On Fatou's Lemma in Several Dimensions

WERNER HILDENBRAND and JEAN-FRANÇOIS MERTENS

The existence proof of equilibria for economies with a measure space of economic agents in [7] is based on a lemma which may be considered as Fatou's Lemma in several dimensions. The lemma turned out to be very useful in mathematical economics, e.g., [6], [8] and [10]. The lemma has first been proved by Schmeidler [9]. We give here a different proof which implies an additional result.

Theorem. Let (Ω, \mathcal{F}, v) be a positive measure space and (f_n) a sequence of integrable functions of Ω into R^l_+ . Suppose $\lim_n \int f_n dv$ exists. Then there is an integrable function f of Ω into R^l_+ such that a.e. in $\Omega, f(\omega)$ is adherent in R^l to the sequence $(f_n(\omega))_n$ and

$$\int f \, dv \leq \lim_{n} \int f_n \, dv.$$

Proof. First we assume that (Ω, \mathcal{F}, v) is an *atomless* and *complete* probability space; the general situation is easily reduced to this case as we shall show at the end of the proof.

Notation. $L_p(\Omega, \mathcal{F}, v)$ (L_p^l for short) denotes the *l*-fold product of the linear space $L_p(\Omega, \mathcal{F}, v)$, $p=1, \infty$ (Dunford-Schwartz [4, IV.8]), and similarly, $ba^l(\Omega, \mathcal{F}, v)$ (ba^l for short) denotes the *l*-fold product of the linear space $ba(\Omega, \mathcal{F}, v)$ (Dunford-Schwartz [4, IV.8, p. 296]).

It is well known that the dual of the Banach space L_{∞}^{l} , where every factor space is endowed with the sup-norm topology, is isomorphic to ba^{l} . The product topology on ba^{l} , where each factor space ba is endowed with the weak topology $\sigma(ba, L_{\infty})$, is denoted by $\sigma^{l}(ba, L_{\infty})$. Finally, the product topology on L_{1}^{l} , where each factor space L_{1} is endowed with the weak topology $\sigma(L_{1}, L_{\infty})$, is denoted by $\sigma^{l}(L_{1}, L_{\infty})$.

Let $\mu_n(E) = \int_E f_n dv$, $E \in \mathscr{F}$ n = 1,

Clearly, the R_{+}^{l} -valued measure μ_{n} belongs to ba^{l} . Since the sequence $(\mu_{n}(\Omega))_{n}$ is bounded, the Theorem of Alaoglu (Dunford-Schwartz [4, V.4, Th. 2, p. 424]) implies that the subset $\{\mu_{1}, \mu_{2}, ...\}$ in ba^{l} is relative $\sigma^{l}(ba, L_{\infty})$ -compact. Consequently, the sequence (μ_{n}) has a $\sigma^{l}(ba, L_{\infty})$ -adherent point $\mu \in ba^{l}$. Clearly, $\mu \ge 0$ and

$$\mu(\Omega) = \lim_{n} \int f_n \, d\nu. \tag{1}$$

According to a well-known result (Yoshida-Hewitt [11, Th. 1.23, p. 53]) the positive measure $\mu \in ba^{l}$ can be written in the form

$$\mu = \mu_c + \mu_p, \quad \mu_c, \mu_p \in ba^l, \quad \mu_c, \mu_p \ge 0,$$

where μ_c is countably additive and μ_p purely finitely additive. Clearly, each coordinate of the measure μ_c is dominated by the measure ν . Thus, let $g: \Omega \to \mathbb{R}^l$ be a Radon-Nikodým derivative of the countably additive part μ_c with respect to ν . We have by (1)

$$\int g \, dv = \mu_c(\Omega) \leq \mu(\Omega) = \lim_n \int f_n \, dv.$$

$$\int g \, dv \leq \lim_n \int f_n \, dv. \tag{2}$$

Thus,

Since $\mu_p(\Omega)$ may be greater than zero, g is, in general, not $\sigma^l(L_1, L_{\infty})$ -adherent to the sequence (f_n) . However, according to Yoshida-Hewitt [11, Th. 1.22, p. 52], there exists a countable partition $(B_i)_{i\in\mathbb{N}}$ of Ω such that $\mu_p(B_i)=0$ for every $i\in\mathbb{N}$. This clearly implies that in $L_1^l(B_i, \mathscr{F} \cap B_i, \nu|B_i)$ the restriction $g|B_i$ is $\sigma^l(L_1, L_{\infty})$ adherent to the restricted sequence $(f_n|B_i)$ for every $i\in\mathbb{N}$.

