 
spectively, where arrows arrive as above and repeat this procedure.  There are 
two cases. We reach the points  c z_ 1 and d m_ 1 without  having found another  
ar row from B ( 1 , m -  1) into A(il,i2) or from A(1, I -  1) into B(jl,j2). Then r(Ml)  
= 1. Or  we find i~,jl,i2,j2 (we choose ia,jl minimal  and for these we take the 
smallest i2,j2, where arrows go to j l , i l  respectively) and a j3EB(jl,j2) 
(j3sA(il,i2)), we choose again minimal, and an i36A( i l , l -1 )  (i3eB(j~,m-1)) 
such that  there is an ar row from i 3 to J3- We do not  consider the case in 
brackets. It is similar and corresponds to the result with the roles of  m and l, r k 
and s k exchanged. Fur the rmore  M/A(I,  i t -  1 ) w B ( 1 , j a -  1) has spectral radius 1. 

We prove J3 =J~. Suppose Ja >J l .  J3 is the end point  of  an arrow, hence J3 = rk 
=s~ + ... +se(k)+ 1 for some k (cf. (1.2) and L e m m a  1). Hence at J a - 1  = s  x + ... 
+Sp(k) there begins an ar row ending at i4~A(1,1-1) say. i4>il,  otherwise we 
have a contradict ion to the minimali ty of  i~. If  i 4 = i~ we have a contradict ion to 
the minimali ty of  J2. Hence i 4> i l .  As above there is an ar row from i 4 -  1 to 
B(1, m - 1 ) .  If  this point  is not  i 2, we get a j3~B(jl,j3), J'3 <J3, as end point  of  the 
ar row and this contradicts  the minimali ty of  j3. We have the picture 

i 1 i 2 i/. i 3 
�9 "- . . . . . . .  ----~0 - - -~0  ~ . . . . . . . . .  "'" ---~0 

Jl J3 J2 

Set P = a o ax. . .  a~_ 2 and Q =bo b~... bj~_2. We have no arrow from A(ix, i 2 - 1 )  
to B(1,m-1) ,  because this is either a contradict ion to the fact that  no ar row 
goes from A(i 1, i2) to B(1,jI - 1) or to the minimali ty of i  2 or  to the minimali ty ofja.  
Hence a~_~ ... a~_~ is the initial segment ub o ... b h_ 2 =uQ of_b" for some u with 
1 <u<_n-1 (u=  1 in case (1.3)) (cf. (1.2)). Using again (1.2) and the fact that  no 
ar row goes to E we get that  a= P u Q ( v - 1 )  ... and b = Q v P u Q . . ,  vPuQvP(u 
+ 1 ) . . .  for some v with 2 < v < n  ( v = 2  in case (1.3)). Hence a J~-~- j~+l  _b= 
Q v P ( u +  1)... >_b, a contradict ion to _b~S] (cf. w 

Therefore J3 =Jl" We get the picture 

i 1 i 2 i 3 
�9 _----~ . . . . . .  �9 . . . . . . . . . . . . .  . ~ � 9  2j~+w points 

(2.5) 
i~ points 

Jl J2 



Maximal Measures for Simple Piecewise Monotonic Transformations 297 

The characteristic equat ion for (2.5) is 2 2 J l + i ~ + w - - , ~ J ~ + w - - l = O .  As (2.5) is a 
subgraph of  MI ,  Jt + il - 1 =J2 < m -  1 and i 1 + 2jl  + w -  1 = i a _<_ l -  1. Hence the 
largest solution of  the above equat ion is greater than or equal to )~0 and hence 
r(M1)>)~ o. Equali ty holds, iff i 1 + J l  =m,  i 1 + 2 j l  + w =  l and there are no more  
arrows than indicated in (2.5). If  w = 0  we have the picture 

Jl Jl 

i 1 

If  w > 0 there are arrows going from A(i 2 + 1, i 3 - J l )  to B(1, ~) ,  which must  go to 
O 2 in case of  equality. These arrows must  end at d,,~D 2, because, if one of  them 
ends at a later point, it can end earliest at d~+ m (from d m to d~+m_ 1 there is an 
initial segment of_a) and hence A ( i  2 + 1, i 3 - - J l )  must  contain a block of  length l 
+ m  (cf. (1.2)), which is impossible (i3<l). Hence A ( i 2 + l , i 3 - j l  ) consists of t 
initial segments of  b, each of length m, for some t, i.e. w = tm. 

