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Sample Path Properties of Processes 
with Stable Components 

W. E. PRU~TT* and S. J. TAYLOR 

Summary. In this paper, processes in R d of the form X(t)= (X 1 (t), X 2 (t) . . . . .  Xs(t)), where X i (t) is 
a stable process of index ~i in Euclidean space of dimension dl and d= d 1 +...  + dN, are considered. 
The asymptotic behaviour of the first passage time out of a sphere, and of the sojourn time in a sphere 
is established. Properties of the space-time process (X~(t), t) in R T M  are obtained when X~(t) is a 
stable process in R a. For each of these processes, a Hausdorff measure function ~p (h) is found such 
that the range set R(s) of the sample path on [-0, s] has Hausdorff q~-measure cs for a suitable finite 
positive c. 

1. Introduction 

The object  of the presen t  pape r  is to invest igate  a class of  M a r k o v  processes  
in R d with s t a t iona ry  independen t  increments .  Suppose  X i(t) is a s table  process  
of  index ~i in Eucl idean  space of  d imens ion  di for i = 1, 2, . . . ,  N. Then,  if the X~ (t) 
are independen t ,  the process  

x (t) = ( x ,  (t), x 2  (t) . . . . .  xN (t)) 

in R d, where  d = d 1 + d 2 + . . .  + dN, and the d~-dimensional subspaces  in which the 
X i (t) t ake  their  values are  o r thogona l ,  is cal led a process  with s table  componen t s .  
W e  m a y  assume,  wi thou t  loss of  general i ty,  tha t  the indices a i are all different, 
and  tha t  

~ N < ~ N - 1  < " "  <~2  <~1" (1.1) 

Processes  of  this type p rov ide  an interes t ing class of  examples  i l lus t ra t ing  the 
genera l  theory  of  M a r k o v  processes.  The case d 1 = d 2 = 1, d =  2 arose  na tu ra l ly  
in [5]  as a tool  for ob ta in ing  in fo rmat ion  abou t  the col l is ion set of  two independen t  
s table  processes.  I t  turns  out  tha t  mos t  of  the poss ib le  k inds  of  behav iou r  for 
general  N and  d are  a l r eady  ob t a inab l e  when N = 2 = d (and the general  proofs  are 
no t  much  ha rde r  than  this case) so we can i l lust ra te  the general  results  ob t a ined  
by  descr ib ing  them in the  p l ana r  case. 

W e  cons ider  the first passage t ime process  

P ( a ) = P ( a , o ~ ) = i n f { t :  [X( t ,  co)[>=a}, 0 _ < a < ~ ;  (1.2) 

and  the so journ  t ime process,  

oo 

T ( a ) =  T(a ,  ~o)= S I a (X ( t ,  co))dt ,  0 <  a <  oo, (1.3) 
0 

where  I a is the ind ica to r  funct ion of  the c losed sphere  of  rad ius  a, centre  the  
origin.  Now,  if 1 < a2 < ai  =< 2, and  X ( t ) = ( X l ( t ) ,  X 2 (t)) is the p l ana r  process  with 
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1-dimensional components  Xl(t) ,  X2(t), these components  are recurrent while 
X( t )  is transient. We can state the asymptotic laws for P(a) and T(a) as follows. 

Theorem 1.1. Let  1 < o~ 2 < o~ 1 ~_~ 2, d~ = d 2 = 1, N = 2, 

p l =  1 + ~ 2 ( 1 - 1 / c q ) ,  p 2 =  1 + ~ 1 ( 1 -  1/c%) (1.4) 
and 

qG(a) = a~ log ]log a]. (1.5) 

Then there are positive constants q ,  c2, c3, c 4 such that with probability one 

P(a) P(a) 
lim sup - c I ; lim sup = c 2; 

T(a) T(a) 
lim sup = c 3 ; lim sup - -  - c,,. 

. . o  qgp~(a) . ~ .  q)p2 (a) 

The relationship between these parameters  in this case is 

~2 < p 2 < p l  <C( 1 

and we have in Theorem 1.1 statements of four different rates of growth. But 
when cq -- ~2 < 2, the planar process is stable, and all these rates become the same. 
The asymptotic  behaviour of P(a) and T(a) for general processes with stable 
components  is given in Theorems 4.1, 5.1, 7.1, and 7.2 (except for some critical 
cases discussed in Section 9). These include Theorem 1.1 as a special case. 

A related result is concerned with the correct Hausdorff  measure function for 
the range of the sample path X( t )  on [0, s]. Let the set of points in R d visited by 
the process up to time s be 

R ( s ) = R ( s ,  ~o)= {X(t ,  co): O<-t<s} .  

Theorem 1.2. Let  1 <e2<cq=<2,  d 1 = d 2 =  1, and Pl, 901(a) be as in (1.4) and 
(1.5). Then there is a positive constant c 5 such that 

q~o~ - m [R (s)] = c 5 s 

for  all s > 0 almost surely. 

In particular, this implies that the Hausdorff  dimension of the range of the 
sample paths is almost surely equal to Pl. It is worth pointing out that in the 
present case the parameters  defined by Blumenthal and Getoor  [1] are 

fl=~l, fl'=Pl. 

These authors showed that  the dimension of the range satisfies the inequality 

dim e (s) >__ fl' 

almost surely; Theorem 1.2 shows that there is actually equality here. This adds 
some weight to the conjecture that dim R(s)=f l '  for arbitrary processes with 
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stationary, independent increments; this has recently been proved by Horowitz 
(personal communication) for subordinators.* 

The correct Hausdorff measure function for the range of X(t )  in the general 
case is given in Theorem 6.1 (with the critical cases again in Section 9). When 
a~ < 1, it is a consequence of Theorem 6.1 that the dimension of the range is o~ 1. 
This would also follow from [1] since when ~1 < 1, the indices become 

and for the case fl < 1, Blumenthal and Getoor  proved that 

f l '<dim R(s)<fl  

almost surely. Results corresponding to Theorems 1.1, 1.2 were obtained in [15] 
for the transient stable processes. 