Now we fix a set B_i and consider for every n=1,... the set

$$A_n = \{ f_n | B_i, f_{n+1} | B_i, \ldots \}.$$

The restriction $g|B_i$ is $\sigma^l(L_1, L_{\infty})$ -adherent to every A_n and hence to every convex hull co A_n of A_n . But since a strongly closed and convex set is also weakly closed (Dunford-Schwartz [4, V.3.11, Th. 13, p. 422]) there exists a sequence (g_n) , where $g_n \in co A_n$, converging strongly to $g|B_i$. Then there exists a subsequence of (g_n) converging a.e. to $g|B_i$ (Dunford-Schwartz [4, 3.6(i), Th. 3, p. 122 and 6.13(a), Cor. 3, p. 150]). Hence, without loss of generality, we can assume that $\lim_n g_n(\omega) = g(\omega)$ a.e. in B_i . Now we shall prove

a.e. in
$$\Omega$$
, $g(\omega) \in \operatorname{co} \operatorname{adh}(f_n) + R_+^l$. (3)

Since $g_n(\omega) \in \operatorname{co} \{f_n(\omega), f_{n+1}(\omega), \ldots\}$ we have according to a result of Caratheordory (e.g., Eggleston [5, p. 34])

$$g_n(\omega) = \sum_{i=0}^l \delta_n^i y_n^i,$$

where $\delta_n^i \ge 0$, $\sum_{i=0}^l \delta_n^i = 1$ and $\{y_n^0, \dots, y_n^l\} \subset \{f_n(\omega), f_{n+1}(\omega), \dots\}.$

In order to prove (3) we can assume without loss of generality that the sequences $(\delta_n^i)_n$ (i=0,...,l) are convergent. Thus, let $\lim_n \delta_n^i = \delta^i$. Clearly, we have $\delta^i \ge 0$ and $\sum_{i=0}^l \delta^i = 1$.

Since $\delta_n^i \ge 0$, $y_n^i \ge 0$ and $\lim_n g_n(\omega) = g(\omega)$, the sequences $(\delta_n^i y_n^i)_{n=1,...}$ (i=0,...,l)are bounded and hence, we can again assume without loss of generality that $\lim_n \delta_n^i y_n^i$ exists (i=0,...,l). Thus, $\delta^i > 0$ implies $\lim_n y_n^i$ exists. Now,

$$g(\omega) = \lim_{n} g_{n}(\omega) = \lim_{n} \sum_{i=0}^{l} \delta_{n}^{i} y_{n}^{i} = \sum_{i=0}^{l} \lim_{n} \delta_{n}^{i} y_{n}^{i} \ge \sum_{\substack{i=0\\\delta_{i}>0}}^{l} \delta_{n}^{i} \lim_{n} y_{n}^{i}$$

According to the definition of y_n^i we have $\lim_n y_n^i \in adh(f_n(\omega))$. Hence,

$$g(\omega) \ge \sum_{\substack{i=0\\\delta_i>0}}^{l} \delta^i \lim_n y_n^i \in \operatorname{co} \operatorname{adh}(f_n(\omega)),$$

which proves (3).

The function g which has properties (2) and (3), will now be altered to a function which has the required properties. It is not difficult to show that the set $G = \{(\omega, x) \in \Omega \times \mathbb{R}^l | x \in \text{co adh}(f_n(\omega))\}$ belongs to the product σ -algebra $\mathscr{F} \otimes \mathscr{B}(\mathbb{R}^l)$, where $\mathscr{B}(\mathbb{R}^l)$ denotes the Borel sets of \mathbb{R}^l .

