Stopping Rules for S_n/n , and the Class $L \log L$

BURGESS DAVIS

1. Introduction

If $(f_1, f_2, ...) = (f_n)$ is a stochastic process a stopping rule for (f_n) will be defined to be a non-defective positive integer valued random variable t such that for every positive integer $k \{t=k\} \in \sigma(f_1, ..., f_k)$, the σ -field generated by $f_1, ..., f_k$. Here we will be concerned with stopping rules for the sequence (S_n/n) where $S_n = X_1 + \cdots + X_n, X_1, X_2, \ldots$ independent identically distributed random variables with finite expectation, investigating the possibility of the existence of stopping rules t for (S_n/n) such that $E(S_i/t) = \infty$. It is proved (Theorem 1) that such stopping rules exist if and only if $E(X_1 \log^+ X_1) = \infty$, where $\log^+ a = \log(a)$ if a > 1, 0 if $a \le 1$. This immediately implies the result of Burkholder in [1] that if $E(X_1 \log^+ X_1) = \infty$ then $E(\sup(S_n/n)) = \infty$. Similar results are proved if (X_n/n) is looked at in place of (S_n/n) .

Since $E|S_n/n| \le E|X_1|$ for all *n*, recent results (see, for example, [4]) on stopping a stochastic process (f_n) to get $E|f_t| = \infty$ are not applicable here, since they require that $\sup E|f_n| = \infty$. The work by Chow, Robbins and others on stopping S_n/n to maximize $E(S_t/t)$ has dealt with essentially different (although obviously related) questions than this paper.

From now on "t is a stopping rule" will mean that t is a stopping rule for the particular process under discussion. Note that since $\sigma(S_1, S_2/2, ..., S_n/n) = \sigma(X_1, X_2/2, ..., X_n/n) = \sigma(X_1, ..., X_n)$, the stopping rules for the processes (S_n/n) , (X_n/n) and (X_n) are the same.

2. Some Inequalities Concerning S_n/n

Let $f(n) = \sum_{k=1}^{n-1} (n-k)/k$. By approximating f(n) with an integral it is seen that $\lim_{n \to \infty} f(n)/((n+1)\log(n+1)) = 1$. Thus there is a positive number which will be called ε such that

$$f(n) > \varepsilon(n+1)\log(n+1), \quad n=2, 3, ...$$

In this section X will be a random variable with finite expectation and $X_1, X_2, ...$ will be independent random variables each with the same distribution as X. B will stand for max(1, E|X|), and if Y is a random variable Y^+ will designate max(Y, 0).

By a well known inequality, if $\lambda > 0$ then $P(\sup |S_n/n| > \lambda) \leq E|X_1|/\lambda$. For a proof see the introduction to [3]. Thus

$$P(\sup_{n} |S_n/n| \ge 2B) \le \frac{1}{2}.$$
 (1)

B. Davis:

Let
$$A_n = ((X_n/n) - 4B)^+ I(\sup_{k \le n} |S_k/k| \le 2B)$$
. Then, since $X_n/n \le S_n/n + |S_{n-1}/(n-1)|$,

$$A_n \leq S_n/n \quad \text{on } \{A_n > 0\}$$
⁽²⁾

Also, since if X_n/n exceeds 4B then at least one of $|S_n/n|$, $|S_{n-1}/(n-1)|$ must exceed 2B,

$$P(A_i > 0, A_j > 0) = 0$$
 if $i \neq j$. (3)

