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Abstract Wiener Processes 
and Their Reproducing Kernel Hilbert Spaces 

G. KALLIANPUR* 

1. Introduction 

In this paper we study properties of Gaussian probability measures on function 
spaces that are closely related to the concept of measurable norm recently intro- 
duced by L. Gross ([2, 3]). We begin by giving in Section 2 a rather simple proof of 
Gross's main theorem on abstract Wiener spaces which brings into evidence the 
important role played by the reproducing kernel Hilbert space (RKHS) in the 
study of Gaussian processes. In fact, broadly speaking, the aim of the present 
paper is to explore the relationship between a Gaussian probability measure 
and the RKHS associated with it. This problem is of particular interest for the 
wide class of Gaussian measures defined on linear topological spaces which 
contain, in the set theoretic sense, the associated RKHS. Abstract Wiener spaces 
belong to this class (as shown by Corollary of Section 2) as do all Gaussian 
processes given on the Banach space C ( T )  of real continuous functions on a 
compact metric space T. The latter processes are considered in Section 3 which 
contains the main results of the paper concerning the supports of Gaussian 
measures. In Section 4, these results, viz. Theorems 3 and 4 are extended to 
arbitrary separable Banach spaces. 

We shall assume that the reader is familiar with the notion of cylinder set 
measure on any locally convex, linear topological space L (see e.g. [3]). An 
equivalent concept is that of the weak distribution in L. Let L* be the topological 
dual of L. 

Definition 1. A weak distribution on L is an equivalence class of linear maps F 
from L* to the linear space M(f2, d(f2), P) of random variables on some probability 
space (f2, d(f2), P) (the choice of which depends on F). Two maps F 1 and F z are 
equivalent if for any finite set Yl, ..., Y, in L* the joint distribution ofFj (Yl) . . . .  , F~ (y,) 
is the same for j = 1, 2. 

Definition 2. If L = H  is a separable Hilbert space, F is called a canonical 
normal distribution (or simply a canonical distribution) on H if to each h in H* 
the real random variable F(h) is normally distributed with mean 0 and variance [I h Jj 2. 
(Here [[h]l denotes H*-norm.) From now on, F will always be a representative of 
the canonical distribution. 

I f f  is a tame function on L, i.e., a function of the form 

f ( x )  = 9 [ (Yl ,  x )  . . . .  , ( y , ,  x)]  (1.1) 
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where y~, ..., y, eL*, q) is a Baire function of n real variables, and (y, x)  is the 
value of y at x, then 

f(co) = ~0 [F(ya)(co),..., V(y,)(co)] (co ~ f2) (1.2) 

is a random variable on f2 having the same distribution as f under the weak 
distribution. We shall use Gross's notation to denote by f the r.v. (as described 
above) corresponding to any tame function on L. 

Let H be a separable Hilbert space and let o~ be the family of all finite dimen- 
sional projections on H. 

Definition 3. A norm or semi-norm Ilxlla on H is said to be measurable if to 
every e> 0 there exists a projection P~e~ such that 

Prob (11Px l[ • > e) < e (1.3) 
for all P• ( P e ~ ) .  

Gross starts with the following set up which leads to his main theorem which 
is Theorem 1 given below. 

Let H be a separable Hilbert space, F the canonical distribution on H and I]x II x 
a measurable norm on H. Let B be the Banach space which is the completion 
of H with respect to Ilxlll. Then we may identify B*, the dual of B with a subset 
of H* and write 

B * c H *  = H c B .  (1.4) 

Furthermore, the canonical distribution on H induces a weak distribution on B 
if we restrict the map F to B*. Let # be the cylinder set measure on B determined 
by this weak distribution. The result of Gross is the following (I-3]). 

Theorem 1. Let [Ixlll be a measurable norm on H and # the cylinder set measure 
on B induced by the canonical distribution on H. Then # extends to a countably 
additive Gaussian measure on (B, sO(B)), where d (B) is the a-field of Borel sets in B. 

Before proceeding to give a proof in the next Section we shall give one more 
definition, that of the RKHS determined by a covariance function. 