Now, if we replace X 2 (t) by the degenerate process X 2 (t)-= t, we can obtain 
information about the space-time process (X 1 (t), t) whose range can be thought 
of as the graph of the process X 1 (t). The dimensional number of the graph was 
obtained by Taylor [13] for Brownian motion, and by Blumenthal, Getoor  [2] 
for a symmetric stable process, while Jain and Pruitt [6] obtained the correct 
measure function for the transient case ~a <dl .  The techniques of the present 
paper allow us to obtain the correct Hausdorff measure function for the graph 
of a point recurrent stable process in R a. Define, in R 2, the set of points on the 
graph up to time s, 

G(s)= G(s, {(x(t, co), t): o<_t<_s}, 
and let 

goo, p (a) = aS(log Ilog a[) p. 

Theorem 1.3. Let  X (t) be a stable process o f  index a, 1 < o~ < 2, in R ~. Then there 
is a positive constant c 6 such that 

~02 - 1/:q 1/a - -  m [-G (s)]  : c 6 s ,  

for  all s > 0 almost surely. 

The proof of Theorem 1.3 is in Section 8. The correct measure function for 
the graph of a general process with stable components is also obtained. 

Throughout  this paper we rely extensively on the scaling property of stable 
processes, so we have to completely exclude the case where one of the components 
does not satisfy this property. The scaling property can only fail if ~ = 1 for some i, 
so if one of the components is Cauchy, we assume it to be such that it satisfies 
the scaling property. However, the form of the results is often different in the 
critical cases where one of the components is interval recurrent, but not point 
recurrent, that is, ei = d~ = 1 or 2 for some i. Most of the results in Sections 5 to 7 
exclude this critical case, which we take up in a final Section 9. 

* Added in proof Horowitz has shown that the dimension for subordinators is a and not  fl' (see 
[1] for the definition). Furthermore,  there are subordinators with cr + fl' so that the dimension cannot  
be fl' in general. We now have an index which gives the dimension for all processes with stationary 
independent increments and this index is equal to fl' at least for all symmetric processes with f l '<  d. 

19" 



270 W.E.  Pruitt and S. J. Taylor: 

2. Preliminaries 
The d-dimensional characteristic function of a stable process X(t )  of index c~ 

has the form exp [t ~ (z)] where 

tp (z) = i(b, z ) -  c 7 I z I ~ ~ w~ (z, O) # (dO), 
Sa 

with b e R  n, c7>0,  

w~(z ,O)=[1- i sgn ( z ,O) tanne /2] l ( z / I z ] ,O) l  ~, ~+1,  

wl (z, 0)--  ](z/I z I, 0) l + (2 i/n) (z/[ z I, 0) log I (z, 0) 1, 

and # is a probability measure on the surface of the unit sphere Sa in R d [7]. We 
shall assume that # is not supported by a proper subspace of R d, and that b = 0, 
c 7 = 1. The process is called symmetric when/~ is uniform. It is assumed that all 
the processes considered have been defined so as to have sample functions X(t )  
which are right continuous and have left limits everywhere. The processes will 
also have the strong Markov property, which we will use extensively without 
specific mention. 

The density function p( t , x )  of X(t )  is continuous and bounded in x for 
fixed t. It also satisfies the scaling property (except for some nonsymmetric 
processes of index 1) 

p(t, x ) = p ( r t ,  rl/~x) r d/~ (2.1) 

for all r>0 ,  or in terms of the process itself, X(r t )  and rl/~X(t) have the same 
distribution. This scaling property will be used extensively and so the processes 
of index 1 for which it fails will be excluded throughout the paper. The stable 
processes have been classified in [15] as being of type A if p (1, 0)> 0 and of type 
B otherwise. When ~> 1, only processes of type A can occur. 

The first passage time and sojourn time processes were defined in (1.2) and 
(1.3). We shall also need to consider the sojourn time of the process in a sphere 
of radius a up to time s, 

s 

T(a, s)= T(a, s, co)= ~ I , (X( t ,  o)))dt. (2.2) 
o 

In the case d = 1 and 1 < ~ < 2, there is a local time for the process which we denote 
by L(x,  s) = L(x,  s, r which satisfies 

T(a,s ,o~)= 5 L(x,  s, co)dx. 
Ixl<=a 

The existence and some basic properties of the local time are proved in [3]. 

Finally, we quote some lemmas which will be used. The first combines a 
result due to Dynkin [4] on the range of a stable subordinator and one due to 
Stone [12] relating the zero set of a stable process to the closure of the range 
of a stable subordinator. The other two are in [15]. 

Lemma 2.1. Let  X( t )  be a stable process in R 1 of  index ~ > 1. There is a positive 
constant c 8 such that the probability that an interval [u, v) contains no zero of  X( t )  
is equal to ao 

c8 S s - l ( s  - 1)-l+l/~ds. 
v/u 
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Lemma 2.2. Let X(t) be a stable process of type A in R e of index c~ < d. There 
are positive constants c9, clo , and 20 such that for all 2 >__ 20 

e-Cg~< p[p(a)> 2a~] < p[r (a )>  2a~]<=e -clo~ 

Lemma 2.3. Let X(t) be a stable process of type B in R e of index ~ < 1. There 
are positive constants ca1, c12, and 2o such that for all 2 > 2o, if fl = 1/(1 - e ) ,  

exp ( - c112 t~) < P [P(a) => 2 a ~] < P [- T(a) > 2 a ~] < exp ( - q2  2t~) �9 

3. The Sojourn Time T(a, s) for ~ > d =  1 

In the case of  a one-dimensional  stable process X(t) which is point  recurrent,  
T(a) is a lmost  surely infinite. Since one or more  of the componen t s  of  our  process 
m a y  be of this type we require informat ion  abou t  the tail of  the dis tr ibut ion of 
T(a, s) at least for the case where s > a ~. (The other  case when s is much  smaller  
than  a ~ is of  less interest  for then T(a, s) is likely to be s). This is the objective of 
the present  section. We start  with a l emma  which is of some independent  interest�9 
It  turns out  to be just  as easy to prove  in a more  general  context,  and shows that,  
under  very weak  assumpt ions ,  the tail of the dis tr ibut ion of T(a, s) is not  greater  
than  negative exponential .  We state the result in R d, though it obviously  holds in 
any n o r m e d  linear space�9 Fo r  any set B c R e, define the difference set D = D (B) by 

D={z~Re: z = x - y , x ,  yeB} .  