Next a lower bound is found for $\sum EA_k$. Since X_n and $\{\sup_{k \le n} |S_k/k| \le 2B\}$ are independent, (1) implies $EA_n \ge E((X_n/n) - 4B)^+)/2$. Let $p_i = P(4Bi \le X < 4B(i+1))$. Then

$$\sum_{1}^{\infty} EA_{n} \ge (\frac{1}{2}) \sum_{1}^{\infty} E(((X_{n}/n) - 4B)^{+})$$

$$= (\frac{1}{2}) \sum_{n=1}^{\infty} (1/n) E((X - 4Bn)^{+})$$

$$\ge (\frac{1}{2}) \sum_{n=1}^{\infty} (4B/n) \sum_{k=n+1}^{\infty} p_{k}(k-n)$$

$$= 2B \sum_{k=2}^{\infty} p_{k}f(k) \ge 2B \varepsilon \sum_{k=2}^{\infty} p_{k}(k+1) \log(k+1)$$

$$\ge 2B \varepsilon [E((X^{+}/4B) \log^{+}(X^{+}/4B)) - p_{1} 2\log 2]$$

$$\ge 2B \varepsilon [(1/4B) E(X^{+} (\log^{+}X^{+} - \log 4 - \log B)) - 2\log 2].$$

Since $B \le 1 + E|X|$, this completes the proof of the following lemma, noting that $\log^+ X^+ = \log^+ X$.

Lemma. There are positive constants, K, C such that if X is an integrable random variable and X_1, X_2, \ldots are independent random variables each having the distribution of X then $\sum EA_n \ge CEX \log^+ X - KE|X| \log^+ E|X| - K$.

3. Construction of Stopping Times

Suppose the conditions of the lemma are satisfied and that $E(X \log^+ X) = \infty$. Then $\sum EA_n = \infty$, and thus if $\{t=n\} = \{A_n > 0\}$, $E((S_t/t) I(t < \infty)) = \infty$, using (2) and (3). Unfortunately t is not a stopping rule since $P(t < \infty) < 1$. Most of the work in proving Theorem 1 below involves changing t slightly to remedy this defect.

Theorem 1. Let X be an integrable variable and $X_1, X_2, ...$ be independent random variables each with the same distribution as X. The following statements are equivalent:

(i) $E(X \log^+ X) < \infty$.

- (ii) $E(S_t/t) < \infty$ for every stopping rule t.
- (iii) $E(X_t/t) < \infty$ for every stopping rule t.

Proof of Theorem 1. (i) \Rightarrow (ii), (i) \Rightarrow (iii) are immediate consequences of the fact that if $E(X \log^+ X) < \infty$ then $E \sup(S_n/n) < \infty$ and $E \sup(X_n/n) < \infty$. See [1], p. 891.

(ii) \Rightarrow (i) Assuming $E(X \log^+ X) = \infty$ a stopping rule t will be constructed so that $E(S_t/t) = \infty$.

148

Let a be a real number such that 0 < P(X > a) < 1. By the lemma,

 $\sum_{k=0}^{n} EA_n = \infty. \text{ Pick integers } 1 = N_1 < N_2 < \cdots \text{ and sets } \phi = D(N_1), D(N_2), \dots \text{ to satisfy, if } R_k = D(N_1), D(N_2), \dots D(N_k),$ (a) D(N) is either $\{X_k > q\}$ or $\{Y_k < q\}$ in 2.3

(a)
$$D(N_j)$$
 is either $\{X_{N_j} > a\}$ or $\{X_{N_j} \le a\}, j = 2, 3, ...$
(b) $\sum_{k=N_j+1}^{N_{j+1}} E(A_k I(R_j)) \ge 1.$
(c) $\sum_{k=N_j+1}^{\infty} E(A_k I(R_j)) = \infty.$

This is possible, because having chosen $N_1, N_2, ..., N_u, D(N_1), ..., D(N_u)$, since (c) holds, N_{u+1} can be picked so that

$$\sum_{k=N_u+1}^{N_{u+1}} E(A_k I(R_u)) \geq 1.$$

Since

either

$$\sum_{k=N_{u+1}+1}^{\infty} E(A_k I(R_u)) = \infty,$$

$$\sum_{k=N_{u+1}+1}^{\infty} E(A_k I(R_u, \{X_{N_{u+1}} > a\}) = \infty$$

or

$$\sum_{k=N_{u+1}+1}^{\infty} E(A_k I(R_u, \{X_{N_{u+1}} \le a\}) = \infty.$$

Pick $D(N_{u+1}) = \{X_{N_{u+1}} \leq a\}$ if the first holds and $\{X_{N_{u+1}} > a\}$ if the second holds but the first doesn't.

