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Mutual Subordination of Multivariate Stationary
Processes Over Any Locally Compact Abelian Group

MILTON ROSENBERG*

Summary. Our purpose is to extend Kolmogorov’s theorem {5, Th. 10] on mutual subordination
for univariate weakly stationary stochastic processes over the (discrete) group of integers to multi-
variate processes over any (Hausdorff) locally compact abelian (Ica) group. This extension is given in
Theorems (1.12) and (3.4) below. We shall lean heavily on the joint paper [10] on the decomposition
of matricial measures, to which the present paper may be regarded as a sequel.

In Section 1 of the paper we shall define and prove theorems on the concept of E-subordination,
where E is a projection-valued measure. In Section 2 we shall examine the structure of stationary
processes over an lca group. In Section 3 we shall consider the concept of subordination of stationary
processes. Finally in Section 4, we shall apply our subordination theorems to deduce that matrix-
valued functions in L, on the unit circle having no negative frequencies have a constant rank a.e.
(Lebesgue) (4.2), a theorem of F. and M. Riesz (4.3), and a theorem on wandering subspaces due to
Robertson [9] (4.4).

§ 1. E-Subordination

We make the following assumptions in this entire section. »# is a Hilbert
space and f=(f){_ e H#?, g=(g'V_, e H7-(f,g)is the g x p Gram matrix [(f%, g’)]
of scalar products. 4 is a g-algebra of subsets of a set Q, and E is a spectral measure
on 4 (for s£), i.e., E(B) is an orthogonal projection operator on # for each
Be 4, E is strongly countably additive, and E(Q)=1, cf. [3, § 6].

(1.1) Definition. For each g=1, let E4(B) be the inflation of E(B) to #7, i.e.
E‘(B) f=(E(B) f)f_,. We define for each ge#” and each fe#9, M, (B)=
(E*(B) g, E*(B) f).

The next theorem easily follows.

(L.2) Theorem. (a) For each ge #7 and each fe #*, M, () is a bounded p x q
matrix valued measure on 2.

(b) For each fe #4, M, (-) is a bounded non-negative hermitian q x q matrix-
valued measure on 4.

(c) For each fes#", Ei(-) f is an #?-valued countably-additive orthogonally-
scattered (caos) measure, see [12] or [7, Section 5].

(1.3) Definition. Let fe#? and let p=1. Then (a) &7 is the closed subspace of
H? spanned by E%(B) fe #?(Be4) with pxq matrix coefficients' (&7 is the
p-dimensional E-spectral space of f).

* The author is grateful to Prof. P. R. Masani for his generous help in formulating this paper.
1. i.e, spanned by the vectors AE?(B) fe #7, where A is a p x ¢ matrix.
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(d) pxqg) Ly, ,,= {®: @ is a px g matrix-valued #-measurable function on
Q such thatg D(w) - My, (dw) - §*(w) exists},
see [12; 3.1 (a) (b)]. We write
(2, 'P)M”=!§ @-dM, - P*.

We quote the following theorem, cf. [12; 3.9, 4.5, 4.6].

(1.4) Theorem. Let fe #9 and p=1. Then
(@ (pxq)L,, w,, 18 a Hilbert space under the inner product trace(", ")y, -
(b) P ={x: x:é[ P (w) E(dw) f, Pe(pxq) Ly, y,, } SHP.

(c) The correspondence
P [ P(w) El(dw) f
2

is unitary on (p X q) L,y onto FP.

We mention the easily proven fact that 7 =" x #!x ... x # (p factors),
see [13; 5.8].

We require the following theorem whose proof we shall omit. Parts (a), (b),
and (d) are proved in [11]. Part(c) follows from the resulis in [12] and basic
measure theory.

(1.5) Theorem. Let ®e(rxq)L, ., Ye(sxp)L, - Then (a) the stochastic
integrals

[@-Edw)f,[¥ EP(dw)g

B B

define H" and H*-valued caos measures on %,

(b) E’(B)(Qj - Eq(dw)f)=1£<15 -E%dw) f for each Be %,

© (@ -Fdw)f,{¥ -EP(dw)g)= | ®-dM,, - V* for each B, Ce %,

BnC

(@) ifg= [ x-E%dw) f, where ye(px g) L, M,,» then
o

J‘I’-E”(dw)g=g(q’-x) E'(dw) f

for each Be & (‘substitution property ).
We also need the following lemma.