In fact, the following results are known (see Debreu [3, (5.8) and (5.10)]): (i) if H belongs to $\mathscr{F} \otimes \mathscr{B}(\mathbb{R}^l)$ and v is a vector in \mathbb{R}^l , then the functions S_v of Ω into R, defined by $S_v(\omega) = \sup \{v \cdot x | (\omega, x) \in H\}$, is measurable; (ii) if the subset H in $\Omega \times \mathbb{R}^l$ is such that the sections $H(\omega) = \{x \in \mathbb{R}^l | (\omega, x) \in H\}$ are compact and convex, then the measurability of the functions S_v for every $v \in \mathbb{R}^l$ implies that H belongs to $\mathscr{F} \otimes \mathscr{B}(\mathbb{R}^l)$.

Consequently, if H belongs to $\mathscr{F} \otimes \mathscr{B}(\mathbb{R}^l)$ and if all $H(\omega)$ are compact, then the set $\{(\omega, x) \in \operatorname{co} H(\omega)\}$ belongs to $\mathscr{F} \otimes \mathscr{B}(\mathbb{R}^l)$. Since the set $\operatorname{adh}(f_n(\omega))$ is closed and since the set $\{(\omega, x) \in \Omega \times \mathbb{R}^l | x \in \operatorname{adh}(f_n(\omega))\}$ belongs to $\mathscr{F} \otimes \mathscr{B}(\mathbb{R}^l)$ it follows the measurability of the set G.

Consider the set $C = G \cap \{(\omega, x) \in \Omega \times R^l | x \leq g(\omega)\}$. Clearly, the set C belongs to $\mathscr{F} \otimes \mathscr{B}(R^l)$ and (3) implies $v(\operatorname{proj}_{\Omega} C) = 1$. According to a Measurable Choice Theorem (see Aumann [2]), there exists a measurable function f' of Ω into R^l such that a.e. in Ω , $(\omega, f'(\omega)) \in C$, i.e.,

a.e. in
$$\Omega$$
, $f'(\omega) \in \operatorname{co} \operatorname{adh}(f_n(\omega))$ and $\int f' d\nu \leq \lim \int f_n d\nu$. (4)

Finally, since the measure space (Ω, \mathcal{F}, v) is atomless, we have, according to Aumann [1, Th. 3, p. 2],

$$\int \operatorname{adh} f_n dv = \int \operatorname{co} \operatorname{adh} f_n dv$$
,

where the integral is defined as the set of the integrals of all integrable selections. Hence, there exists an integrable function f of Ω into R_{+}^{l} such that

a.e. in
$$\Omega$$
, $f(\omega) \in \operatorname{adh}(f_n(\omega))$ and $\int f dv \leq \lim_n \int f_n dv$.

Finally, we prove the theorem for an arbitrary positive measure space (Ω, \mathscr{F}, v) . Since the set $\{\omega \in \Omega | \text{there is } n \in N \text{ such that } f_n(\omega) \neq 0\}$ has a σ -finite measure, we can assume that (Ω, \mathscr{F}, v) is σ -finite. Then there exists a countable measurable partition of $\Omega, \Omega = \bigcup_{k=1}^{\infty} \Omega_k$, where $v(\Omega_k) < \infty$ and Ω_k is either an atom or atomless. Since $\lim_{n \to \Omega} \int_{\Omega} f_n dv$ is assumed to exist and since $f_n \ge 0$ there is a vector $b \in \mathbb{R}^l$ such that for every k = 1, ... and every n = 1, ... we have

$$\int_{\Omega_k} f_n dv \leq b.$$

11 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17

Without loss of generality we can therefore assume

$$\lim_{n} \int_{\Omega_{k}} f_{n} dv \quad \text{ exists for every } k = 1, \dots$$

For every Ω_k the theorem is either trivial or has been proved above. Therefore, let f^k be a function of Ω_k into R^l such that $f^k(\omega) \in \operatorname{adh}(f_n(\omega))$ a.e. in Ω_k and $\int_{\Omega_k} f^k dv \leq \lim_n \int_{\Omega_k} f_n dv$. Define $f = \sum_{k=1}^{\infty} f^k$, when we have set $f^k(\omega) = 0$ for $\omega \notin \Omega_k$. Since we have a.e. in $\Omega, f(\omega) \in \operatorname{adh}(f_n(\omega))$, according to the monotone convergence theorem (Levi) we have

$$\int_{\Omega} f \, dv = \sum_{k=1}^{\infty} \int_{\Omega} f^k \, dv$$

and hence,

$$\int_{\Omega} f \, dv \leq \sum_{k=1}^{\infty} \lim_{n} \int_{\Omega_k} f_n \, dv.$$