Set p=i~ and q=Jl (we get p + q = m  and (p+q)( t+ 1 ) + q = l ) .  The properties 
about  r k and s k in case of  equality are easily deduced. 

F r o m  Lemmas  2 and 3 we get 

Theorem 1. In the case n =2, X] has more than on maximal measure, iff 

a = P 1 Q 1 X 1 X  ... 1 X I Q 1 X 1 X 1 X  ... and 
t t imes  

b= Q2P2 Y2 Y2 Y. . . 

or vice versa, where X = Q 2 P  and Y = P 1 Q 1 X 1 X  ... 1X1Q and P and Q are blocks 
such that M / A ( 1 , p - 1 ) w B ( 1 ,  q - 1 )  has spectral radius 1 (p=length of 2P, q 
= length of 1Q). In this ease there are exactly two ergodic maximal measures. 

Proof This follows immediately from the lemmas. Choose  suitable blocks P and 
Q and add initial segments of l b  and 2a  respectively, according to the equations 
for r k and s k in the case of  equality in Lemmas  2 and 3 to get a and b. In no 
other case it can happen that r(M~)=r(M2). 

In  this case of  more  than one maximal  measure one sees that M 2 is irreducible 
(cf. the p roof  of L e m m a  2) and that  M~ consists of irreducible parts, all with 
spectral radius 1, except one, which has spectral radius equal to r(M2)= r(M) (cf. 
the p roof  of  L e m m a  3). N o w  apply the theorem in w There is at least one 
maximal  measure on s and on SM2, because they are shift spaces with finite 
alphabet,  hence expansive. 

Corollary 1. I f  in the case n = 2  the graph o f f  is symmetric with respect to (1/�89 
then f has unique maximal measure. 

Proof In this case we have a i = 1, if b~ = 2 and a i = 2, if b i = 1. This implies r k ~ S k 
for all k and hence l=m in the construct ion of D a and D 2 a t  the beginning of  w 
The result follows from Theorem 1. 
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Corollary 2. I f  in the case n = 2 f/J1 and f / J2  are linear, then f has unique maximal 
1Tleasure. 

Proof If not, we have by Theorem 1 that a=P1Q1X ... 1X1Q1X1X ... and b 
=Q2P2Y2Y... Suppose f /Jl  has slope 2 and f/J2 has slope #. Applying f to a 
subinterval of J~ or J2 means to multiply its length by 2 or # respectively. The 
isomorphism ~0 between (I,f) and (1;f, a) is order preserving, hence intervals in 
s  (with respect to the lexicographic ordering) correspond to intervals in I. If 
[_x,y] is an interval in 2 f  and Xo=y 0 (i.e. (p-l([x_,y])~J 1 or  J2), then denoting 
the length of ~p- *((Ix, y]) c I  by ][_x,y]] we have I~[_x,_y]l = 2 [[_x,y]], if x o =Yo = 1 
and --/~l[x,__y]l, if Xo=Yo=2. Set c~=2"S, where u is the number of 1 and v the 
number of 2 in P and let fl be the same number for Q. We consider the following 
intervals 

and 
R = [~p+2q- 1 +t(p+q)a, lb ]  = [1X1X ..., 1X2Y2 Y...] 

S = I-2a_, cg p + q - 1  b] = [2 Y1X1X .... 2Y2Y...], 

where p=leng th  of 2P and q=length  of 1Q. Set r=lR] and s=[S[. 

~rP+qR=RuS, i.e. r(21.tc~fl)=r+s 

c r p + 2 q + t { p + q ) S = R u S ,  i.e. s ( 2 # o ~ f i ) t + 1 2 f l = r + s .  

From this we get because of r + 0 and s 4= 0. 