(1.6) Lemma. Let M, (B)=(E“(B) f, E*(B) f), and P(w) be a %-measurable ortho-
gonal projection matrix-valued function on Q such that

(%) range (M}, (w))Srange(P(w))  a.e. (t=trace(M,)).2

2. M} =thematrix of Radon-Nikodym derivatives of the entry-measures of M, ; with respect to 7.
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( For a matrix A, range A={y: y=xA}.) Then

f=!§P(w)E’*(dw)f-

Proof. By the definition of the stochastic integral we have

f={I-E(dw)f  (I=qxgq identity matrix).
2

Let -
f=5§[ P(w)- E4(dw) f.

Then by [12; 4.2 (a) (b)] we have

f—f={{I~P())- E{dw) f
and . B ?
(f—£ f-f)=éf (I—P@) M}, (I-P(@)dr=0, by (»).

Therefore f=f. /)

(1.7) Definition. Let ge #7, fe #9. We say that g is E-subordinate to f if and only
if K S s A" (equivalently, if and only if "< %"= #™ for any fixed n=1).

The following extended version of [7; 8.7] follows easily from (1.4) (b) (c) and
(1.5) (c).
(1.8) Theorem. Let (i) ge #°7, fe#4, (ii) ¢ be the orthogonal projection of g onto
HP, (iii) Pye(p x q) Ly, y,, be the isomorph of 8, i.e.
g= D, Edw)f.
Then ?
(@) Mgf(B)zMgf(B)zchg-def, Be#%,

(b) M,,(B)=[&,-dM,, - ®F = [®,dM,,,  Be.
B B

Under the assumptions (i) and (ii) of (1.8), it therefore follows immediately, see
[10, Section 5], that

(1.9) My <My

g=[(dM, - dM[;)dE*f.
Q

(Let M=[M,;], N=[N,Jbe matrix-valued measures and p be a o-finite meas-
ure such that M;;<pu, N, <u. M is strongly a.c. with respect to N (M<KN) iff
range (M, (w)) =range (N, (w)) a.e. (). In this case M, (w)=M,(»)- N,(0)* N, (w)
a.e. (u), where for a matrix 4, A¥ denotes its generalized inverse. We call dM -
dN* =M, - N,* a.e. (), the R.N. derivative of M with respect to N. Cf. [10].)

The following extended version of Kolmogorov’s Theorems [5; Thms. 8, 97,
cf. [7; 8.8] now follows easily.
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(1.10) Theorem. ( E-subordination). Let ge A", fe #. Then the following condi-
tions are equivalent:

(1) g is E-subordinate to f, i.e., 7 S 52,
(2) there exists ®e(px q) L, y,, such that g= [ & dE*f,
Q

(3) there exists ®e(px q) L, y,, such that for any Be#

My (B)= [0 My, My (B)=[@-dM,q - o*.

We note that any @ satisfying (2) also satisfies (3), and conversely. Hence,
cf. (1.8), (1.9), [10; Section 5], for ge #°? and fe#%, the following conditions are
equivalent:

(1) g is E-subordinate to f,
(111 (2) g= j(dMgf-dM;j) dE?f,
o
3) Mgg(B)=1£(dMgf-dM;})-defv(dMgf-de*})*, Be4%#.

Finally, we come to our extension of Kolmogorov’s theorem on mutual sub-
ordination.

(1.12) Theorem (Mutual E-subordination). Let (i) ge #°F, fe #, (ii) g be E-sub-
ordinate to f, (iil) ®,&(p x q) L, y,, be the isomorph of g, (iv) t=trace M, (v) M, .,
M, .. Mg, ., and M}, be respectively the matrices of Radon-Nikodym derivatives
of the entries of My, M, ,, M, ., and M, with respect to . Then

(a) the following conditions are equivalent

(1) fis E-subordinate to g,

(2) rank (P, - My,  ®F)=rank M, )a.e. (1),

(3) rank M;, . =rank My, _ a.e. (1),

(4) rank (dM, - dM[;)=rank M}, . a.e. (7),

(5) rank M =rank M,  a.e. (1),

(6) MM,

(b) if f and g are mutually E-subordinate, then

(1) M, €M, €M, ., My, &M, &M, and

) dM,, - dM[,=(dM, ;- dM[)* a.e. (7).