Definition 4. Let T be a complete separable metric space and let R be a real 
continuous covariance function on T x T. Then R determines a Hilbert space H(R), 
called the RKHS of R which has the following properties: 

H(R) consists of real functions f on T such that 

R( ' ,  t)6H(R), (1.5) 

( f  R( ' ,  t)) = f ( t )  (1.6) 
for every t in T. 

2. Abstract Wiener Spaces 

Proof of Theorem 1. Since IIxlll is a measurable norm on H, (1.3) of Definition 3 
applies. Choose ~ = 2-"  (n = 1, 2, ...) and write P~ = P2-~. Without loss of generality 
the projections P~ may be taken to be increasing to the identity operator as n ~ ~ .  
Letting 

Q , = ~ + I - P ,  ( n > l )  (2.1) 
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we have Q,e~- and Q,_I_P, so that from (1.3) 

Prob { II Qn x [I ? > 2-"} < 2-". (2.2) 

Let H, be the range space of P,. Then H ,  c H , + x ,  H , + I @ H  . is I to /4,, and 
we have (x3 

H = H 1  �9 ~ (H,+I @H,). (2.3) 
n = l  

Because of the decomposition (2.3) of H we can choose a complete orthonormal 
system (CONS) {ej}~ in H such that {ej}~ 1 is a CONS in H1, k2 {e~}k~+l is a CONS 
in H2 @//1, etc. Then for every n, {ej}~" is a CONS in H~. For each x in H 

x = ~ (x, e j) ej, (2.4) 
j=l 

and 

(2.2) gives 

Let 

kn 

P, x = ~ (x, e j) ej. (2.5) 
j=l 

Let F be a representative of the canonical distribution in H. Then (j= 1, 2, ...) 

~j(co) = F(ej) (co) = (x, e j) ~ (co) (2.6) 

are independent N(0, 1) random variables on some probability space. Since 

]IPnx]I1 = j~__~l(x, ej) ej 1 (2.7) 

is a tame function on H it is easy to see that the random variable lIP, x ]ti ~ is given by 
k~ 

IlPnXlll (CO)= j__21~j(co ) ej i" (2.8) 

(2.8) can be seen as follows: If we set 

kn 

(2.9) ~o (as . . . .  , ak,) = aj ej 1 

then clearly ~o is a continuous function of the real variables as . . . .  , ak. and hence, 
of course, a Borel function. (2.8) then follows from (1.1), (1.2), (2.6), and (2.9). For 
each n define the following mapping of fJ into B. 

k.  

Yk.(CO)= ~ ~j(CO)ej. (2.10) 
i=2 

It is trivial to verify that Yk. is a (d(O), d(B))  measurable mapping of O into B. 
Since we also have 

k.+l ~j(co)ej 1 IIQ, xl[• (co)= 
j= k n+  l 

P{co: [I Yk.+I(CO)-- Yk.(co)PJ1 > 2 - " } < 2 - ' .  (2.11) 

#k = P Yk: i 
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be the (countably additive) probability measure on (B, d (B) )  induced by Yk.. 
It easily follows from (2.11) that Yk, converges in probability. Hence the sequence 
{#k,} converges weakly to a measure v, say on B. To show that v is Gaussian, we 
compute the characteristic functional of v. Let f be any element of B*. Then 

e i<s v(dx)= lim ~ e i<f'x> ~k.(dx) 
B n ~  B 

= lira ~ e i <1". Yk,~o~)> P(d~o) (2.12) 
n--* o0 

kn 

--�89 E 1 ( f , e . / )  2 e _ � 8 9  ' 
= lim e = 

n---~ oo 

from the Parseval relation since f s H *  from (1.4). From (2.12) we see that the 
covariance functional of v equals the covariance computed under the weak 
distribution F (see (2.14)below). It follows easily that v is the extension to (B, ~(B))  
of the cylinder set measure. 

Although we do not need it for the proof of Theorem 1, with a little more 
work the argument given above can be used to prove that the sequence of sums 

N 

YN(O~) = ~ ~j(C0) ej converges in probability. 
j = l  

In view of the later results of the paper, the following remarks are worth 
making. We state a special case of Theorem 1 which, in fact, can be shown to be 
equivalent to it. 

Let T be a compact metric space. 

Theorem 1'. Let H=H(R) ,  the R K H S  of R which is a continuous covariance 
on T x T. For x in H(R) let 

IIxlll =sup  Ix(t)l. 