Lemma 3.1. Let X(t) be a process in R e with stationary independent increments, 
and let TB(S), TD(S ) denote the sojourn times of X(t) in a Borel set B and its difference 
set D, up to time s (0<s__< +oo).  Then, for any 0 < 6 < 1 ,  there is a 20=20(8)  such 
that if x e B  and O<ETD(s)< 0% 

PX[TB(s)>=2ETD(s)]<=e - ~  for 2 > 2 0 .  

Remark. If  B is a closed set, and the sample  paths  are right cont inuous,  it is 
clear that  the inequali ty holds for all s tart ing points  x e R  e, since we can restar t  
the process at o-, the hit t ing t ime of B. 

Proof The  first step is to est imate the m o m e n t s  of  T B (s). 

E~{TB(s)} "= .~P~[X( t l )~B , i=l ,  . ,n]dt ,  dr, 
0 0 

=n! ~. . .~ P~[X(t~)eB, i = l , . . . , n ] d q . . . d t ,  
O <=tl <=... <=tn<_s 

<=n! S " ' ~  Px[X(ti) ~ B , i = l , ' ' ' , n - 1 ]  
O~t l  ~. ." <=tn~S 

�9 po [ X ( t , -  tn_ l )eD ] dt 1 ... dt n 

<=n!E~ ~. . .~ Px[X(tl)eB, i = l , . . . , n - 1 ] d t l . . . d t , _ l  

=n E T~(s). E~ { T~(s) y -~. 
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By induction, we obtain E~{ T B (s)}" < n!{E TD (s)}" for x e B. Now let k = �89 + 6-1), 
u = [k E T o (s)]- 1, and we have 

U n 

E~exp(uT~(s))=EX~ hi-  {TB(s)}"< ~, k-n=c13, 
n = O  n = O  

Finally, by the basic inequality ([8], p. 157), applied to the function g (a) = exp (u a), 

px[TB(s)>=2ETo(s)]<--_e-Z/kEXexp(uTB(s))<=c13e-;~ for 2>2o(6). 

Corollary. For any process in R e with stationary independent increments, if 
T(a, s) is the sojourn time in a closed sphere of radius a up to time s, then there is a 
2o such that, if O<ET(2a,  s)< o% 

PX[T(a,s)>=2ET(2a, s)]<=e-~a for 2_>_2 o. 

Proof This follows from the lemma, with 6 - 1 - 3 ,  by observing that when B is a 
closed sphere radius a, then D(B) is a closed sphere radius 2a centred at the 
origin. 

Lemma 3.2. Let X(t) be a stable process in R 1 of index ~ > 1. Then there are 
positive constants c14 , c 15 such that for s > 2 a ~, 

q 4 a s l - ' / ~ < E { T ( a ,  s)}<clsasl-1/L 

The restriction on s and a is only needed in the lower bound. 

Proof By the scaling property (2.1) and the boundedness of p(1, x), 

s 8 

E {T(a, s)} = ~ P [IX(t)[ ~ a] at = ~ P [IX(l)[ ~ a t -1/~] dt 
0 0 

s 

S C16 a t -  11~ d t=  c15 a s I - 1/~. 
0 

For the lower bound, we use the fact that p (1, x) is bounded below for x ~ [ -  1, 1] 
since X(t) is necessarily of type A. Thus 

E{T(a , s ) }= P[lX(1) l<at-1 /~]dt  > S qva t -1 /~d t  
0 a ~ 

>=c14as 1-1/~, since s>2aL 

Remark. For the processes included in Lemma 3.2, T(a, s) ~ oo a.s. as s ~ os 
since X(t) is recurrent. The result shows how ET(a, s) grows as s increases. We 
could immediately apply Lemma 3.1 and its Corollary to Lemma 3.2 to obtain a 
negative exponential upper bound for the tail of the T(a, s) distribution. However, 
this would give a bound of the wrong order of magnitude. We can do better by 
using the scaling property, and splitting the interval (0, s) into a suitable number 
of smaller pieces. 
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L e m m a  3.3. Let X(t) be a stable process in R 1 of index ~> 1. Then there are 
positive constants c18, c19 , c 20 and 20 such that for all 2 with 20 <= 2 <= q8 a-  t sl/~, 

exp ( -  q9 ~?) < P IT(a, s) >= 2 a s 1-1/~] < exp ( -  c2o 2~). 

Proof. We first obtain the lower bound.  By L e m m a  2.1, 

P IX(t) = 0 for some t e  [u, 2u)] = c21 > 0, (3.1) 

for all u > 0. The real number  u will be chosen later so as to be relatively large 
compared  to a ~, but  small compared  to s. The  next step is to see that  T(a, u) is 
not  too small. Choose c22 so that  it is a continuity point  of the distribution (it 
seems certain that  the distribution of L(0, 1) is continuous,  but  we do not  stop 
to prove this) of the local t ime L(0, 1) for X(t) and so that  

P [L(0, 1)>= c22 ] ~ 1 - c21/3. 

This is possible by Theorem 1 of [12]. The scaling proper ty  (2.1) implies that  
T(a, u) and u T(a u -1/~, 1) have the same distribution. Therefore  

P IT(a,  u) __> 2 c 22 a u 1 - 1/~] = p [(2 a) -  1 ul/~ T(a u - 1/~, 1) _> c 22]. 

The r andom variable on the left of the inequality in the last expression converges 
almost surely to L(0, 1) as au-a/ '-~O since the local t ime is continuous.  Since 
this implies convergence in distribution, there is an e > 0 such that  

P IT(a, u) _-> 2 C22 a u 1 - 1/ct] ~ 1 - -  2 C 2 1 / 3 ,  

whenever  a u-1/~<e.  Recalling (3.1), we have 

P IT(a,  u )>2c22  aul-1/~; X ( t ) = 0  for some te[u, 2u)]>c21/3 (3.2) 

for all a, u such that  au-1/~<e. Now let zo=0 ,  and 

Zk=inf{t>Zk_l +U: X ( t ) = 0 } ,  
Zk - 1 q-u 

rk= I.(X(t))dt 

Re-start ing the process at each zk, we see from (3.2) that  

(�89 c21),<PETk> 2C22 au 1-1/~, Zk_Zk_l <2U, k =  1, . . . ,  n] 

< P [ T(a, 2n u) > 2n c22 a u l -  a/~], 

so long as au-1/~<e. Letting n=[,U/c~22], u=-s/2n, c18=ec22/2 TM, and q9  = 
log (3/c 21)/dE 2; 

(3S exp(- -  ca9 2 ~) <= ~ P  IT(a, 2n u)>(2n) TM C22 a(2nu) 1-1/~] 

< P  [T(a, s ) > 2  a s 1-1/~] 

for C22 ~,'~Cls a -1 s 1/~. 
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For  the upper bound, we first use the estimate of Lemma 3.2 in the Corollary 
to Lemma  3.1 to obtain 

P[-T(2a, w)> 4qs  a 2 wl-X/~] <=e - ~/2, 

so that exp [v a -1 w -~+a/~ T(2 a, w)] has an expectation which is bounded for all 
a and w whenever v is fixed and sufficiently small. Fix such a value of v and let 
e C25 be a bound on the expectation. 