Since

$$\sum_{k=1}^{q} \lim_{n} \int_{\Omega_{k}} f_{n} dv = \lim_{k=1}^{q} \int_{\Omega_{k}} f_{n} dv \leq \lim_{n} \int_{\Omega} f_{n} dv$$

we have

In the situation where the theorem has been applied one could show that for every f which has the properties stated in the theorem one has actually $\int f dv = \lim_{n \to \infty} \int f_n dv$. This motivates the following.

Corollary. Assume one has $\int f dv = \lim_{n} \int f dv$ whenever f is a function with the properties stated in the theorem. Then the sequence (f_n) is relative $\sigma^l(L_1, L_{\infty})$ -compact and every $\sigma^l(L_1, L_{\infty})$ -adherent point g has the property: a.e. in Ω , $g(\omega) \in \operatorname{co} \operatorname{adh}(f_n(\omega))$.

Proof. We show that the closure of $\{f_1 \cdot v, f_2 \cdot v, ...,\}$ in $(ba^l, \sigma^l(ba, L_{\infty}))$ consists of σ -additive measures. Let μ be an adherent point of the set $\{f_1 \cdot v, ...\}$ and let g, f' and f be as in the proof. Hence, by (1)

$$0 \leq \mu_p(\Omega) = \mu(\Omega) - \mu_c(\Omega) = \lim_{n \to \infty} \int f_n \, dv - \int g \, dv.$$

The additional assumption in the corollary implies

$$\lim_{n} \int f_n dv = \int f dv = \int f' dv \leq \int g dv \quad \text{and therefore,}$$

we obtain $\mu_p = 0$. This proves that the sequence (f_n) is relative $\sigma^l(L_1, L_{\infty})$ -compact.

Finally, since $f' \leq g$ and $\int f' dv = \int g dv$ it follows that a.e. in Ω , $f'(\omega) = g(\omega)$. According to (4), g has the desired properties. Q.E.D.

Remark. If the sequence (f_n) is majorized by an integrable function, then there is a function f such that a.e. in Ω , $f(\omega) \in \operatorname{adh}(f_n(\omega))$ and $\int f dv = \lim_n \int f_n dv$. Does this still hold when (f_n) is uniformly integrable?

References

- 1. Aumann, R.J.: Integrals of set-valued functions. Jour. math. Analysis Appl. 12, 1-12 (1965).
- Measurable utility and measurable choice theorem. La Décision, Editions du Centre Nationale de la Recherche Scientifique, 15-26, Paris, 1969.
- Debreu, G.: Integration of correspondences. Proc. Fifth Berkeley Sympos. math. Statist. Probab., p. 351-372. Berkeley: University of California Press 1968.
- 4. Dunford, N., Schwartz, J. T.: Linear operators, part I. New York: Interscience 1958.
- 5. Eggleston, H. G.: Convexity. Cambridge: Cambridge University Press 1958.
- 6. Hildenbrand, W.: On economies with many agents. Jour. of Econ. Theory 2, 161-188 (1970).
- 7. Existence of equilibria for economies with production and a measure space of consumers. Econometrica 38, 608-623 (1970).
- 8. Mertens, J.F.: Upper hemi-continuity of the equilibriumset correspondence. (To appear.)
- 9. Schmeidler, D.: Fatou's lemma in several dimensions. Proc. Amer. math. Soc. 24, 300-306 (1970).
- 10. Games with infinitely many players. Ph. D. Theses, The Hebrew University of Jerusalem.
- 11. Yoshida, K., Hewitt, E.: Finitely additive measures. Trans. Amer. math. Soc. 72, 46-66 (1952).

W. Hildenbrand Universität Bonn Wirtschaftstheoretische Abt. D-5300 Bonn Adenauerallee 24 J.-F. Mertens Center for Operations Research and Econometrics Katholieke Universiteit te Leuven CORE de Croylaan 54 Heverlee, Belgium

(Received June 30, 1969)