Stopping Rules for S_{n} / n, and the Class $L \log L$

Burgess Davis

1. Introduction

If $\left(f_{1}, f_{2}, \ldots\right)=\left(f_{n}\right)$ is a stochastic process a stopping rule for $\left(f_{n}\right)$ will be defined to be a non-defective positive integer valued random variable t such that for every positive integer $k\{t=k\} \in \sigma\left(f_{1}, \ldots, f_{k}\right)$, the σ-field generated by f_{1}, \ldots, f_{k}. Here we will be concerned with stopping rules for the sequence $\left(S_{n} / n\right)$ where $S_{n}=$ $X_{1}+\cdots+X_{n}, X_{1}, X_{2}, \ldots$ independent identically distributed random variables with finite expectation, investigating the possibility of the existence of stopping rules t for $\left(S_{n} / n\right)$ such that $E\left(S_{t} / t\right)=\infty$. It is proved (Theorem 1) that such stopping rules exist if and only if $E\left(X_{1} \log ^{+} X_{1}\right)=\infty$, where $\log ^{+} a=\log (a)$ if $a>1,0$ if $a \leqq 1$. This immediately implies the result of Burkholder in [1] that if $E\left(X_{1} \log ^{+} X_{1}\right)=\infty$ then $E\left(\sup \left(S_{n^{\prime}} / n\right)\right)=\infty$. Similar results are proved if $\left(X_{n} / n\right)$ is looked at in place of $\left(S_{n} / n\right)$.

Since $E\left|S_{n} / n\right| \leqq E\left|X_{1}\right|$ for all n, recent results (see, for example, [4]) on stopping a stochastic process $\left(f_{n}\right)$ to get $E\left|f_{t}\right|=\infty$ are not applicable here, since they require that $\sup E\left|f_{n}\right|=\infty$. The work by Chow, Robbins and others on stopping S_{n} / n to maximize $E\left(S_{t} / t\right)$ has dealt with essentially different (although obviously related) questions than this paper.

From now on " t is a stopping rule" will mean that t is a stopping rule for the particular process under discussion. Note that since $\sigma\left(S_{1}, S_{2} / 2, \ldots, S_{n} / n\right)=$ $\sigma\left(X_{1}, X_{2} / 2, \ldots, X_{n} / n\right)=\sigma\left(X_{1}, \ldots, X_{n}\right)$, the stopping rules for the processes $\left(S_{n} / n\right)$, $\left(X_{n} / n\right)$ and $\left(X_{n}\right)$ are the same.

2. Some Inequalities Concerning S_{n} / n

Let $f(n)=\sum_{k=1}^{n-1}(n-k) / k$. By approximating $f(n)$ with an integral it is seen that $\lim _{n \rightarrow \infty} f(n) /((n+1) \log (n+1))=1$. Thus there is a positive number which will be called ε such that

$$
f(n)>\varepsilon(n+1) \log (n+1), \quad n=2,3, \ldots
$$

In this section X will be a random variable with finite expectation and X_{1}, X_{2}, \ldots will be independent random variables each with the same distribution as X. B will stand for $\max (1, E|X|)$, and if Y is a random variable Y^{+}will designate $\max (Y, 0)$.

By a well known inequality, if $\lambda>0$ then $P\left(\sup \left|S_{n} / n\right|>\lambda\right) \leqq E\left|X_{1}\right| / \lambda$. For a proof see the introduction to [3]. Thus

$$
\begin{equation*}
P\left(\sup _{n}\left|S_{n} / n\right| \geqq 2 B\right) \leqq \frac{1}{2} \tag{1}
\end{equation*}
$$

Let $A_{n}=\left(\left(X_{n} / n\right)-4 B\right)^{+} I\left(\sup _{k<n}\left|S_{k} / k\right| \leqq 2 B\right)$. Then, since $X_{n} / n \leqq S_{n} / n+\left|S_{n-1} /(n-1)\right|$,

$$
\begin{equation*}
A_{n} \leqq S_{n} / n \text { on }\left\{A_{n}>0\right\} \tag{2}
\end{equation*}
$$

Also, since if X_{n} / n exceeds 4B then at least one of $\left|S_{n} / n\right|,\left|S_{n-1} /(n-1)\right|$ must exceed $2 B$,

$$
\begin{equation*}
P\left(A_{i}>0, A_{j}>0\right)=0 \quad \text { if } i \neq j . \tag{3}
\end{equation*}
$$