Let % = 0, and define inductively: 

ak=inf{ t>ak_l  +w:  [X(t)[<a}, 
a k - I  d-W 

sk= I2o(x(t)-x(o _0)dt. 
tTk - 1  

The random variables S~, $2 . . . .  are independent, identically distributed with the 
same distribution as T(2a, w). Since [X(trk) ] < a, the sphere of radius 2 a, centre 
at X (~k), contains the sphere of radius a centered at the origin. Hence T(a, s) is 
no larger than S 1 + S 2 + . . .  + S, where w = s/n. Putting n = [-(v 2/2c23) ~] gives 

P[T(a, s)> 2asa-X/~]<=P[-S~ +$2+ ... + S,>=2a(nw) 1-1/~] 

< e x p ( _ v 2 n  1-1/~)[-E{expva-1 w-1+1/~ T(2a, w)}]", 

i - -~  ~ - ~ - - i  on using the basic inequality. If 2>2c23/v , and we take C2o=C2a v 2 this 
gives 

P[ r(a, s) > 2 a sl-1/~] < exp { - n ( v  2 n-l/~-c23)} 

< e - ~  , < e-C~o ~ 

Remark. In the tail estimate of Lemma  3.3, the upper bound does not require 
2 to be bounded above. However  our proof  of the lower estimate did not allow 
2 to be arbitrarily large. This is not surprising since, if 2 a s -1 / , >  1, the probabili ty 
must be zero. 

4. First Passage Times 

We first show that the exponential estimates given by Lemma 2.2 for the tail 
of the distribution of P (a) are still valid when ~ > d. Note, however, T(a) will be 
infinite in this case since the process is neighbourhood-recurrent.  

Lemma 4.1. Let X(t) be a stable process in R d with index ~ >= d. There are positive 
constants c24 , c25 , and 20 such that for 2_->20, 

e . . . .  ~<P[P(a)>2a~]<e -c~Sz. 

Proof The proof  of the lower bound given in [15], pp. 1238/39, uses only the 
fact that the process is type A which must be the case here since ~ > d. Thus the 
same proof  may be used now. As for the upper bound, if n = [-2] - 1, then 

P[-P(a)>=2 a ~] = P[-P(1) => 2] 

<=P[-[X(i)-X(i- 1)1 =< 2, i =  1 . . . .  , n] 

and this gives the desired result if czs is chosen less than 10g(1/c26 ). 
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The asymptotic behaviour of the first passage times for a general process 
with stable components can now be easily obtained from the corresponding 
information for the stable processes. The process under consideration will be 

x (t) = ( x l ( t ) ,  x ~  (t), . . . ,  x , r  

where the X~(t) are mutually independent stable processes with Xr being in 
dimension d i and having index c~i. We recall the convention (1.1) that 

O~N<O~N-I < "'" <~2 <~1" 
The notation ~(a), ~(a) will be used for the first passage time and sojourn time 
processes derived from the process Xi(t). Since the form of the tail of the distribu- 
tion of P(a) for a stable process depends on whether the process is of type A or 
type B it is clear that the types of the components will be relevant now. It is also 
clear that the component Xl(t ) with the largest index will be dominant since, for 
small t, [Xa(t)[ is likely to be much larger than the other components. 

Lemma 4.2. Let X(t) be a process with stable components satisfying (1.1). I f  
Xl(t ) is of type A and i is the smallest index such that Xi(t) is of type B, then there 
are positive constants c27 , cEs, and 2 o such that for a<= 1 and 2o<=2 <=a 1-~l/~i, 

e-C27 z__<p [-P (a) => 2 a ~1] =< e -c28 ~ 

The upper restriction on 2 is needed only for the lower bound and is not needed even 
then if all of the Xi(t) are of type A. I f  Xl(t ) is of type B, then there are positive 
constants c29 and C3o such that for aN 1 and all ,~ sufficiently large 

exp ( - c29 20) < P [P(a) >__ 2 a ~1] __< exp ( - C3o 20), 

where fl = 1/(1 - ~1). 

Proof. These results follow by simply applying the bounds given in Lemmas 
2.2, 2.3, and 4.1 to the inclusion relations 

i~_1 [P~(N)>=2a~I] C[P(a)>--2a~]c[P~(a)>=2a~']" 

In dealing with the first passage time process, it is often convenient to utilize 
the supremum process 

M(s)-- sup [X(t)l. 
O~_t<_s 

This process is related in a trivial way to the first passage time process, and the 
estimates of Lemma 4.2 lead directly to estimates on 

P[M(s)<=2s 1/'~] 

for s__< 1 and 2 sufficiently small. But we shall also need estimates on the other 
tail of the distribution of M(s). 

