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On Fatou's Lemma in Several Dimensions 

WERNER HILDENBRAND and JEAN-FRANCOIS MERTENS 

The existence proof of equilibria for economies with a measure space of 
economic agents in [7] is based on a lemma which may be considered as Fatou's 
Lemma in several dimensions. The lemma turned out to be very useful in mathe- 
matical economics, e.g., [6], [8] and [10]. The lemma has first been proved by 
Schmeidler [9]. We give here a different proof which implies an additional result. 

Theorem. Let (0, if, v) be a positive measure space and (fn) a sequence of 
integrable functions of O into Rt+. Suppose lim ~f, dv exists. Then there is an 

n 

integrable function f of O into Rt+ such that a.e. in O,f(co) is adherent in R t to the 
sequence (f,(o9)), and 

I f dv <= lim [. f .  dr. 

Proof. First we assume that (O, o ~, v) is an atomless and complete probability 
space; the general situation is easily reduced to this case as we shall show at 
the end of the proof. 

Notation. /2v(O, if, v) (/2p for short) denotes the /-fold product of the linear 
space Lp(O, ~,  v), p = 1, ~ (Dunford-Schwartz [4, IV.8]), and similarly, bat(O, o ~, v) 
(ba 1 for short) denotes the/-fold product of the linear space ba(O, ~,, v) (Dunford- 
Schwartz [4, IV.8, p. 296]). 

It is well known that the dual of the Banach space/2~o, where every factor 
space is endowed with the sup-norm topology, is isomorphic to ba t . The product 
topology on ba t, where each factor space ba is endowed with the weak topology 
a(ba, L~), is denoted by at(ba, Loo). Finally, the product topology on/Ja, where 
each factor space L 1 is endowed with the weak topology a(Lt, L~), is denoted 
by al(L1, Lo~). 

Let p,(E)= ~f, dv, E~o ~ n = l ,  .... 
E 

Clearly, the Rl+-valued measure #, belongs to bd. Since the sequence (#,(O)) n 
is bounded, the Theorem of Alaoglu (Dunford-Schwartz [4, V.4, Th. 2, p. 424]) 
implies that the subset {#1, #2, ..-} in bd is relative at(ba, L~o)-compact. Con- 
sequently, the sequence (p,) has a a~(ba, L~)-adherent point g6ba l. Clearly, 
#=>0 and 

p(O) = lim I f .  dr. (1) 

According to a well-known result (Yoshida-Hewitt [11, Th. 1.23, p. 53]) the 
positive measure peba t can be written in the form 

#=#c+#p ,  #c, #pcba t, P~, #v_>O, 
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where #~ is countably additive and #p purely finitely additive. Clearly, each 
coordinate of the measure #~ is dominated by the measure v. Thus, let g: O ~ R ~ 
be a Radon-Nikod)m derivative of the countably additive part gc with respect 
to v. We have by (1) 

~ g dv=,Uc(f2) < l~(f2)= lim ~ f ,  dv. 

Thus, 
g dv < lira ~f. dr. (2) 

Since #p(~?) may be greater than zero, g is, in general, not aI(L1, L~)-adherent 
to the sequence (fn). However, according to Yoshida-Hewitt [11, Th. 1.22, p. 523, 
there exists a countable partition (BS~N of ~2 such that #p(BS=0 for every ieN. 
This clearly implies that in IJ,~(Bi, ,~  c~ Bi, v lBi) the restriction g lBi is al(L1, L~)- 
adherent to the restricted sequence (fnlB3 for every ieN. 

Now we fix a set B~ and consider for every n =  1 . . . .  the set 

An= {f~ IBm, f~+j[ B~,...). 

The restriction gIBi is al(L,, L~o)-adherent to every A n and hence to every con- 
vex hull co A, of An. But since a strongly closed and convex set is also weakly 
closed (Dunford-Schwartz I-4, V.3.11, Th. 13, p. 422]) there exists a sequence (gn), 
where gneco An, converging strongly to gLBz. Then there exists a subsequence of 
(g,) converging a.e. to glBi (Dunford-Schwartz 1-4, 3.60), Th. 3, p. 122 and 6.13(a), 
Cor. 3, p. 150]). Hence, without loss of generality, we can assume that lim gn(co)= 
g(o)) a.e. in Bi. Now we shall prove 

a.e. in f2, g(co)eco adh( f . )+  RZ+. (3) 

Since g,(co)eco {f,(~o),f,+l(co), ...} we have according to a result of Caratheor- 
dory (e. g., Eggleston [5, p. 34]) 

I 

F, i '  6, y,, 
i = 0  

l 

where 6~,>0, Z ai, =1 and {yO, ...,/,}= {L(co),L+l(o~), ...}. 
i = 0  

In order to prove (3) we can assume without loss of generality that the sequen- 
6, = 3. Clearly, we have 3 i > 0 ces (3i,), ( i=O,. . . ,  l) are convergent. Thus, let lim i i 

1 n 

and ~ 3i= 1. 
/ = 0  

_ " ~ 3 i  . i ,  ( i = 0 ,  t )  Since 3in->0, y~,>-0 and lim gn(co)=g(co), the sequences t nYnJ,=l .... "-', 
n 

are bounded and hence, we can again assume without loss of generality that 
lim 3~n Y*n exists (i = 0, ...,/). Thus, 6~> 0 implies lim y~, exists. Now, 

l 1 l 

hm 3, Yn >= lim yi n. 3.yn= Z E 3' g ( m ) = l i m g n ( e ) ) = l i m ~  i i �9 i i 
n i = 0  i = 0  n i = 0  

~ i > 0  
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According to the definition of y~ we have lim yi.eadh (f.(co)). Hence, 
n 

l 

g (co) > • 3 i lira y~ ~ co adh (f. (co)), 
i = 0  n 

6 i > 0  

which proves (3). 

