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Mutual Subordination of Multivariate Stationary 
Processes Over Any Locally Compact Abelian Group 

MILTON ROSENBERG* 

Summary. Our purpose is to extend Kolmogorov 's  theorem [5, Th. 10] on mutual  subordination 
for univariate weakly stationary stochastic processes over the (discrete) group of integers to multi- 
variate processes over any (Hausdorfl) locally compact  abelian (lca) group. This extension is given in 
Theorems (1.12) and (3.4) below. We shall lean heavily on the joint paper [10] on the decomposit ion 
of matricial measures, to which the present paper may be regarded as a sequel. 

In Section 1 of the paper we shall define and prove theorems on the concept of E-subordination, 
where E is a projection-valued measure. In Section 2 we shall examine the structure of stationary 
processes over an lca group. In Section 3 we shall consider the concept of subordination of stationary 
processes. Finally in Section 4, we shall apply our subordination theorems to deduce that matrix- 
valued functions in L 2 on the unit circle having no negative frequencies have a constant  rank a.e. 
(Lebesgue) (4.2), a theorem of F. and M. Riesz (4.3), and a theorem on wandering subspaces due to 
Robertson [9] (4.4). 

w 1. E-Subordination 

We make the following assumptions in this entire section. Yf is a Hilbert 
space and f =  (fi)7= 1 e ~q ,  g = (g J);= le ~ P "  (f~ g) is the q x p Gram matrix [(fl, g j)] 
of scalar products. N is a ~-algebra of subsets of a set s and E is a spectral measure 
on ~ (for Z,~), i.e., E(B) is an orthogonal projection operator on ~f  for each 
BE N, E is strongly countably additive, and E (~2)= I, cf. [3, w 6]. 

(1.1) Definition. For each q__>l, let Eq(B) be the inflation of E(B) to ~fq, i.e. 
Eq(B)f=(E(B)f i )7=r W e  define for each geJ fP  and each f e ~ f  ~q, Mgs(B)= 
(E p (B) g, E q (B) f ) .  

The next theorem easily follows. 

(1.2) Theorem. (a) For each g e ~  v and each f e ~ f  ~q, M g f ( ~  is a bounded p • q 
matrix valued measure on ~.  

(b) For each f e J f  q, M s s(.  ) is a bounded non-negative hermitian q • q matrix- 
valued measure on ~ .  

(c) For each f e  ~ q ,  E q ( ' ) f  is an ~q-valued countably-additive orthogonally- 
scattered (caos) measure, see [12] or [7, Section 51. 

(1.3) Definition. Let f e ~  q and let p ~  1. Then (a) 6 7 is the closed subspace of 
~fv spanned by E ~ ( B ) f e ~ q ( B e ~ )  with p •  matrix coefficients I (@P is the 
p-dimensional E-spectral space o f f ) .  

* The author  is grateful to Prof. P. R. Masani  for his generous help in formulating this paper. 
1. i.e., spanned by the vectors AEq(B)fE~f ~p, where A is a p x q matrix. 

23* 
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(b) (p • q) g2, M.t= {~: ~ is a p • q matrix-valued ~-measurable function on 
such that f 4~ (o~).M:: (de)). ~ * (co) exists}, 

see [12; 3.1 (a) (b)]. We write 

(~, 7/)~:: = ~ q~.dM::. 7/*. 
Y2 

We quote the following theorem, cf. [12; 3.9, 4.5, 4.6]. 

(1.4) Theorem. Let f ~ Yfq and p> 1. Then 

(a) (p • q) L2,M:: is a Hilbert space under the inner product trace(', ")M::. 

(b) ~/f:P = {x: x =  ~ ~(co) Eq(do~)f ~e (p  x q) L2, M:,} ~--~P" 
f~ 

(c) The correspondence 
~ I ~ (~o) E ~ (dco) f 

g2 

is unitary on (t) x q) L2, M:: onto 5~f p. 

We mention the easily proven fact that 5~r 5~r x 5~r (p factors), 
see [13; 5.8]. 

We require the following theorem whose proof we shall omit. Parts (a), (b), 
and (d) are proved in [11]. Part (c) follows from the results in [12] and basic 
measure theory. 