Let $\tau = \inf\{n: A_n > 0\}, v = \inf\{n: n \text{ is some } N_i \text{ and } I(D_n) > 0\}$, and let $\eta = \min(\tau, v)$.

 $P(\eta < \infty) \ge P(\nu < \infty) = 1$, since $\sum P(D(N_i)) = \infty$ and the sets $D(N_1), D(N_2)...$ are independent. Using (2) and (3),

$$E(S_{\eta}/\eta)^{+} \ge \sum_{n=1}^{\infty} E(A_{n}I(\eta=n))$$

= $\sum_{j=1}^{\infty} \sum_{k=N_{j}+1}^{N_{j}+1} E(A_{k}I(\eta=k))$
= $\sum_{j=1}^{\infty} \sum_{k=N_{j}+1}^{N_{j}+1} E(A_{k}I(R_{j})) \ge 1 + 1 + \dots = \infty.$

Now let t be the first time n such that $n \ge \eta$ and $S_{n}/n \ge -2B$. Then t is the required stopping rule, since $S_t/t \ge S_\eta/\eta$, so $E(S_t/t)^+ = \infty$, while $S_t/t \ge -2B$ so $E(S_t/t)^- < \infty$.

(iii) \Rightarrow (i) Again suppose that $E(X \log^+ X) = \infty$ and let the notation be as just above. Since $X_n/n > A_n$ on $\{t=n\}$, the same proof shows that $E(X_n/\eta)^+ = \infty$. If t^* is the first time k after η such that $X_k > 0$, then $X_{t^*}/t^* \ge X_n/\eta$ and $X_{t^*}/t^* \ge 0$ so $E(X_{t^*}/t^*) \ge E(X_n/\eta)^+ = \infty$.

Theorem 2. There exist positive constants F, G, H such that if X is an integrable random variable, $X_1, X_2, ...$ have the same distribution as X, and T is the class of all stopping rules then both $\sup_{t \in T} E|S_t/t|$ and $\sup_{t \in T} E|X_t/t|$ are bounded below by $FE(|X|\log^+|X|) - GE|X|\log^+E|X| - G$ and bounded above by $H + HE(|X|\log^+|X|)$.

Proof. sup $|X_n/n| \leq 2 \sup |S_n/n|$, and since

$$E(\sup |S_n/n|) \leq e/(e-1) + e/(e-1) E(|X| \log^+ |X|),$$

due to Doob (see [1], p. 891), H can be taken as 2e/(e-1).

It is no loss of generality to assume $E(X^+ \log^+ X) \ge (E|X| \log^+ |X|)/2$. Thus, if T_N is the first time that $A_k > 0$ or N, whichever comes first, using (2) and (3)

$$E|S_{T_N}/T_N| \ge \sum_{1}^{N} EA_i, \quad E|X_{T_N}/T_N| \ge \sum_{1}^{N} EA_i.$$

From an application of the lemma it follows that G may be taken to be K and F to be C/2.

References

- 1. Burkholder, D.L.: Successive conditional expectations of an integrable function. Ann. math. Statistics 33, 887-893 (1962).
- 2. Doob, J.L.: Stochastic processes. New York: Wiley 1953.
- 3. Gundy, R. F.: On the class L log L martingales, and singular integrals. Studia math. 33, 109–118 (1969).
- 4. Stout, William F., Chow, Y.S.: On the expected value of a stopped stochastic sequence. Ann. math. Statistics 40, 456-461 (1969).

Dr. B. Davis Statistics Department Rutgers University New Brunswick, New Jersey 08903, USA

(Received August 4, 1969)