(~ ~ fl),* ~ ,z f l-( ,~ ,t~ fl),,z f l -  1 =0 .  (2.6) 

Now consider the intervals 

F = [er 3p+ aq- 1 b_, a p+q- ~ a] 
= [X~[.]INIQ2Y2Y...,_ 1XIX...~ 1X, 1QIX1X.. .]  

G = [er 2p+2q- 1 b, cr p+ 2~-~ +t(p +q)a] = [ IX1X. . .  1X1QZY2Y..., 1X1X.. .] 

H = [~r p+q- 1 ar o "2p+ 24-1 b] 

= [1,X!X... 1X1Q1X1X... ,  1X1X.. .  1X 1Q2Y2Y...] 
[ "i 

and set again f =  IFI, g =  IG] and h =  IHI. 

~q+t(P+q)F=G, i.e. f(2#o~fl)t2fl=g 

~P+qG=FuHuG, i.e. g(21.t~fl)=f +h+g. 

From this we get 

and together with (2.6) we have h--0, a contradiction, because 
distinct end points. The corollary is proved. 

~o- I(H) has 
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Theorem 2. The transformation x~--,fix+c~(mod 1), f i >  1 and 0__<e< 1, has unique 
maximal measure. 

Proof. The n u m b e r  n of  in tervals  di is so tha t  c~+fl<n<~+fi+ 1. n = 2  is a 
special  case of Coro l l a ry  2. F o r  n > 3  set E={(A,i ,  1)=(B,i, 1): 2 < i < n - 1 }  
= {e 2 . . . .  , en_ 1`}. W e  have t rans i t ion  from every e lement  of  E to every e lement  of 
E. Hence  for n > 4 the i r reducib le  subset  of  D conta in ing  E has  spectra l  rad ius  
> n - 2 > 2 and  the remain ing  par t  of D has spectral  rad ius  < 2 (if it  has  spectra l  
rad ius  equal  to 2 one computes  easily tha t  n = 4 ,  a has to be 13333 ... and  b has 
to be 42222 . . . ,  i.e. f l - -2 ,  c~ = 1, a case which is not  allowed). 

The  case n = 3 remains.  If  E = {e2} is an i r reducible  subset  of D, i.e. the only 
a r row ending at  E is tha t  s tar t ing at  E, then M/E has spectral  rad ius  1 and  so it 
suffices to consider  D\E.  W e  can app ly  L e m m a s  2 and  3. If  there  should  be 
more  than  one i r reducib le  subset  of D \ E  with the same spectra l  rad ius  the 
l emmas  imply  

and 
a_= P u  1 Q u  2 X .. .  ut+ !. X u t +  2 Q u t +  3 X u t  +4 X .. .  

_b=Qv1`  PI) 2 Y v  a Y . . . ,  

where  V 2 - - U l = 1  , Vl--Ut+3=l for i > 3 ,  u 2 - v l = U t + 3 - / ) l  ~ - 1  and  Hi-l)2= - 1  
for i__>3 and  i~=t+3. Otherwise  there would  be t rans i t ion  back  to E. Set u1  ̀= u  
and  v l = v .  Then  v 2 = u + l ,  vi=v for i > 3 ,  Uz=U,+ 3 = v - l ,  ui=u for i__>3 and  i+ t  
+3 .  W e  have four cases (u, v) = (1, 2), (2,3), (1,3), (2,2) ( u = 3  and v = l  are not  
possible,  because  there  is the end of an ini t ial  segment). In  the first two cases one 
can p roceed  exact ly  as in Coro l l a ry  2. The  o ther  two cases are 

and 

~ = P 1 Q 2 X 1 X . . . 1 X 1 Q 2 X 1 X 1 X . . . ,  b=Q3P2Y3Y3Y. . .  

R = P 2 Q 1 X 2 X . . . 2 X 2 Q 1 X 2 X 2 X . . . ,  b=Q2P3Y2Y2Y  .... 