(1.5) Theorem. Let ~E(r x q) L2,M::, 7J e(s x p) L2,Mg ~. Then (a) the stochastic 
integrals 

~. a,. e~(d~) f, ~, ~e. r:(d~) g 
B B 

define Wr and ~:S-valued caos measures on ~ ,  

(b) e" (B)( ~ ~ . ~,(d~o)f)= ~ ~.  e"(do~) f for each B ~ ,  
f~ B 

(c) ( ~ .  e,(d~o)f, ~ ~'. EPId~o)g)-- S ~.dM:g.  ~'* for each B, C ~ ,  
B C B ~ C  

(d) / f g =  ~ X" Eq(dc~ f, where X~(p x q) L2, M::, then 

~ .  E p (d co) g = ~ (~g . Z) Eq (d co) f 
B B 

for each B ~ ~ (substitution property). 
We also need the following lemma. 

(1.6) Lemma. Let M::(B)=(Eq(B) f, Eq(B) f ) ,  and P(co) be a ~-measurable ortho- 
gonal projection matrix-valued function on Y2 such that 

(,) range(M'I:,~(co))~_range(P(o~)) a.e. (z=trace(Mf:)).  z 

2. M'I  : ~ = the matr ix  o f  R a d  o n - N  ik o d y m  derivatives o f  the en try-measures  o f  M : : wi th  respect to z. 
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(For a matrix A, range A =  {y: y= x A}.) Then 

f=  ~ P(co) Eq(dco) f . 

Proof. By the definition of the stochastic integral we have 

Let 

f =  ~ I .  Eg(dco) f (I = q x q identity matrix). 

f =  ~ P(co)" Eq(dco)f. 
Y~ 

Then by [12; 4.2 (a) (b)] we have 

f - f =  I (I-P(co)). Eq(dco) f 
D 

and 
( f - ~ f - f ) =  ~(I-n(o~))M'H,,(I-n(co))dz=O, by (*). 

0 

Therefore f = f .  // 

(1.7) Definition. Let g ~ ~v ,  f e jt~q. We say that g is E-subordinate to f if and only 
if ~1_ ~1__ ~1  (equivalently, if and only if ~"  =_ ~"  =_ ~ "  for any fixed n > 1). 

The following extended version of [7; 8.7] follows easily from (1.4) (b) (c) and 
(1.5) (c). 

(1.8) Theorem. Let (i) g~JfP, f E J f  q, (ii) ~ be the orthogonal projection of g onto 
5~f p, (iii) cb~6(p • q)L2 ' M s ~  be the isomorph of ~, i.e. 

~= ~ q~eq(dco)f. 
Then 

(a) Mgf(B)= M~f(B)= I ~ "  dMff,  B r  
B 

(b) M~(B)= ~ q~ .dMf f .~*= ~ q)~dMi~ , B 6 ~ .  
B B 

Under the assumptions (i) and (ii) of (1.8), it therefore follows immediately, see 
[10, Section 5], that 

(1.9) Mg's~Msr 

= ~ (dMgf. dM~ ) dEqf. 
0 

(Let M =  [Mij], N =  [Nik]be matrix-valued measures and # be a a-finite meas- 
ure such that Mii~#, Nik~ #. M is strongly a.c. with respect to N (M~N)  iff 
range (M'u (co)) _ range (N~ (~o)) a.e. (#). In this case M'u (co) = M'u (co). N~ (co)* N~ (co) 
a.e. (#), where for a matrix A, A ~ denotes its generalized inverse. We call dM. 
dN* = M '  u �9 N~ g a.e. (#), the R.N. derivative of M with respect to N. Cf. [10].) 

The following extended version of Kolmogorov's Theorems [5; Thins. 8, 9], 
cf. [7; 8.8] now follows easily. 
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(1.10) Theorem. (E-subordination). Let g~J/fP, f~oefq. Then the following condi- 
tions are equivalent: 

(1) g is E-subordinate to f i.e., 5~gP~5~y p, 

(2) there exists ~ ( p  • q) L2, Msj such that g = S ~ dEq f, 
f2 

(3) there exists ~ ( p  • q) L2, ~tss such that for any B 6 ~  

M=AB) = ~ ~ .dM~,  M==(~)= ~ ~.  dM~e. ~*. 
B B 

We note that any �9 satisfying (2) also satisfies (3), and conversely. Hence, 
cf. (1.8), (1.9), [10; Section 5], for g ~ P  and f ~ f q ,  the following condit ions are 
equivalent:  

(1) g is E-subordinate  to f 

(1.11) (2) g =  ~(dMgy.dMffc)dEqf, 

(3) Mgg (B) = ~ (dMgf. dM~). dMff. (dMgf. dM~)*, B ~ ~ .  
R 

Finally, we come to our  extension of Kolmogorov ' s  theorem on mutual  sub- 
ordination.  