Proof. (2) “(2)<>(4)”: By (1.11) (2) and [10; 4.5] it follows that &,=dM, -
dMf; (mod M,,). Further, by definition, dM, ;- dM},=M,, .- M}  a.c. (z). Thus

(%) P, M, DF=M, -MF M. a.c. (7).
But the rank of R. H. S. (x#) is easily proven to be the same as the rank of dM, - dM;

a.e. (7).
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“(2)<=(3)”: Since
g= | @, dEf,
2

it follows readily from (1.5) (b) (c) that M;, =&, M}, .- &7 a.e. (7).
“(1)=>(4)”: Let

2(w)=EM, - dM[)(w), Y(w)=dM,,-dM})(w) ae. (7).

Then by (1.11) (2) and the substitution property (1.5) (d)
f=[¥-dEPg= [ ¥y -dEf.
Q o
Hence by (1.1) and (1.5) (b) (c)
M”(B)z(lg‘deE"f,éfI-dE‘ff)=£'deMff, Be4.

Hence
M, =Wy M, . a.e. (1).
Hence
rank M},  <rank y<rank Mj, . a.e. (1),

where the first inequality is from the preceding equation, and the second inequality
is from the definition of y.

Next, “(4)=>(1)". Let >, =x* a.e.(1). Then () x)(w)=projection onto the range
of My, .(») a.e. (¢). Similarly as in [10; 3.3(b)] ) xe(gxq) L, ,, implies
Y €(@xp) L, y,,- Hence by (1.6) and (1.5)(d)

f=éfoE"(dw)f=Q§Z'E”(dw)g-

Thus by (1.10)(2) f is E-subordinate to g.
“(4)<=(5)": Since M}f*f . i1s nonnegative hermitian with the same range as
Mj, . a.c. (1), it follows readily that rank (dM, ;- dMf})=rank (M, , ) a.e. ().
Finally, “(4)<>(6)”: This is immediate from [10; 5.5].
(b) (1) This is immediate from (1.9) and (1.12) (a) (4).
{(b)(2) We have by (1.5)(b)(c) for Be #
M, (B)=(E*(B) f, EX{(B) f)=(| ¥ dE” g,le . quf)=é[ YdM,, .

B

Hence M}, =¥ -M,, . a.c. (t). But range(¥)=(kernel M . )" a.e. (¢) since M,,
and M, are mutually strongly a.c. Hence

dM, - dMg#fz l'd M;f, .t M;}*, = lI’=deg . dM;*g a.e. (1).
Thus
deg-dM;';szﬂ-dM;}:(dMgf-de*})# a.e. (1),

where the last equality holds since M, and M, , are mutually strongly a.c., see

[10;55].  /
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§ 2. Lca Groups

(2.1) Definition. (a) A g-variate mean-continuous weakly stationary stochastic
process (WSSP ) over an lca group X (under the operation +) is a function (f), . x,
such that (i) f,e #? for each xe X (o is a fixed Hilbert space), (ii) the g x ¢ Gram
matrix (f,, f,)=I,_, depends only on x—y, (iii) (f,—f,,fx—f,) >0 as x—y—0
(mean-continuity).

(b) The p-dimensional temporal domain M#% of a g-variate WSSP (f,), . x is the
closed subspace of 57 spanned by the f, € #7 with p x g matrix coefficients.

(c} Let (f),ex and (g,)..x be g and p-variate WSSP’s respectively over the
same X. We say that (f,), x and (g,), . x are stationarily cross-correlated if (f, g,)
depends only on x—y.

In many papers, e.g. [14], (f,), . x is referred to as a homogeneous random field.

(2.2) Lemma. Let (f).cx> @)exs Pxexs --- be 4, p, 1, ...-variate WSSP’s, which
are pairwise stationarily correlated. Then there exists a strongly continuous group
of unitary operators (U,), .x on A such that for each xe X, we have

(A) =U2%, &=U"g, h=U"h...,

where U is the inflation of U, to #1(U® fo=(U, f3);%_,), etc.

Proof. The proof of the existence of a not necessarily unique unitary group
with property (A) follows as in Kolmogorov’s paper [5] or as in the reproof of
this result in [2; 1.1, 1.2]. The strong continuity of the group (U,), . y follows from
the assumed mean continuity of each WSSP. Vi

Let X be an Ica group. A continuous complex-valued function w(x) on X
(denoted [x,w]) is called a character on X if [x+y, o]=[x, ] [y, @] and
I[x, w]l=1. The set Q of characters is again an lca group under multiplication
with respect to the dual topology, see [8; p.40811]. By the Borel subsets of an
Ica group we shall mean the smallest g-algebra generated by its open subsets
(rather than the o-ring generated by compact subsets, cf. [3; 111], [4; 118]). We
now recall the generalization of Stone’s theorem [1; Th. 1] [8; 419] and of Boch-
ner’s theorem [1; I, IT] [8; 410].