Denote by H(R) or Co the closure of H(R) in C(T) with respect to I]x]ll. 
If I[xlll is a measurable norm on H(R) and # is the cylinder set measure on Co 

induced by the canonical distribution on H(R), then # extends to a countably additive 
Gaussian measure on (Co, d (Co) )  where d (Co )  is the a-field of Borel sets in Co. 

Theorem 1 can be reduced to Theorem 1' if we make use of the Banach-Mazur 
Theorem [6] according to which every separable Banach space B is isometrically 
isomorphic (congruent) to a closed linear subspace C O of the Banach space C 
of real continuous functions on [0, 1]. If ~b represents this congruence it can be 
shown that H is congruent (under ~) to a certain RK H S  H(R) contained in Co 
and that the measurability of the norm [I x II 1 on H is equivalent to the measurability 
of the sup-norm on H(R). If v is the Gaussian measure on Co obtained from 
Theorem 1', it can be verified that the required countably additive extension ~ to B 
of the canonical distribution on H is given by the relation v = ~ ~b-1. We shall 
not go into the details here. 

As a corollary to Theorem 1, we have the following result. Let F be the 
continuous covariance functional of the abstract Wiener measure # on B. 

Corollary 1. The Hilbert space H of Theorem 1 is congruent to the R K H S  of 

the process I~. 
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For our next result we assume as in Theorem 1 that [Ixlll is a measurable 
norm on H, B is the Banach space which is the completion of H with respect 
to IIxll~. ~ denotes the Gaussian measure of Theorem 1. 

Theorem 2. For every positive e 

~{xeB:  Ilxlll<~}>0. (2.13) 

In the proof we shall make use of the following fact observed by Gross and con- 
tained as part of Corollary 5.4 in [-2-1. 

Lemma 1. I f  IJxlll is a measurable norm on H, then 

]JxJll < A Ilxtln (2.14) 

for all x~H, A being a positive number (independent of x). 

Proof of Theorem 2. Suppose that for some e > 0 

l~{xen: IJxlla _-<e} = 0 .  (2.15) 

For meH let us denote by a,, the translation 

a , , x = x + m  (xeB). (2.16) 

Since H is the RKHS of the covariance R of #, it follows from a well known 
result (see [7]) that the Gaussian measures /~o-2,1 (meH) and # are mutually 
absolutely continuous. It follows from (2.15) that 

#{xeB:  IIx-mll,_-<e} = 0  (2.17) 
for all m ~ H. 

Let D be a countable dense subset of H, which exists since H is separable. 
Let y ~ B and e > 0 be as in (2.17). 

There exists x e H  such that 

Ily-x]l~ < T ,  (2.18) 

and an element reeD such that 

Ilx-mll•< 2 ~ '  (2.19) 

A being the constant of Lemma 1. That lemma and (2.19) imply 

I lx-  mllx <�89 e. (2.20) 

From (2.18) and (2.20) we have 
Ily-ml[l <e. (2.21) 

Hence D is dense in B relative to Ilxll~ norm, which in turn implies that 

B c  U {xeB: IIx-mlt ,<~}.  (2.22) 
nl ~D 

From (2.17) and (2.22) we get /~(B)=0 which is impossible. Hence Theorem 2 
is proved. 
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3. Supports of Gaussian Measures on the Space of Continuous Functions 

In this section we shall assume that C= C(T) is the Banach space (with sup 
norm II I[0 of all real valued continuous functions x(.)  on T. The index set T is, 
for the present, assumed to be a compact metric space. Later we shall specialise 
to T =  [0, 1]. 

Let d ( C )  be the a-field of Borel subsets of C. Then it is easy to see that d ( C )  
is generated by the cylinder sets of the form 

{xe C: Ix(q), ..., x(t,)] eB} 

where Bed(R")  (a-field of n-dimensional Borel sets). Suppose that # is a Gaussian 
probability measure on (C, d(C)) ,  with mean zero and covariance R given by 

R(t, s)= S x(t) x(s) #(dx), (s, te T). (3.1) 
c 

We shall assume that R is continuous on T x T and denote by H(R) the RKHS 
of R. The a-field du(C ) will denote the completion of d ( C )  with respect to #. 