(1.12) Theorem (Mutual E-subordination). Let (i) g ~ P ,  f ~ q ,  (ii) g be E-sub- 
ordinate to f (iii) q~g ~(p • q) L2. Mr~ be the isomorph of g, (iv) z = trace Ms;., (v) M'cy, ~, 
M'gg, ~, M'gl, ~, and M'lg,~ be respectively the matrices of Radon-Nikodym derivatives 
of the entries of myi, Mgg, Mg I, and Mfg with respect to z. Then 

(a) the following conditions are equivalen t 
(1) f is E-subordinate to g, 
(2) rank (~bg. M}I,~ ~*) = rank M)s ' ,) a.e. (z), 
(3) rank M'gg, ~= rank M'll, ~ a.e. (z), 
(4) rank (dMg I �9 dM~) = rank M)I , ,  a.e. (z), 
(5) rankM'=l ' ~ = r a n k M ) l , ,  a.e. (~), 
(6) MII~Mgl .  

(b) if f and g are mutually E-subordinate, then 
(1) MgI~MII ~Mgy, MI,~Mr and 
(2) dMlg. dM~g=(dMgy, dMffl) # a.e. (z). 

Proof. (a) "(2).*:~(4)": By (1.11) (2) and [10; 4.5] it follows that #g-dMg I �9 
d M ~  (mod M~z). Further, by definition, dM=~ . d M ~ =  M',~, , . M) ; , ,  a.e. (~). Thus 

(**) 

But the rank ofR.  H. S. (**) is easily proven to be the same as the rank ofdMg I �9 dM~ 
a.e .  (z). 
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"(2) ~*- (3)": Since 
g = ~ ~g dEqf, 

t t it follows readily from (1.5) (b) (c) that Mgg, ,=  ~g .M):, ~. cb* a.e. (z). 
" (1 )~  (4)": Let 

Z(aO=(dM,:.  dM~)(o), ~(oO=(dM:g. dML)(~  ) a.e. (z). 

Then by (1.11) (2) and the substitution property (1.5) (d) 

f =  ~ ~P . dE" g = ~ ~ Z" dEq f �9 

Hence by (1.1) and (1.5) (b) (c) 

M::(B)=(I  ~ Z dEq f, ~ I-dEq f ) =  ~ 7 j Z dM::, 
B B B 

Hence 
M'ff,, = 7 j Z M':r a.e. (z). 

Hence 

B e ~ .  

rank M'r < rank )( __< rank M'r a.e. (z), 

where the first inequality is from the preceding equation, and the second inequality 
is from the definition of Z. 

Next, "(4)=~ (1)". Let ~ = Z # a.e. (z). Then (~)~)(o)= projection onto the range 
of M'r a.e. (z). Similarly as in [10; 3.3(b)] ~ z e ( q x q ) L 2 ,  M:: implies 
~ e ( q  x p)L2, Mg~. Hence by (1.6) and (1.5)(d) 

f =  S 2 )~ Eq(dco) f = ~ Z .  EV(dco)g. 
f2 ~2 

Thus by (1.10)(2)f is E-subordinate to g. 

"(4),~(5)": Since M)~,  is nonnegative hermitian with the same range as 
M):, ,  a.e. (z), it follows readily that rank (dMg:. dM~) = rank (M'g:, ~) a.e. (z). 

Finally, " ( 4 ) ~  (6)": This is immediate from [10; 5.5]. 