(2.3) Stone’s Theorem. Let (U,), . x be a weakly continuous family of unitary opera-
tors on a Hilbert space # over an Ica group X. Then there exists a unique spectral
measure E(+) defined on the Borel subsets of the dual group Q such that

U= |[x, 0] E(dw)
)
(the conjugate of [x, ] is used here to conform with the usual conventions for
stochastic processes).

(24) Bochner’s Theorem. (a) f is a continuous positive definite complex-valued
function on the lca group X < there exists a bounded non-negative measure m on the
Borel subsets 2 of the dual group Q such that for all xe X

f(x)={§ [x, 0] m(dew).
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(b) If forall xeX

J [x, 0] m(dco)zgj [x, 0] pdw)

where m and u are bounded complex measures on %, then m=p.

(2.5) Lemma (equality of temporal and spectral subspaces). Let (U,),.x be the
shift group of the g-variate WSSP (f.)..x so that U® f,=1 sy and let E be the
spectral measure for this group. Then for each p2 1, M, P =",

Proof. It is easy to prove that
fi=[Ix 0] I-Eldo) f,
Q

(stochastic integral), xe X. It readily follows that for each p x g matrix A4,

Afy= §([x, 0] A) E*(dw) foe SE.

Q

It also readily follows that #}f < %P

Since U4(M})=} (i.e. ,/%fl reduces U) it may be shown that for Be4,
E%(B) foe #} and is unique. Hence for each p x g matrix A, AE*(B) fye M}, and
thus P < M7. /

§ 3. Subordination of Weakiy Stationary Processes

(3.1) Definition. Let (f,),., and (g,),.x be ¢ and p-variate WSSP’s over X,
having the same shift group (U,),.y, With spectral measure E. Then the matrix-
valued measures M, , , M, , defined in (1.1) are called the (auto-)spectral
measure of (f,),.y and the (cross-)spectral measure of (g.),..x with respect to

(fx)xeX'

(3.2) Definition. Let (g,)..x, (fi)..x be p and g-variate WSSP’s which are sta-
tionarily cross-correlated. We say that (g,), .y is subordinate to (f.), . x if and only
if M} < A7 (equivalently, if 4y = M} for some integer n=1).

From (2.5) we obtain the following basic lemma.
(3.3) Lemma. Let (g,),.x and (f,)..x be p and g-variate WSSP’s having a com-

mon shift group (U),_y with spectral measure E. Then (g.)..x is subordinate to
(f)sex =80 is E-subordinate to f.

Let (g,)..x and (f,),.x be p and g-variate WSSP’s with common shift group
(U,),.x with spectral measure E. On applying theorems 1.10 and 1.12 to f=f,
and g=g, we at once have:

(3.4) Theorem. Let (g,),.x, (f)xex be p and g-variate WSSP’s with common shift
group (U,), _y having spectral measure E, and let g=g,, f=f,. Then

(@) any one of the conditions (1)—(3) of (1.10) is necessary and sufficient for the
subordination of (8.), . x 10 (f)xe x>
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(b) if (g,),x is subordinate to (f), . x, any one of the conditions (1)—(6) of (1.12)
is necessary and sufficient for the mutual subordination of (g,), . x and (f)cx-

Theorem (3.4) generalizes Kolmogorov’s original theorems [5, Thms. 8 — 10]
concerning simple discrete parameter processes, i.e., with g=p=1 and X=
{integers}.

§ 4. Applications

We shall now assume that the reader is familiar with the fundamentals of the
prediction theory of multivariate WSSP’s over the group of integers, — oo <n< o0;
cf, e.g, [7] or [13; Section 6].

For the following application it is convenient first to quote a slightly general-
ized version of the condition for pure non-determinism [13; 6.13].

(4.1) Theorem. Let (f,)*° . be a g-variate WSSP. Then each of the following condi-
tions is equivalent to the pure non-determinism of (f,)* .

(a) (f,)*, is a one-sided moving average:
fo= 2 A bui
k=0

A, are q x p matrices, §,€H°, (Dn> D) =0pmu K,

Y 4, VK2 < oo,
k=0

(b) 4! ,={0}.

In the following theorem we prove that matrix-valued I%* functions have
constant rank a.e. (Lebesgue), without recourse to analytic extension, see
[6;2.3,2.5].