By topological support of #, written supp(/~) we mean the uniquely defined 
closed set F of C with the following properties: 

/z(F) = 1, (3.2) 

for every open set G such that G c~ F # ~b 

# (Go lF )>0  (see, e.g., [4]). (3.3) 

Before we give the main theorem of this section we state a lemma given in [5] 
with modifications made to suit the set up of this paper. 

Lemma 2 (Lemma 6, [5]). Let {ej}j~ 1 be a complete orthonormal set in H(R) 
and g an d , (C)  measurable real valued function such that for each x in C and every 
rational r 

g(x+rej)=g(x) ,  ( j=  1, 2, 3, ...). (3.4) 
Then 

g(x)= constant a.s. #. (3.5) 

Theorem 3. Let # be a Gaussian measure on (C, sOu(C)) with mean zero and 
continuous covariance R. Then 

H(R) = supp(/0 (3.6) 

where H(R) is the closure of H(R) in C. 

Proof Let F denote supp(#) and let f eF .  Define 

S ,=  eC:  I I x - / l l l <  , (n=1,2 ,3  . . . .  ) 

and 
A,=S ,+H(R) .  

Now A,, being an open set, is alu(C ) measurable and further it is easy to verify 
that if meH(R) then for every xe  C 

x+meAn if and only if x~An, 
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i. e. ,  
ZA, (X + m) = ZA, (x), (3.7) 

for all x~ C and m6H(R). Hence from the lemma 

)~A. (x) = constant a.s. #. (3.8) 

But since An ~ Sn + 0, we have # (An) > # (Sn) > 0. Further S, ca F 4: q~ and F = supp (/~). 
Hence 

Zan (X) = 1 a.S. #, 
i.e.~ 

Since An ~ A,,+a, we have 

#(An) = 1. (3.9) 

# n --1. 

Since H(R) is closed it is easy to show that 

A n = f  +H(R) 
n = l  

and we get 

# ( f +  H ~ ) =  1. (3.10) 

Since # is Gaussian with mean zero, it is symmetric and we have 

/~(-  (f+ H(R)))= 1, 
i.e., 

# ( - f +  H(R)) = 1. (3.11) 

Hence there exist g, h~H(R) such that f + g = - f + h  which shows that f~H(R).  
We have thus shown that 

/~ (H(R))= 1. (3.12) 

It remains to show that H(R)= supp(#). 

Suppose H(R)=~supp(#). Then there exists an element xo~H(R ) such that 

for some integer n >  1 g(Sn)=0 where S , =  x: IIX-XolP1 <n- " Since for meH(R)  

the measures/~ a2,1 and # are equivalent, (for the definition of O'm see (2.18)), we have 

# (Sn+m)=0  for all m~H(R).  

It is clear that the family of open sets {S, + m}, m ell(R),  covers H(R), and since C 
is separable, by the Lindel6f theorem, there is a countable subcover {S n + mi}i~l, 
mi~H(R). But #(Sn+ml)=0  for each i, hence p ( H ~ ) = 0 ,  which contradicts 
/z(H(R))= 1. Hence H(R)=supp(~t). This completes the proof  of the theorem. 

It is convenient to have the following restatement of Theorem 3. 

Theorem 4. Let I~ be a Gaussian measure on (C, ~r with mean zero and 
continuous covariance. Let x o ~ C. Then 

~({x: Irx-xolr~<~})>o 
for all ~>0 if and only if xo~H(R ). 

(3.13) 
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Let Co be a closed linear subspace and let d ( C o )  be the family of all Borel 
subsets of Co. It is useful to state the previous result for Gaussian measures on 
(Co, d(Co)).  It can be deduced easily from Theorem 3 or can be proved inde- 
pendently. 

Theorem5. Let # be a Gaussian measure on (Co,~r with continuous 
covariance and zero mean. Then H(R)c  Co and 

H(R) = supp(#), (3.14) 

i.e., for xoECo #({xECo: JIX--Xoll < e } ) > 0  for all e > 0  if and only if xo~H(R). 

Proof Extend the measure # from Co to C by writing 

~(A)=v(A n Co), A e d ( C ) .  (3.15) 

Then # is a Gaussian measure on C with the same R K H S  as the measure # and 
/2(Co) = #(Co)= 1. Since Co is closed and H(R) is supp (/~) by Theorem 3, it follows 
that H(R)c  Co. Hence H(R)=  supp(#). This completes the proof of the theorem. 