The function g which has properties (2) and (3), will now be altered to a func- 
tion which has the required properties. It is not difficult to show that the set 
G = {(co, x)~f2 x RZlx~co adh (f, (c0))} belongs to the product a-algebra Y |  ~(R'), 
where M(R z) denotes the Borel sets of R t. 

In fact, the following results are known (see Debreu [3, (5.8) and (5.10)]): 
(i) if H belongs to f f  | N (R *) and v is a vector in R ~, then the functions Sv of O 
into R, defined by Sv(co)= sup {v. x[(co, x)eH}, is measurable; (ii) if the subset H 
in f2 x R l is such that the sections H(co) = {xeRl[(co, x)eH} are compact and con- 
vex, then the measurability of the functions Sv for every v~R t implies that H 
belongs to o~| 

Consequently, if H belongs to ~ ,~ |  l) and if all H(co) are compact, then 
the set {(co, x)eco H(co)} belongs to f f  | ~ (Rt). Since the set adh (f~ (co)) is closed 
and since the set {(co, x)~s x R'lxsadh(f~(co))} belongs to o~ |  follows 
the measurability of the set G. 

Consider the set C = G ~  {(co, x)ef2 x Rtlx<g(co)}. Clearly, the set C belongs 
to f f |  l) and (3) implies v(projo C)= 1. According to a Measurable Choice 
Theorem (see Aumann [-2]), there exists a measurable function f '  of (2 into R ~ 
such that a.e. in f2, (co, f'(co))~ C, i.e., 

a.e. int2, f ' (co)ecoadh(f.(co)) and ~f 'dv<l imSf .dv .  (4) 

Finally, since the measure space (t2, ~,, v) is atomless, we have, according to 
Aumann [-1, Th. 3, p. 2], 

adhfn dv = ~ co adhfn dr, 

where the integral is defined as the set of the integrals of all integrable selections. 
Hence, there exists an integrable function f of f2 into R~+ such that 

a.e. in(2, f ( co )~adh( f , ( co ) )and  ~fdv<l im~f ,  dv. 

Finally, we prove the theorem for an arbitrary positive measure space (I2, ~ ,  v). 
Since the set {co EOlthere is n~N such that f,(co)4: 0} has a a-finite measure, we 
can assume that (f2, ~,, v) is a-finite. Then there exists a countable measurable 

c~ 

partition of f2, f2 = U Ok, where v (Ok) < Oe and fJk is either an atom or atomless. 
k=l 

Since lira Sf, dv is assumed to exist and since f , > 0  there is a vector beR z 
n .Q 

such that for every k = 1,... and every n = 1 . . . .  we have 

~Ldv<=b. 
t2k 
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Without loss of generality we can therefore assume 

lira ~f, dv exists for every k = 1, .... 
n ~Qk 

For every /2k the theorem is either trivial or has been proved above. There- 
fore, l e t f  k be a function of ~k into R l such thatfk(co)eadh(f,(co)) a.e. in O k and 

co 

~fkdv<lim Sf.dv. Define f =  Z f  k, when we have set fk(co)=O for ( D ~  k, 
~k n 1?k k = 1 

Since we have a.e. in ~2,f(co)e adh (f, (co)), according to the monotone convergence 
theorem (Levi) we have 

 fdv= If dv 
I? k = l  ~ 

and hence, 

Since 

we have 

oo 

5fd =< 2 lim I f.dv. 
1? k =  I f~k 

q q 

E l i m  ~f, dv=l im Z ~f, dv<l im I f . d r  
k = l  1?k k = l  g2k n 17 

~ f d v < l i m  Sf, dv. Q.E.D. 

In the situation where the theorem has been applied one could show that 
for every f which has the properties stated in the theorem one has actually 
~fdv= lira Sf, dr. This motivates the following. 

tl 

Corollary. Assume one has ~ f dv =lim ~ f dv whenever f is a function with the 

properties stated in the theorem. Then the sequence (f,) is relative #(Li,  Loo)- 
compact and every aZ(L1, Loo)-adherent point g has the property: a.e. in ~2, g(co)e 
co adh(f,(co)). 

Proof. We show that the closure of {fl" v, f2" v, ...,} in (ba l, at(ba, L~o)) con- 
sists of a-additive measures. Let # be an adherent point of the set {f~. v, ...} and 
let g, f '  a n d f  be as in the proof. Hence, by (1) 

0 < #p(f2)= # (f2)-#c (f2)= lim ~f,, dv -~  g dv. 

The additional assumption in the corollary implies 

lim~f, dv=Sfdv=Sf 'dv<=Sgdv and therefore, 

we obtain #p--0. This proves that the sequence (f,) is relative o -z (L 1, L~o)-Compact. 

Finally, since f ' <  g and S f '  d v = ~ g d v it follows that a.e. in 12, f'(co)=g(co). 
According to (4), g has the desired properties. Q.E.D. 

Remark. If the sequence (f,) is majorized by an integrable function, then there 
is a func t ionf  such that a.e. in O, f(co)eadh(f,(co)) and i f d v = l i m  Sf, dv. Does 
this still hold when (f,) is uniformly integrable? 
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