(4.2) Theorem. If ®e(pxq)L)*, then rank (®(e'’))=const a.e. (L=Lebesgue
meastre).

Proof. By assumption,

in L,(Q=(0,2n], #=Borel subsets, Lebesgue measure), where the 4,’s are p x g
matricial Fourier coefficients of @ and

YA lE< 0.
)

Let (g,)°,, be an arbitrary g-variate orthonormal sequence, i.e., (g,,, 2,)=0,,, I,
with shift operator U, having spectral measure E. Since

je_imea dM —(gm7g0):5m0'15

gogo
Q
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it follows from (2.4) (b) that

1
Myogo=5—-

I-L.

Let
fn: Z Akgn—k'
k=0

1t readily follows that

fom j(iAk e“‘")Eq(dH)go.

Q2 N0

Hence by (1.5)(c),

Myusa 1= (" B) o, B (D) )= - 1 (Saye0)- (S de?) L.

]

Further by (3.1) (f,)”,, is purely nondeterministic and is therefore mutually sub-
ordinate with its orthogonal p-variate process (,)°, of “innovation vectors”.
But

1

— = — G . .
(lpm H l//n) 5m n G’ so MWO Yo 2 T L

From (3.4) (b) (3) it follows that rank

@Ake""")~(§Akei“>*=rankG ae (L). |/

The following proof of the F. and M. Riesz Theorem is in essence due to
D. Sarason. Its present very brief format, emphasizing subordination theorems,
is due to Masani.

(4.3} Theorem. Let u be a complex measure on the g-algebra of Borel subsets of
Q=(0, 27 ]. If the negative Fourier coefficients of u vanish, i.e.,

fe " dpu=0, n<0,
Q

then i is a.c. with respect to Lebesgue measure.
Proof. All processes shall be discrete univariate. Let (x,)®  be a WSSP with
spectral measure |u| (total variation measure). Let

yn=éf e~""%(dp/d|p]) E(d0) x, .

Then it is readily verified that (y,)*, and (x,)®, are mutually subordinate (Show
stationarily correlated; next compute M, =|u|). Thus 4% =4}, see [13,

yoYyo w



342 M. Rosenberg:

section 6] or [7, 2.10]. But
(% yn)=(!§ e M9 E(df) xo,ge“"‘-e(du/dlul)E(de) Xo)

= [erPi0du=0 if n>k.
Q2

Thus the remote past .#*  L.#%=.4%. But this implies .#*  ={0}. Hence
(%), is purely non-deterministic. Hence as seen in the proof of (4.2), |u|=
M, <L.Hence u<|u|<L.

X0Xo
We conclude the paper with a subordination proof of a theorem on wandering
subspaces due to Robertson [9; Th. 1]. Let V' be a unitary operator on the complex
Hilbert space . X is said to be a wandering subspace for V if it is a subspace of #

such that V"(X).LV*(X) for all m=*n.

(4.4) Theorem. Let X and Ybe wandering subspaces for a unitary operator V such that

® T s 3
(b) dim (X)=dim (¥) < co.
Then

Z VEX)= Z VKY).

Proof. Let x!,...,x% and y',..., y! be orthonormal bases for X and ¥, respec-
tively. Let x,=(x)_ e #9, yo=0"_e#% x,=VOVx,, y,=(VP"y,. Then
(x,) =, and (y,)°, are WSSP’s which are stationarily correlated such that

i VEX), M= i VE(Y)
© k=1

k= —

and (x,)®, is subordinate to (y,)®, . But since

X0X0

éfe‘”’”’dM (xm,xo)=5m-I=(ym,y0)={£e‘”’”’dMy0yo,
it follows from (2.4) (a) (b) that we must have

1
M, . (B)=M,,,( _Té{
for each Borel subset B of Q=(0,27] (I =g x ¢ identity, L =Lebesgue measure).
Hence by (3.4) (b) (3), (v,)”,, 1s subordinate to (x,)* . J

Note added in proof. We can strengthen Theorem (4.3) on noting in the proof that || is the spectral
measure of a univariate purely non-deterministic process and thus by (4.1) and (4.2) the rank of the
one-by-one matrix-valued function d|u|/dL(0) is a constant a.e. (L). Thus either y is identically zero
or y and L are mutually a.c. Further, in (4.2) it is not true that range ¢ (¢'*)=const a.e. (L). For example,

let .
© if 1 elo
()= #0208 |°

Then range ®(e'®)+range (&%) if 0, +06,.
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