Lemma 4.3. Let X(t) be a stable process in R e of index ~. Then there is a positive 
constant 2 o such that for all s and 2 > 2o, 

P[ lX  (s)l > R si/~J <:P[M (s) > R si/~-l <=2 dP [[X (s)l > s sl/~/2d]. 
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Proof. All three probabilities are independent of s by the scaling property, 
and the left hand inequality is trivial. Letting Y~(t) denote the projection of X(t) 
on the i th coordinate axis and S i (t) the corresponding supremum process, we have 

d 

[ M ( 1 ) > 2 ] c  U [Si(1)> 2/d]; [IY~(1)I> 2/2d]c[IX(1)l> 2/Rd] 
i=1 

and these inclusions reduce the d-dimensional case to the one-dimensional one. 
We shall therefore assume X(t) is in R x. By the scaling property, if re(t) denotes 
the median of X(t) 

�89 =P[X(1)  > t-1/~m(t)] 

so that m(t)=t~/'m(1) and Im(t)[<lm(1)[ for all t < l .  Now let t k ,=k2-"  for 
k=  1, 2 . . . .  ,2". For 2>2]m(1)[, the L6vy inequality ([8], p. 247) yields 

l_Fma2x ,X ,tk.)+ rn(1--tk")l> zj2~<=2P[IX ,1)[> 2/2] P 

o r  

P [max [X(t k.)l > 2] < 2P [IX(l)[ > 2/2]. (4.1) 
k<=2 n 

Finally, since X(t) has right continuous paths, 

P [M(1)> 2] = aim P [max IX(tk.)l >,~], (4.2) 
n~oo k=2 

and (4.1), (4.2) combine to give the right hand inequality of the lemma for d--1. 

Lemma 4.4. Let X(t) be a process with stable components satisfying (1.1). 
Then there is a positive constant c31 such that for all s<= 1 and all 2 

P[M(s)>2 S 1/~t]  ~C31 ~ -  �89 ~iv. 

Proof. For s < 1, and all 2 sufficiently large, 

N 

P E m (s) > 2 s t/~3 < ~ P [M i (s) > 2 s 1/~/N] 
i=1 

N 

< ~ 2 d i P [IX i (1)[> 2 s 1/~' - lm/2 N di] 
i=1 

N 

<__ ~ 2d~P[IX,(1)l> 2/2Nd,-l. 

The fact that 2~'-~P[[Xi(1)[>2] is bounded for any e > 0  is a consequence of 
Theorem 4.2 of [11] (this is presumably true even with e = 0, as it is in R 1, in which 
case the bound in the lemma could be improved to be c312-~"). This completes 
the proof of the lemma since it is trivially true for small 2. 

The tail estimates of Lemma 4.2 and 4.4 would now allow us to prove that if 
q~(a)=a'l(log [loga[) 1/~, where fl= 1 or 1/ (1-al )  according as Xl(t ) is of type A 
or type B, then for a suitable small c32 and all 5>0,  

P [  sup P(a)/~o(a)<c32]=O 
O<a<--5 
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by using standard Borel-Cantelli arguments. This would imply that when 7 is 
small P [ sup P(a)/~o(a)< c3z ] is small. At a later stage in the argument we will 

~,<a_<~ 

require quantitative estimates of these probabilities so we estimate them now. 
We make no attempt to obtain best possible results here. 

Lemma 4.5. Let X(t)  be a process with stable components satisfying (1.1). 
Then there are positive constants e32, C33, and 70 such that 

P [ sup P(a)/fp (a) < c32] < exp [ - c33 (log 1/7) ~] 
~,_-<a<,~ 

provided 0 < 7 < 70 and fi > 7 + where 

, , (a  ~ log [log a], /f Xl(t) is type A,  
qgta)=~a~(log Ilog al)l-% if Xl( t  ) is type B. 

Proof With Lemmas 4.2 and 4.4 at our disposal, we have all the necessary 
estimates so that we can follow the proof of Lemma 8 of [15] (pp. 1242/43). 
(Lemma 4.4 is required since the event H k defined on page 1243 should read 
{M(tk+l)> C26 ~/(tk)}. ) The only change necessary in the proof is that the upper 
estimate for qk becomes e -c34k, where e34=0~N/2~1. 

Theorem 4.1. Let X(t)  be a process with stable components satisfying (1.1). 
Then there is a positive constant c35 such that with probability one 

lira sup P(a) a~O ~ ~c35~ 

where q)(a) is as in Lemma 4.5. 

Proof Letting 7 ~ 0 in Lemma 4.5 shows that 

lim sup P(a)/q~ (a) > Caa 
a--*O 

with probability one. By Lemma 4.2, 

P [P(a)> c36 q)(a)] ~ exp(--2 log [log a I)= [tog al-  2 

if c36>_max[2c~81,(2C~oa)X-~l]. Letting ak=e -k and 
shows that 

lim sup P(ak)/~O (ak) < C36 
k---~ oo 

almost surely. But for ak+ 1 <a<ak ,  

P(a)<  P(ak) q~(ak) 
~0(a) = ~o(ak) ~o(ak+l) 

applying Borel-Cantelli 

and the latter ratio is bounded. Thus we have the desired lim sup positive and 
finite with probability one. The fact that it is constant follows from the Blumen- 
thai zero-one law. 
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5. Sojourn Times 

The results of  the last two sections can now be combined  to give est imates on 
the tail of  the so journ  t ime distributions.  But first we need to est imate the first 
m o m e n t  of  T(a). We use p to denote  the cons tant  pa of  Section 1, since P2 is not  
re levant  for the present.  

L e m m a  5.1. Let X (t) be a process with stable components satisfying (1.1), N => 2. 
Then there are positive constants ca7 and C3s such that for all s>-_a ~2, a<= 1, 

c37 a~' <= E { T(a, s)} < E { T(a)} < c 38 a% 

c37 aP <= E { T(a, s)} < E { T(a)} < c38 a p, 

where p = 1 + a z - c~2/~ 1. 

Proo f  If cq < dl, 

When  O{ 1 )da, 

/f  r < dl, 

/f  ~X 1 > d  I , 

c,o o0 

E { T(a)} = ~ P [IX(t)[ =<a] dt<= ~ P [IXl(1)[ <_a t -1/~'] dt 
0 0 

< ~ l d t +  c39(at-1/~l)a~dt=c38a ~l. 
0 aO;l 

oo 

E {T(a)} <= S P[ lX l (1 ) l<a t -1 /~ ' ]P[ lX2(1 ) l<a t -1 /~2]d t  
0 

a ct2 oo 

< ~ C4o a t -  i/a, d t + ~ c4i a 2 t -  ll~ - 11~2 d t 
0 act2 

C 3 8  a p. 