We conclude this section with a result concerning Gaussian measures on 
C [0, 1], the space of continuous functions on T =  [0, 1]. 

Theorem6. Let R be a continuous covariance on [-0, 1] • [0, 1]. Then the 
canonical normal distribution on H(R) extends to a Gaussian (countably additive) 
probability measure on H(R), the closure of H(R) in C [0, 1] /f and only if IIx111 is 

a measurable norm on H(R). 

Proof The "if" part of the theorem is simply Theorem 1'. The "only if" part 
is proved as follows. 

For brevity, set Co = H(R) and let # denote the countably additive extension 
to Co of the canonical normal distribution. Then p is a Gaussian measure on 
(Co, d(Co))  with R as covariance. Let F be the representative of the canonical 
normal distribution in H(R) given by the (continuous) linear map F: H*(R) 
M [-Co, d(Co) ,  #3 (the latter being the linear space of real random variables on 
(Co, d(Co),/~)), given by 

F [R( ' ,  t)] (x)=x(t), (x~ Co, te  T). (3.16) 

Let {ti}, tj=j 2-"  (j = 0 . . . . .  2") be a sequence of partitions of T(n = 1, 2,...). If cp is 
a real, Borel measurable function of 2" + 1 real variables, then 

Gn(X)= q9 I x ( t o ) ,  . . .  , x (t2,)-] (x~H(R)) (3.17) 

is obviously a tame function on H(R). This follows easily if we recall the definition 
of a tame function given in (1.1) and note that for x in H(R) x ( O = ( R ( .  , tj), x). 
If G~ denotes the corresponding random variable in M [Co, d(Co),/~] it is easy 
to see that G~ is the d(Co)-measurable function on Co given by 

G~ (x) = ~o Ix (to),... , x (t2.)] (x e Co). (3.18) 

Now let us choose 

G,(x)=sup{Ix(t~)l,j=O, . . . ,2  n} (xEH(R)). (3.19) 
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From (3.18) 

G2(x)=sup{[x(@,j=O, ..., 2"} (x~Co). (3.20) 

G,(x) (n = 1, 2 . . . .  ) is a sequence of tame (and hence measurable) semi-norms 
on H(R) and G,(x) increases to the limit [[x[[l= sup Ix(t)[. The sequence of 

o < t < l  

random variables G](x) on (Co, ~'(Co), p) converges for every x in Co and hence 
i n  #-probability to IlxH1. Furthermore from Theorem4 and (3.13) we have 
# {x~ Co" ]]xl[1 < e} > 0 for every positive e. From Corollary 4.4 of [2] it follows 
that ]lxl[1 is a measurable norm on H(R). The proof of Theorem 6 is complete. 

4. Gaussian Measures on Separable Banach Spaces 

Let B be an arbitrary separable Banach space with norm If'll and let # be a 
Caussian measure on (B, d(B))  with mean zero and continuous covariance 
functional F. Then according to the Banach-Mazur theorem alluded to in Section 2, 
B is isometrically isomorphic, or congruent, to a closed linear subspace, say, 
C1 of C, the Banach space of real continuous functions on [0, 1]. Let ~b denote 
this congruence from B onto C 1 and let [1" II1 be the sup norm on C. It is easy to 
verify that 

d (B)  = 0-1(~r where ~4(C1) 

is the G-field of Borel sets of C1 and that/~ defined by 

/~=#0  -~ (4.1) 

is a Gaussian measure on C1 with covariance function R which is related to the 
covariance functional F of#  in the following way. The proof of the Banach-Mazur 
theorem given in [-6] makes use of the fact that ~ sends x in a one to one manner 
into the function of t given by 

y(t) = 0(x)I t ]  = ( f ,  x )  where ft is an element of S* 

the unit ball in B*. It can then be shown quite easily that 

R(t,s)= yy(t)y(s)~(dy)=F(ft,f~) (0Ns, t <  1). (4.2) 
C1 

The continuity of F implies that R is continuous on the unit square. Let us define 

H = 0 -  ~ [H(R)] (4.3) 

where H(R) is the RKHS of/~ and 

h, = 0-1( R (', t)) (4.4) 
for each t in [-0, 1]. 