(b) (1) This is immediate from (1.9) and (1.12)(a)(4). 
(b)(2) We have by (1.5) (b) (c) for B E ~  

Mf:(B) = (E q (B) f, E q (B) f )  = (I 7j dEP g, ~ I .  dE~ = ~ 7 t dMg:.  
B B B 

Hence M'r ~= ~P.M'~r a.e. (z). But range(Tt)=(kernel M'gr ~)• a.e. (z) since Mgg 
and M:~ are mutually strongly a.c. Hence 

dM::.  d ~  71 ~/r, ~/t' * = 7~=dM:g. dM~g a.e. (z). 
a r X g f  ~ -  ~ g f ,  z " ~ * ~ g f ,  r 

Thus 
dM:g. dMg~g = dM::.  dM~: = (dMg:. dM~) ~ a.e. (z), 

where the last equality holds since M:: and Mg: are mutually strongly a.c., see 
[10; 5.5 3. // 
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w 2. Lca Groups 

(2.1) Definition. (a) A q-variate mean-continuous weakly stationary stochastic 
process (WSSP)  over an Ica group X (under the operation +)  is a function (f~)x ~ x, 
such that (i) f ~ s ~ q  for each x e X  (g/t ~ is a fixed Hilbert space), (ii) the q x q Gram 
matrix (f~,fy)=F~_y depends only on x - y ,  (iii) ( f , - f y , f x - f y ) - , O  as x - y ~ O  
(mean-continuity). 

(b) The p-dimensional temporal domain d/[f of a q-variate WSSP ( f~)~x is the 
closed subspace of WP spanned by the f , s  ovf q with p x q matrix coefficients. 

(c) Let (f~)x~x and (g~)~x be q and p-variate WSSP's respectively over the 
same X. We say that ( fx)~x  and (g~)~x are stationarily cross-correlated if (f~, gy) 
depends only on x -  y. 

In many papers, e.g. [14], (f~)x~x is referred to as a homogeneous random .field. 

(2.2) Lemma. Let ( f~)~x,  (g~)~x, (h~)~x, ... be q, p, r, ...-variate WSSP's, which 
are pairwise stationarily correlated. Then there exists a strongly continuous group 
of unitary operators (Ux)x~ x on 3 f  such that for each x 6 X ,  we have 

(A) f~ = U~(q)fo, g~ = U~ p) go, h~ = U~ r) h o ..... 

where U(~ q) is the inflation of U x to ~ q  (U~q) fo-= (Ux f~)i q= 1), etc. 

Proof The proof of the existence of a not necessarily unique unitary group 
with property (A) follows as in Kolmogorov's paper [5] or as in the reproof of 
this result in [2; 1.1, 1.2]. The strong continuity of the group (U~)x~ x follows from 
the assumed mean continuity of each WSSP. // 

Let X be an lca group. A continuous complex-valued function co(x) on X 
(denoted I-x, co]) is called a character on X if [x+y,  co]= [x, co]. [y, co] and 
[[x, coil = 1. The set Y2 of characters is again an lca group under multiplication 
with respect to the dual topology, see [-8; p. 408 II]. By the Borel subsets of an 
lca group we shall mean the smallest o--algebra generated by its open subsets 
(rather than the a-ring generated by compact subsets, cf. [3; 111], [4; 118]). We 
now recall the generalization of Stone's theorem [1; Th. 1] [-8; 419] and of Boch- 
ner's theorem [1; I, II] [8; 410]. 

(2.3) Stone's Theorem. Let (U~)~ x be a weakly continuous family of unitary opera- 
tors on a Hilbert space 2/f over an Ica group X. Then there exists a unique spectral 
measure E(" ) defined on the Borel subsets of the dual group Y2 such that 

c~= S [-x, co] e(dco) 
O 

(the conjugate of [x, co] is used here to conform with the usual conventions for 
stochastic processes). 

(2.4) Boehner's Theorem. (a) f is a continuous positive definite complex-valued 
function on the lca group X *> there exists a bounded non-negative measure m on the 
Borel subsets ~J of the dual group Y2 such that for all x ~ X  

f(x)---- ~ Ix, co] m(dco). 
g? 
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(b) I f  for all x e X  

f Ex, m(d o)= [x, o] 

where m and # are bounded complex measures on ~ ,  then m = #. 

(2.5) Lemma (equality of temporal and spectral subspaces). Let (U~)~ x be the 
shift group of the q-variate WSSP (f~)x~X so that U~~ and let E be the 
spectral measure for this group. Then for each p>= 1, J/gcP =~9~ o . 