For  the lower bound,  when cq < dl, 

s N 

g {r(a ,  s)} > ~ I~l P [IXi(t)l <= a/N] dt 
0 i = 1  

a ~1 N 

>= I I-[ P[IXi(1) l<at-1/~*/N] dt 
0 i = 1  

~ C37 aal , 

since the probabi l i ty  of  being in the sphere of  radius 1/N, center the origin, is 
posi t ive for any  stable process.  If % > dl, 

a ~ N 

E { T ( a , s ) } >  ~ [ IP[lXi(1)]<=at-1/~ ' /N]dt  
�89 ~l i= 1 

act2 

>= ~ c42at-1/~'dt=c43(aO-21/~l- ia~l)  
~aCZl 

>c37 aP 
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for a < 1. In this part,  we have also used the fact that  Xa (t) must  be of  type A and 
so the densi ty of  X1(1 ) is bounded  below on the interval  [ , - 2 ,  2]. 

We need to est imate the tail of  the dis tr ibut ion of T(a, s) for the process  X ( t ) =  
(X l(t), X 2 (t), . . . ,  X N (t)). The  form of the tail is de termined by the first c o m p o n e n t  
when this is transient,  but  when Ctl>dl, the type of  the second c o m p o n e n t  is 
impor tan t .  The  four cases resulting are tabula ted  in the s ta tement  of  L e m m a  5.2. 
F o r  convenience we in t roduce a no ta t ion  

Xo (t) = (t), . . . ,  (t)) 

for the process with the first c o m p o n e n t  deleted, and Po (a) for the first passage 
t ime process  ob ta ined  f rom X o (t). 

L e m m a  5.2. Let  X (t) be a process with stable components satisfying (1.1), N > 2. 
Then there are positive constants c44, c45, c46 , c47 , and 20 such that for  a<=c44 
and 20__<2__< a -~% 

exp ( - c46 2 p) <= P [T(a, 2 ~ a ~) > 2 a ~] 

<= P [, T(a) > 2 a 7] < exp ( - c47 i f ) ,  

where fl, 7, 6, and ~ are given by 

Case fl 7 6 

cq < dl, X 1 (t) is type A 1 cq cq 1 

o~ 1 < dl, X 1 (t) is type B 1/(1 --0~1) ~1 0(1 1 

~1 > dl, X2  (t) is type A 1 p o~ 2 1 

~1 > dl, X2 (t) is type B 1 / ( 2 -  p) p c~ z (1 - -  ~ 2 ) / ( 2  - -  p )  

and p = 1 + c( 2 - -  ~2 /~1 .  The upper restrictions on 2 and a are only needed for  the 
lower bounds. 

Proo f  The  first two cases (el < dl) follow on applying the est imates of  L e m m a s  
2.2, 2.3, and  4.2 to the inclusion relat ions 

[P(a)  > 2 a "1] c [r (a ,  2 a~') > 2 a ~1] c [ r ( a ) >  2 a ~'] c [ , T  1 ( a ) > 2  a~l]. 

When  el > d l ,  the lower bound  follows on using L e m m a s  3.3 and 4.2 and the 
independence of Po and T1, with 

[-Po (a/2) > 2 r a ~2] c~ [ T 1 (a/2, 2 r a ~2 ) > ff/~' a (2 r a ~2 ) (1 - 1/~,)] c [ T(a, 2 ~ a ~ ) > 2 aP] . 

For  the upper  bound  when el > d~ and X 2 (t) is type A, it suffices to use the esti- 
ma te  on E {T(a)} given in L e m m a  5.1 in the Corol la ry  to L e m m a  3.1. To  obta in  
the upper  bound  in the final case, we need the fact ([,15], p. 1233) that  since X z (t) 
is of  type B, there is a line L through the origin such that  if X L (t) is the project ion 
of X 2 (t) on L, then XL(t  ) is a stable subord ina tor  of  index ~2. N o w  

P [, T(a) >= 2 a p] ~ P [, T 1 (a, 2 r a ~2) > 2 a p] -t- P ['PL (2 a) >= 2 ~ a~2], 

where PL(a) is the first passage process derived f rom X z ( t  ). This is valid since once 
I XL(s)I > a, it cannot  decrease and thus I x( t ) l  > a for all t > s. Apply ing  L e m m a s  
3.3 and 4.2 completes  the proof.  
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L e m m a  5.3. Let X (t) be a process with stable components satisfying (1.1), N __> 2. 
Then for every s > 0  there are positive constants C4s , c49 , and 7o such that 

P [ sup T(a, s)/~o (a) < c4s ] < exp [- - c49 (log 1/7) ~] 
7<=a<--6 

provided 0 < 7 =< 7o and 6 ~ 7 + where 

[a "1 log [log a[ if ~1 < dl and X 1 (t) is type A, 
~a "~ (log [log a [)1- ~ if ~1 < dl and X 1 (t) is type B, 

~o (a) = [ap log [log a[ if ~1 > da and X 2 (t) is type A, 

[a ~ (log [log a D 2 - p i f  ~x > da and X 2 (t) is type B. 

Proof. When ~1 < dl, this follows from L e m m a  4.5 and the inclusion 

sup T(a'S) <c4s]CF su p P(a) 7 

which is valid if 7 is small enough to ensure that  C4s ~0(7+)__< s. 

However ,  if ~1 > d~, T(a) has a different order  of magnitude,  and we have to 
work  harder  to overcome the independence difficulties. For  positive integers k, let 

ak=exp(--k2), c48=2-P(3c46) -l/p, 

S k = C ~ 8  2 ~p-~z a~ (log ]log ak]) r 

where ~ and fi are as defined in the last two cases of L e m m a  5.2. For  a fixed in- 
teger m, define stopping times z k, k=2m,  2 m - 1 ,  ..., m by 

T 2 m = O ,  

Zk=inf{t >>Vk+ 1 ~ - S k + l  : Xl(t)~---0 ) . 

These are all finite with probabi l i ty  1 since X~ is point  recurrent.  Put  

Zk + Sk 

Tk= ~ I+.~(X(t)--X('Ck))dt; 
I: k 

clearly the r andom variables T k are independent.  Using the last two cases of 
L e m m a  5.2 we have 

P [Tk > c4s ~P (ak)] > exp [ - -  c46 (C4s 2 p {log I log akl}l/C)P] 

= [log ak[-+=k -~. 