Since H(R) is a linear subspace of C1 it is clear from (4.3) t ha t /4  is a linear 
subspace of B. Fur thermore/4  has Hilbert structure, i.e., 

(xl, X2)o = (0 (xl), 0 (X2))H(R) (4.5) 

makes H a Hilbert space under the inner product (,)o. The Hilbert space H acts 
as a RKHS for the Gaussian measure # on B. In fact (we assume here that F is 
9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17 
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strictly positive, i.e., F(f, f )  = 0 implies f = 0) from (4.2) and (4.4) we have 

(ht, hs)o = r ( f ,  f~) = (F(., f),  F(., f~))~(r) (4.6) 

and hence H is congruent to H(F) which is the R K H S  of #. The congruence of H 
to H(F) is not specifically used in the proof of the result given below but it serves 
to explain the importance of H in studying #. In this connection, it is perhaps 
appropriate to adopt a term coined by Schwartz [-8] and call H the Hilbert 
subspace of the Gaussian process (B, sd(B), #). We are now in a position to prove 
the following extension of Theorems 3 and 4. 

Theorem 7. Let B be an arbitrary separable Banach space and let # be a Gaussian 
measure on (B, sdu(B)) with continuous eovariance functional. Then 

/4=supp(#) ,  (4.7) 

where H is the closure (with respect to the norm topology in B) of H in B, and for 
any Xo in B 

#{xeB: IIx-xoll <~}>0 (4.8) 

for every positive e if and only if 
xo~H. (4.9) 

Proof Applying Theorem 5 of the previous section to the Gaussian measure/~ 
defined by (4.1) on (C1, sd(C1)) we have 

H(R) = supp (fi), (4.10) 

H(R) being the closure of H(R) in C1. In particular, fi~_H-~)= 1 immediately 
gives # (H)=  1. Let G be any open set in B such that G c~H~ qk Since ~ is a con- 
gruence from B to C1 we have ~ (G c~ H) ~ ~b, 

O(G) ~ H(R)~= 4). (4.11) 

In (4.11) it should be noted that H is mapped onto H(R)by 0, a fact which is 
easy to verify. Hence from (4.10) O(G) being open in C 1 

#(~,(G) ~ H (R ))> 0. (4.12) 

But the left hand side of (4.12) is precisely #(G c~ H). Thus (4.7) is proved. The 
second assertion of the theorem, (4.8) follows similarly. 

In conclusion it may be pointed out that Theorems 4 and 7 contain as spe- 
cial cases the principal conclusions of two results recently obtained by Garsia, 
Posner and Rodemich in [1] (Theorems 2.1 and 3.1). They consider a separable, 
mean continuous Gaussian process x (t) (0 < t < 1) with mean zero and covariance R. 
Their first result concerns the measure on  L 2 [0, 1] induced by x(t). Let LR be 
the closed linear subspace of L 2 [0, 1] spanned by the eigenfunctions {qo, (t)} of R. 

Theorem 2.1 ([1]). With probability one x(t)eL R. For fosL  2 [0, 1], the neigh- 
borhood { f  sL2" IIf-foll2<~} has positive probability for all e > 0  if and only if 
foeLR. 
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Next, suppose the process x(t) is sample continuous with probability one. 
Then x(t) induces a measure in the space C[0, 1J. Define CR to be the closed 
linear subspace of C [0, 1] generated by finite linear combinations of the {q~,} 
with the metric 

][f-gHo~= sup [f(t)-g(t)l .  
o~t_<_<l 

We now state the relevant part of their second result. 

Theorem 3.1 [1]. If x(t) has continuous paths, then x(t)~ CR with probability 1. 
For any function fo (t)6 C [0, 1], the neighborhood 

{ feC[O,  1]: IFf-foll~ <a} 

has positive probability for every e > O, if and only if fo e CR. 

Remarks. Theorem 6 of Section 3 furnishes a necessary and sufficient criterion 
for a separable Gaussian process x(t) (0< t<  1) to have continuous paths. 

The Gaussian measure/~ of Theorem 7 is an abstract Wiener process. 

I would like to thank M. G. Nadkarni for the idea of using Lemma 6 of [5] in the proof of 
Theorem 3. 
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