Proof It is easy to prove that 

f x=  ~ [x, col. I .  Eq(dco) fo 
Y2 

(stochastic integral), x ~ X .  It readily follows that for each p x q matrix A, 

A f t =  ~ (~ ,  ~ A)Eq(dco)fo~S~f o. 
0 

It also readily follows that ~ f  ~ ~o p- 

Since U ~ ( ~ ' ~ ) = ~ ]  (i.e. Jr reduces U) it may be shown that for BeN,  
Eq(B)fo~,/r and is unique. Hence for each p x q mat r ix& AEq(B) foe , /~ ,  and 
thus // 

w 3. Subordination of Weakly Stationary Processes 

(3.1) Definition. Let (fx)x~x and (gx)x~x be q and p-variate WSSP's over X, 
having the same shift group (Ux)x~ x, with spectral measure E. Then the matrix- 
valued measures Mio/o, M~o/o defined in (1.1) are called the (auto-)spectral 
measure of ( fx )~x  and the (cross-)spectral measure of (gx)~x with respect to 

(3.2) Definition. Let (g~)~x, (f~)x~x be p and q-variate WSSP's which are sta- 
tionarily cross-correlated. We say that (g~)~x is subordinate to (f~)x~x if and only 
if J/~ ~_ d//~ (equivalently, if J///~ ___ J///~ for some integer n >= 1). 

From (2.5) we obtain the following basic lemma. 

(3.3) Lemma. Let (g~)~x and (f~)x~x be p and q-variate WSSP's having a com- 
mon shift group (U~)~ x with spectral measure E. Then (g~),~x is subordinate to 
(f~)x~x<:~go is E-subordinate to Jo. 

Let (g~)~x and ( f~)~x be p and q-variate WSSP's with common shift group 
(U~)~ x with spectral measure E. On applying theorems 1.10 and 1.12 to f= fo  
and g = go we at once have: 

(3.4) Theorem. Let (g~)x~X, ( f~)~ x be p and q-variate WS S P' s with common shift 
group (U~,)~x having spectral measure E, and let g =go,  f =fo. Then 

(a) any one of the conditions (1)-(3) of(1.10) is necessary and sufficient for the 
subordination of (gx)x~ x to ( f~)~x,  
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(b) if (gx)x~ x is subordinate to ( fx )~x ,  any one of the conditions (1 ) -  (6) of(1.12) 
is necessary and sufficient for the mutual subordination of (g~)x~ x and ( f~)~x.  

Theorem (3.4) generalizes Kolmogorov's  original theorems [5, Thins. 8 - 10] 
concerning simple discrete parameter processes, i.e., with q = p = l  and X =  
{integers}. 

w 4. Applications 
We shall now assume that the reader is familiar with the fundamentals of the 

prediction theory of multivariate WSSP's over the group of integers, - oo < n < oo ; 
cf., e.g., [7] or [13; Section 6]. 

For  the following application it is convenient first to quote a slightly general- 
ized version of the condition for pure non-determinism [13; 6.133. 

(4.1) Theorem. Let (f,)~-o~ be a q-variate WSSP. Then each of the following condi- 
tions is equivalent to the pure non-determinism of (f=)~_| 

(a) (f=)~-~o is a one-sided moving average: 

f ,  = ~ Ak dP,_k, 
k=O 

A k are q x p matrices, O, ~ ~ P ,  (d?m, 4),) = 3,,, K, 

k=o 
(b) jr oo = {0}. 

In the following theorem we prove that matrix-valued L ~ functions have 
constant rank a.e. (Lebesgue), without recourse to analytic extension, see 
[6; 2.3, 2.5]. 

(4.2) Theorem. I f  �9 ~ (p x q) L ~ then rank (~ (e i 0)) = const a.e. (L = Lebesgue 
measure). 

Proof By assumption, 

49 =l.i.m. ~ A k eik~ 
0 

in L 2 (f2 = (0, 2 n], N = Borel subsets, Lebesgue measure), where the Ak'S are p x q 
matricial Fourier coefficients of 4~ and 

IAkl2< oo. 
0 

Let (g,)~ ~ be an arbitrary q-variate orthonormal sequence, i.e., (gin, g,)= 3m," I, 
with shift operator U, having spectral measure E. Since 

e-  TM o, dMg ~ go = (gin, go) = 3m O" I,  
~2 
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it follows from (2.4) (b) that 

1 
M g ~  g~ = 2rE I .L .  

Let 

fn = ~" A k g n _  k . 
k=O 

It readily follows that 

Hence by (1.5)(c), 

oo 

fo=~(~o Akeik~ 

Myofo (B)=(EP (B) fo, Ee (B) fo)= 2~ ~ (~o Akeik~ " (~o Akeik~ dL. 