Set R = Ea (p+q)(t+ z)+~- 1 a, 1 b], S = [2 a, o -p+q- 1 b],  U = Eft (p+q)(t+ 1)+q- 1 a ,  2hi ,  
V=[3a_,a(P+~)(t+z)+~-lb] in the first case and  R=Eff(P+q)(t+2)+q-ta_,2b], 
S = [3_a, a p+q- 1 _b], U = [a  (p+~)(t + 1)+q- 1 _a, 1 _b], V =  [2_a, ~(p+q)(t+ 2)+q- 1 _b] in thesec -  
ond  case. Then  

aV+qR:=RwS, 

~(p + q) (t + 1) + q s == Ukd V,, 

tTP+qU:=R~S, 

ff(P+q)(t+ l ) + q r : =  Uk..JV~ 

i.e. flP+~r=r+s, 

i.e. fl(e+q)(~+l)+qs=u+v, 

i.e. flP+qu=r +s, 

i.e. [~{P+q)(t§ l)+ql.)=U Ji- l.). 

W e  get fl(p+q)(t + 1)+q - -  fl(p+q)t +q __ 1 = O. 
N o w  take  F = [a  3p+ 3q b, G p+q a l ,  G = [(7 2p§ 2q b, 0 "(p+q)(t + 1)+q a ] ,  

H = [ap + q _a, a 2 p + 2q _hi in bo th  cases. W e  have 

ff(P+q)t+qf=G, i.e. fl(P+q'+qf=g 

aP+qG=FwHvoG, i.e. fle+qg=f +h+g. 
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We get g(fl(P+q)(t+l)+q-fl(P+q)t+q-1)=hfl(P+q)t+q and  hence h = 0 ,  a contradic-  
t ion as in Corol lary  2. 

Therefore there mus t  be an arrow from D\E to E, say from (A, 1, l -  1 )=c l_  a 
where we choose l minimal .  T h e n  the irreducible subset D 1 of D conta in ing  
EuA(1, l -1)  has spectral radius greater than  or equal to the largest solut ion of 
2 t _ 2 ~ - 1 _  1 =0 .  By L e m m a  2 the spectral radius of D\D 1 is less or equal to this 

n u m b e r  and  equali ty holds only, if D l =  E uA(1, l-1), r k = 1, if r 1 +. . . -+-r  k >l and 
s k = 1 for all k. This  implies a t _a = 222. . .  and  b = 3 a 0 ... a t _ 2 (at - 1 + 1) % . . .  a t_ z 
�9 (al_ 1 + 1)a 0 . . . .  Because of the min imal i ty  o f l a  o ... at_ 1 has to be 122 ... 21. The 
last 1 is because of the arrow to E, the 2's are because a 1 would imply an 
earlier arrow to E and  a 3 contradicts  a t -  1 a > a. Therefore 

a = 1 2 . . . 2 1 2 2 2 . . ,  and  b = 3 1 2 . . . 2 2 1 2 . . . 2 2 1 2 . . . 2 2 1 . . .  - ~ - ,..7_z7_~ ,._VzS__~ ,_ya, y__~ 

We proceed again as in Corol lary  2. Take 

R = E a t - l a ,  l_b], S=[2a_q, atb_b], U = [ a ' a , 2 b ] ,  V=E3a,  b_b ]. 

We have 

aR=UwV, atS=RwS, a U = U u V  and ~rlV=RuS, i.e. 

fir=u+v, ffs=r+s, flu=u+v and  fitv=r+s. 

F r o m  this it follows that  f f - f f - ~ - l = 0 .  Now take F=[crb__,at-la_], G 
=[at b, at a_]. We have crG=[crh, cd a_]. at-iF=G, GcaG and  aG\G=FwRwS, 
i.e. f f - l f = g  and  g([3-1)=f +r +s or f ( f l t - f l l - l -1)=r+s.  Hence r + s = 0 ,  a 
contradict ion.  The theorem is proved. 

An example of a funct ion in the case n = 2 with 2 ergodic maximal  measures 
can be found in part  II of [2]�9 The graph of a funct ion f is constructed there 
such that  a=111212121  ... and  b=2211211211 ... ,  the simplest case of Theo- 
rem 1. It is no t  difficult, to find for every e > 0 an f with these __a and  b such that 
there is a subinterval  K of I, f / K  is l inear  with slope 2, f / I \ K  is l inear  with 
slope # and I~-~l < a  One  sees that  the t ransformat ion  xHflx+c~(mod 1) is not  
far away from having more  than  one maximal  measure.  
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