Next a lower bound is found for $\sum E A_{k}$. Since X_{n} and $\left\{\sup _{k<n}\left|S_{k} / k\right| \leqq 2 B\right\}$ are independent, (1) implies $\left.E A_{n} \geqq E\left(\left(X_{n} / n\right)-4 B\right)^{+}\right) / 2$. Let $p_{i}=P(4 B i \leqq X<4 B(i+1))$. Then

$$
\begin{aligned}
& \sum_{1}^{\infty} E A_{n} \geqq\left(\frac{1}{2}\right) \sum_{1}^{\infty} E\left(\left(\left(X_{n} / n\right)-4 B\right)^{+}\right) \\
&=\left(\frac{1}{2}\right) \sum_{n=1}^{\infty}(1 / n) E\left((X-4 B n)^{+}\right) \\
& \geqq\left(\frac{1}{2}\right) \sum_{n=1}^{\infty}(4 B / n) \sum_{k=n+1}^{\infty} p_{k}(k-n) \\
&=2 B \sum_{k=2}^{\infty} p_{k} f(k) \geqq 2 B \varepsilon \sum_{k=2}^{\infty} p_{k}(k+1) \log (k+1) \\
& \geqq 2 B \varepsilon\left[E\left(\left(X^{+} / 4 B\right) \log ^{+}\left(X^{+} / 4 B\right)\right)-p_{1} 2 \log 2\right] \\
& \geqq 2 B \varepsilon\left[(1 / 4 B) E\left(X^{+}\left(\log ^{+} X^{+}-\log 4-\log B\right)\right)-2 \log 2\right] .
\end{aligned}
$$

Since $B \leqq 1+E|X|$, this completes the proof of the following lemma, noting that $\log ^{+} X^{+}=\log ^{+} X$.

Lemma. There are positive constants, K, C such that if X is an integrable random variable and X_{1}, X_{2}, \ldots are independent random variables each having the distribution of X then $\sum E A_{n} \geqq C E X \log ^{+} X-K E|X| \log ^{+} E|X|-K$.

3. Construction of Stopping Times

Suppose the conditions of the lemma are satisfied and that $E\left(X \log ^{+} X\right)=\infty$. Then $\sum E A_{n}=\infty$, and thus if $\{t=n\}=\left\{A_{n}>0\right\}, E\left(\left(S_{t} / t\right) I(t<\infty)\right)=\infty$, using (2) and (3). Unfortunately t is not a stopping rule since $P(t<\infty)<1$. Most of the work in proving Theorem 1 below involves changing t slightly to remedy this defect.

Theorem 1. Let X be an integrable variable and X_{1}, X_{2}, \ldots be independent random variables each with the same distribution as X. The following statements are equivalent:
(i) $E\left(X \log ^{+} X\right)<\infty$.
(ii) $E\left(S_{t} / t\right)<\infty$ for every stopping rule t.
(iii) $E\left(X_{t} / t\right)<\infty$ for every stopping rule t.

Proof of Theorem 1. (i) \Rightarrow (ii), (i) \Rightarrow (iii) are immediate consequences of the fact that if $E\left(X \log ^{+} X\right)<\infty$ then $E \sup \left(S_{n} / n\right)<\infty$ and $E \sup \left(X_{n} / n\right)<\infty$. See [1], p. 891.
(ii) \Rightarrow (i) Assuming $E\left(X \log ^{+} X\right)=\infty$ a stopping rule t will be constructed so that $E\left(S_{t} / t\right)=\infty$.

Let a be a real number such that $0<P(X>a)<1$. By the lemma,
$\sum E A_{n}=\infty$. Pick integers $1=N_{1}<N_{2}<\cdots$ and sets $\phi=D\left(N_{1}\right), D\left(N_{2}\right), \ldots$ to satisfy, if $R_{k}=\widetilde{D\left(N_{1}\right)} \widetilde{D\left(N_{2}\right) \ldots \widetilde{D\left(N_{k}\right)},}$
(a) $D\left(N_{j}\right)$ is either $\left\{X_{N_{j}}>a\right\}$ or $\left\{X_{N_{j}} \leqq a\right\}, j=2,3, \ldots$.
(b) $\sum_{k=N_{j}+1}^{N_{j+1}} E\left(A_{k} I\left(R_{j}\right)\right) \geqq 1$.
(c) $\sum_{k=N_{j}+1}^{\infty} E\left(A_{k} I\left(R_{j}\right)\right)=\infty$.

This is possible, because having chosen $N_{1}, N_{2}, \ldots N_{u}, D\left(N_{1}\right), \ldots, D\left(N_{u}\right)$, since (c) holds, N_{u+1} can be picked so that

$$
\sum_{k=N_{u}+1}^{N_{u+1}} E\left(A_{k} I\left(R_{u}\right)\right) \geqq 1
$$

Since
either

$$
\sum_{k=N_{u+1}+1}^{\infty} E\left(A_{k} I\left(R_{u}\right)\right)=\infty,
$$

$$
\sum_{k=N_{u+1}+1}^{\infty} E\left(A_{k} I\left(R_{u},\left\{X_{N_{u+1}}>a\right\}\right)=\infty\right.
$$

or

$$
\sum_{k=N_{u}+1+1}^{\infty} E\left(A_{k} I\left(R_{u},\left\{X_{N_{u+1}} \leqq a\right\}\right)=\infty .\right.
$$

Pick $D\left(N_{u+1}\right)=\left\{X_{N_{u+1}} \leqq a\right\}$ if the first holds and $\left\{X_{N_{u+1}}>a\right\}$ if the second holds but the first doesn't.