If Qm is the event [-Tk< c48 ~0(ak); k = 2 m ,  2 m -  1 . . . . .  m +  1], 

P(Qm)= < 17[ (1 -k-~) - -<exp  - ~ k-~  �9 
k=m+l  k=m+l  

Thus  
P(Qm)< exp(- -  Cso m+). (5.1) 

If we put  
2m 

R~= U [[X(Zk)l=[Xo(Zk)]> l ak], 
k=m+l  



Sample Path Properties of Processes with Stable Components 281 

we can estimate P(R~) by 

2 m - 1  

Rmc ~ HXo(Zk)--Xo('ck+l)l>�89 "] 
k = m + l  

2m--1 

U (Ak u B~)= S,,, 
k = m + l  

where 

a k :  I-I'rl,-vk +~1 > e =2k Sk+13, 

Bk-~ [ sup [ X o ( t ) - - X o ( Z k + l ) l > � 8 9  ] . 
Zk+l <-t<--zk+l +e~2ksk+l 

Lemma 2.1 gives an estimate for 

P(Ak) =P [Xl(t ) has no zero in [Sk+l, e ~2k Sk+l )  , 

while Lemma 4.4 provides an estimate for 

yielding 

and then 

P(Bk ) = p [M ~ (e~2g Sk+l ) >1 (a k -  ak+ O], 

P(AgUBk)<e -c51k, for large k; 

P(R,.)<__P(S..)<m e -c51m, for large m. (5.2) 

Now if the path is not in R,,, the sphere of radius �89 ak, centre a t  X(Zk) , will be 
contained in the sphere of radius ak, centred at the origin, so that 

T(ak, Tk~-Sk)~Tk, k = m +  1, m+2 ,  ..., 2m. 

Furthermore, since 

~-~ e ~2 k Sk + 1 ~ (30, 
k = l  

if the path is not in S,,, then 

2m--1 

T'kAVSk~"Cm+I-[-Sm+I~Sm+I "~- 2 e~2kSk+l~S, k = m + l ,  m + 2  . . . .  ,2m,  
k = m + l  

for m sufficiently large. It follows that 

P [  sup T(ak,s)/q~(ak)<C48 ]<=P(Qm)+P(S,.) 
m<k<2m 

N exp(-- %o m~)+m exp(-- c51 m) 

<exp(--m+),  

for sufficiently large m, using (5.1) and (5.2). Now if 7 is sufficiently small and 
6 > 7 ~, and if we set m = [ ( - l o g  7~)~], then 

7<ak<6 for m<-k<2m. 
It follows that 

P [ sup T(a, s)flp (a) < c48 ] < exp( - m ~) < exp [ - c 4 9  (log 1/7)~]. 
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Theorem 5.1. Let X(t) be a process with stable components satisfying (1.1) 
and N >= 2. Then there is a positive constant c52 such that with probability one 

T(a, s) 
lim sup - -  = c52, 

,-.o (p(a) 

for all 0 < s < ~ where (p (a) is defined in Lemma 5.3. 

Proof. This is proved using Lemmas 5.2 and 5.3 exactly as Theorem 4.1 was. 

6. The Exact Hausdorff Measure of the Sample Paths 

The only estimate that must still be obtained in order to follow the usual line 
of proof  (see [9, 14, 15], and [17]) for a correct measure function is one for the 
expected number  of cubes in a covering collection that the process X (t) will hit. 
Once more it is just as easy to obtain the necessary lemma for general processes 
with stationary, independent increments. A similar method was used in [6], 
but it was simpler in that case since the number  of cubes could be related to first 
passage times instead of sojourn times. 

Instead of taking a particular family of cubes, we note that for a collection 
A (a) of cubes of side a in R ~, the property that no point of R d is contained in more 
that c53 cubes of A(a) is equivalent to the property that no sphere of radius a 
in R d intersects more than c54 cubes of A(a). For  any fixed positive constant c54 
we call a collection satisfying the latter property c54-nested. 

Lemma 6.1. Let X(t) be a process in R d with stationary independent increments 
and suppose A(a) is a f ixed c54-nested collection of cubes of side a(a<= 1), in R d. 
I f  M(a, s) is the number of these cubes hit by the path X(t) at some time t~[0,  s], 
then 

E M(a, s) <-_ 2 s c54 [E T(a/3, s)] - 1. 

Proof. Let z o = 0, and define stopping times 

Zk=inf{t>--_Zk_l: [X(t)-X(zj)I  >a for j=O, 1, ..., k -  1}, 

for k = 1, 2 . . . . .  Then I X(zk)--X(z)]_>_ a for j ~  k so that if S k is the sphere centre 
X(Zk) and radius a/3, the S k are disjoint. Let T k be the sojourn time in Sk after z k 
and before zk+s; put 

~ = m i n  {k: T,k>S}, 

and let I k be the indicator of the event 

E~ - 1 __> k]  = E~_-< s ] .  

Since I k is determined by the path up to zk, and T k by the increments after Zk, 

E(I k Tk)= E(Ik) E { r(a/3, s)}. 

But ~ I k T k <__ 2s, so that, since t /= ~, Ik, 
k=0 k=O 

E(tl)E{T(a/3, s ) I=E I k <-_2s. 
k=O 
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Finally, note that the path X(t) for O<_t<_s is covered by spheres centre X(Zk), 
radius a, for k = O, 1, .. . ,  t / -  1 ; and that each of these spheres can intersect at most 
c54 cubes of A (a), so that 

m(a,s)<c54rl.  

Corollary. Let X(t) be a process with stable components satisfying (1.1), and 
suppose A(a), M(a,s) are as in Lemma6.1. Then there is a positive constant c55 
such that, for all a<s  1/~2, 

EM(a,s )<cs5  sa -~1, if o h <dl, 

EM(a,  s)=<c55 sa -p, if cq >da, 

where p = 1 + c~ 2 - c~2/c q. 

Proof This is a combination of Lemma 6.1 with the estimates of Lemma 5.1. 

Remark. As in [151 we could use the particular collections A(a,) of half-open 
cubes of side a, = 2-"  centered at the dyadic points (xl/2", x2/2",. . . ,  x J2  ~) where 
xl, . . . ,  x d are integers. It is clear that this collection is c54-nested with c54= 3 e. 

We are now ready to state our main theorem giving the precise Hausdorff  
measure function for which the sample paths have positive finite measure. If 
el < dl, only the first component  matters while, for cq > d 1 both the index and the 
type of the second component  affect the result. 