Further by (3.1) (f,)~_ ~ is purely nondeterministic and is therefore mutually sub- 
ordinate with its orthogonal p-variate process (~,)~oo of "innovation vectors". 
But 

1 
(~b,,,~,)=b.,,G, so MOoOo=2~G.L. 

From (3.4) (b) (3) it follows that rank 

(~o Ak eik~ Ak eik~ G a.e. (L). // 

The following proof of the F. and M. Riesz Theorem is in essence due to 
D. Sarason. Its present very brief format, emphasizing subordination theorems, 
is due to Masani. 

(4.3) Theorem. Let 12 be a complex measure on the a-algebra of Borel subsets of 
(2 = (0, 2~z]. If the negative Fourier coefficients of 2 vanish, i.e., 

S e-i"~ d12=O, n < 0 ,  

then i 2 is a.c. with respect to Lebesgue measure. 
Proof All processes shall be discrete univariate. Let (x.)~o~ be a WSSP with 

spectral measure ]#l (total variation measure). Let 

Y. = S e-'"~ 1121) E(dO) x o . 

Then it is readily verified that ( y , ) ~  and (x,)~oo are mutually subordinate (Show 
x _ y [13, stationarily correlated; next compute Myoro=l#l). Thus J/loo-J/l~, see 
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section 6] or [7, 2.10]. But 

(Xk, y,)= (~ e -k~~ E(dO) Xo, ~ e-~"~ [#F) E(dO) Xo) 

= ~e("-k)i~ if n>k. 

Thus the remote past ~'~oo_l_J/g~=Jr But this implies J/g~_| Hence 
(x,)~oo is purely non-deterministic. Hence as seen in the proof  of (4.2), I#1= 
Mxo~o~L. Hence # ~ I # I ~ L .  

We conclude the paper with a subordination proof of a theorem on wandering 
subspaces due to Robertson [9; Th. 1]. Let Vbe a unitary operator on the complex 
Hilbert space ~ .  X is said to be a wandering subspaee for Vifi t  is a subspace of W 
such that V"(X)_I_ V"(X) for all m + n. 

(4.4) Theorem. Let X and Ybe wandering subspaces for a unitary operator V such that 

(a) ~ vk(x)~_ ~ vk(g) 
k ~  -c~o k =  - c ~  

(b) dim (X)= dim (Y) < ~ .  

Then 

k =  --c~ k =  - - ~  

Proof. Let xl,. . . ,  X q and y l , . . . ,  yq be orthonormal bases for X and Y, respec- 
-t,,~q e~/gq x. =(V(q))" x o, y.=(Vtq)) ~ Yo Then tively. Let x o = (xi)/~= 1 e 54Qq, Yo - ty ~i= 1 , 

(x.)_~ and (Y.)-~oo are WSSP's which are stationarily correlated such that 

k =  - o o  k = l  

and ( x , ) ~  is subordinate to ( y , ) ~ .  But since 

e ' "~  dMxo~o = (x m, Xo)= 5,,. I = (y,,, Yo)-- ~ e-~m~ dMyoyo, 
Q 

it follows from (2.4) (a) (b) that we must have 

B 1 Mxoxo(B)=Myoyo( )=~--~ ~a I ' d L  

for each Borel subset B of f2 = (0, 2 ~z] (I = q • q identity, L = Lebesgue measure). 
Hence by (3.4) (b) (3), (y,)~ ~o is subordinate to ( x , ) ~ .  // 

Note added in proof We can strengthen Theorem (4.3) on noting in the proof that 1#1 is the spectral 
measure of a univariate purely non-deterministic process and thus by (4.1) and (4.2) the rank of the 
one-by-one matrix-valued function dllt[/dL(O) is a constant a.e. (L). Thus either # is identically zero 
or/~ and L are mutually a. c, Further, in (4.2) it is not true that range ~ (e i~ = const a. e. (L). For example, 

let ~ ( J ~  [ r  ~ d0 

e2iOl" 

Then range r176 ~(e i~ if 01 .02 . 
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