Let $\tau=\inf \left\{n: A_{n}>0\right\}, v=\inf \left\{n: n\right.$ is some N_{i} and $\left.I\left(D_{n}\right)>0\right\}$, and let $\eta=\min (\tau, v)$.
$P(\eta<\infty) \geqq P(v<\infty)=1$, since $\sum P\left(D\left(N_{i}\right)\right)=\infty$ and the sets $D\left(N_{1}\right), D\left(N_{2}\right) \ldots$ are independent. Using (2) and (3),

$$
\begin{aligned}
E\left(S_{\eta} / \eta\right)^{+} & \geqq \sum_{n=1}^{\infty} E\left(A_{n} I(\eta=n)\right) \\
& =\sum_{j=1}^{\infty} \sum_{k=N_{j}+1}^{N_{j+1}} E\left(A_{k} I(\eta=k)\right) \\
& =\sum_{j=1}^{\infty} \sum_{k=N_{j}+1}^{N_{j+1}} E\left(A_{k} I\left(R_{j}\right)\right) \geqq 1+1+\cdots=\infty .
\end{aligned}
$$

Now let t be the first time n such that $n \geqq \eta$ and $S_{n} / n \geqq-2 B$. Then t is the required stopping rule, since $S_{t} / t \geqq S_{\eta} / \eta$, so $E\left(S_{t} / t\right)^{+}=\infty$, while $S_{t} / t \geqq-2 B$ so $E\left(S_{t} / t\right)^{-}<\infty$.
(iii) \Rightarrow (i) Again suppose that $E\left(X \log ^{+} X\right)=\infty$ and let the notation be as just above. Since $X_{n} / n>A_{n}$ on $\{t=n\}$, the same proof shows that $E\left(X_{\eta} / \eta\right)^{+}=\infty$. If t^{*} is the first time k after η such that $X_{k}>0$, then $X_{t^{*}} / t^{*} \geqq X_{\eta} / \eta$ and $X_{t^{*}} / t^{*} \geqq 0$ so $E\left(X_{t^{*} /} / t^{*}\right) \geqq E\left(X_{\eta} / \eta\right)^{+}=\infty$.

Theorem 2. There exist positive constants F, G, H such that if X is an integrable random variable, X_{1}, X_{2}, \ldots have the same distribution as X, and T is the class of all stopping rules then both $\sup _{t \in T} E\left|S_{t} / t\right|$ and $\sup _{t \in T} E\left|X_{t} / t\right|$ are bounded below by $F E\left(|X| \log ^{+}|X|\right)-G E|X| \log ^{+} E|X|-G$ and bounded above by $H+H E\left(|X| \log ^{+}|X|\right)$.

Proof. sup $\left|X_{n} / n\right| \leqq 2 \sup \left|S_{n} / n\right|$, and since

$$
E\left(\sup \left|S_{n} / n\right|\right) \leqq e /(e-1)+e /(e-1) E\left(|X| \log ^{+}|X|\right)
$$

due to Doob (see [1], p. 891), H can be taken as $2 e /(e-1)$.
It is no loss of generality to assume $E\left(X^{+} \log ^{+} X\right) \geqq\left(E|X| \log ^{+}|X|\right) / 2$. Thus, if T_{N} is the first time that $A_{k}>0$ or N, whichever comes first, using (2) and (3)

$$
E\left|S_{T_{N}} / T_{N}\right| \geqq \sum_{1}^{N} E A_{i}, \quad E\left|X_{T_{N}} / T_{N}\right| \geqq \sum_{1}^{N} E A_{i}
$$

From an application of the lemma it follows that G may be taken to be K and F to be $C / 2$.

References

1. Burkholder, D.L.: Successive conditional expectations of an integrable function. Ann. math. Statistics 33, 887-893 (1962).
2. Doob, J.L.: Stochastic processes. New York: Wiley 1953.
3. Gundy, R. F.: On the class $L \log L$ martingales, and singular integrals. Studia math. 33, 109-118 (1969).
4. Stout, William F., Chow, Y.S.: On the expected value of a stopped stochastic sequence. Ann. math. Statistics 40, 456-461 (1969).

Dr. B.Davis
Statistics Department
Rutgers University
New Brunswick, New Jersey 08903, USA