Theorem 6.1. Let X(t) be a process with stable components satisfying (1.1), 

(p (h) = 

N > 2, and 
h ~1 log [log hl /f c~1 < dl 

h~l(log ]log hi) 1 - ~  if cq < d  1 

h p log Ilog h[ if ~a >da 

hP(log[loghl) 2-0 /f cq > d  I 

and Xl( t  ) is type A,  

and Xl ( t  ) is type B, 

and X 2 (t) is type A,  

and X 2(t) is type B. 

Then there is a positive, finite constant c56 such that ~o-m[R(s)]=c56 s for all 
s > 0 with probability one, where R (s) denotes the range of X(t) up to time s. 

Proof The proof  is now exactly that of Theorem 6 of [15] using Theorem 5.1 
and the density theorem of [10] for the lower bound; and Lemma 5.3 and the 
Corollary to Lemma 6.1 in the usual way to estimate the number o f"  bad"  cubes 
in the collection which the path hits but visits for only a short time, for the upper 
bound. 

7. Asymptotic Behaviour of P(a), T(a) for Large a 

Many authors have observed that, for a stable process, the asymptotic laws 
for P(a), T(a) as a -~ ~ have a form very similar to those as a -~ 0. This is no longer 
true for the class of processes we are considering since, while a ~1 is the smallest 
function for small a, a ~N will be for large a. We shall make no use of the results 
of the present section as they are not relevant to the local structure of the sample 
paths - or to the right measure function which depends only on the local structure. 
20 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12 
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Theorem 7.1. Let  X( t )  be a process with stable components satisfying (1.1). 
Then there is a positive constant c57 such that with probability one 

P(a) limyp =c.,  
where 

J['a ~'~' log log a, if  XN(t  ) is type A ,  (a) q~ 
).a ~ (log log a) 1-~' ,  i f  X N (t) is type B.  

Theorem 7.2. Let  X( t )  be a process with stable components satisfying (1.1). 
Then there is a positive constant c58 such that with probability one 

with 

T(a) 
lima~o~sup ~ - -  css, 

[a ~' log log a, 

~o (a) = la "~' (log log a) 1 - ~', 

[a p~' log log a, 

i f  a N < dN, X N (t) is type A ,  

if aN<dN, XN(t ) is type B,  

if  O~N>dN, 

where PN = 1 + a N_ 1 - aN- 1~aN �9 

Remark.  There is no longer a dichotomy based on the type of XN_l( t  ) when 
aN>d  N since then aN_ a > 1 and XN_I( t  ) must be type A. 

8. Graphs of Processes with Stable Components 

In [6-] the graphs of transient stable processes were considered. The correct 
measure function for the graph of a point recurrent stable process has been given 
in Theorem 1.3, which we shall prove in this section. A combination of the 
methods of these two papers will suffice to obtain the correct measure function 
for the graph of a general process with stable components. The basic idea is that 
if a l <  1, the time component is dominant, if a I >d l  > a  2, the graph of Xa(t) is 
dominant, while if da > a  1 > 1 or a 2 > 1, the range of X( t )  is the relevant part. 

Theorem 8.1. Let  X( t )  be a process with stable components satisfying (1.1), 
and G(s) be the set o f  points in R d+l on the graph up to time s, 

If 
O(s) = O(s, {(x(t, t): 0_< t_s } .  

l 
a 

q~(a)= aZ-1/~'(log ]loga[) 1/~'1 

[as in Theorems 6.1 and 9.1 

i f  a 1 <__ 1, 

i f  a 1 > d 1 > a2, 

i f  d l>=al>l  or ~x2>l, 

then there is a positive constant c59 such that 

~ o -  m [ G  (s)3 = c s 9  s 

for  all s >_>_ 0 almost surely. 
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The first case can be handled most easily by the methods used in [-6], while 
the last case can be treated in much the same way as the range has been treated. 
The middle case is essentially the same as the graph of a recurrent stable process, 
which we now consider in detail. 

Proof of Theorem 1.3. Let X(t) be a stable process in R 1 of index c(>l  and 
Y(t)=(X(t), t) the corresponding space-time process. Then if T(a, a) denotes the 
time spent by the X(t) process in the sphere of radius a up to time a, we can think 
of it also as the total sojourn time of Y(t) in the rectangle {IX(t)l<a, O<t<a}. 
(We could, if we wished, obtain information about the sojourn time of Y(t) in a 
sphere of radius a, but the results for rectangles of this type are sufficient.) Now 
Lemma 3.3 yields the estimates 

exp ( - c a 9 2at) =< P [T(a, a) > 2 a 2 - 1/at] ~ exp (-- c 2 o 2at) 

which plays the role of Lemma 5.2 for this case. Given an integer m, the sequence 
of stopping times Zk, for k=2m, 2 m -  1, ..., m is defined by r2,, = 0, and for k<2m 

zk=inf{t>Zk+ a +�89 1 " X(t)=0};  
also let 

rk -l- �89 ak 
Tg: ~ I,,k(X(t))dt , 

Tk 
where 

a k = exp ( -  k2). 

Then, as in the proof of Lemma 5.3, if C6o=2-2+1/at(3C19) -l/at, 

P r  sup Tk <C6o]<exp(--csoml), (8.1) 
Um+l<--k<2m (p(ak) 

where q)(a)=aZ-1/at(log Iloga[) a/at. In this case, we let 

2m 2m 

Rm= U ['Ck>�89 " I t  U ['Ck--7;k+l>�89 
k = m + l  k=m+l  

and Lemma 2.1 provides an estimate of the form 

P(R,,) < m e-C61 m (8.2) 

as before. Then, if the path is not in R,,, we have 

(T(ak,ak))>Tk, k = m + l ,  m + 2  . . . .  ,2m,  

and (8.1), (8.2) may be combined to give an estimate which takes the place of 
Lemma 5.3. Finally, EM(a, s) for this situation can be estimated from Lemmas 
3.2 and 6.1. This is enough to complete the proof of Theorem 1.3. 

9. Some of the Critical Cases 

As pointed out in the introduction we cannot deal at all with the case where 
one of the ct i = 1, unless the corresponding component satisfies the scaling property 
(2.1). This will be true if and only if the defining stable distribution is given by a 
20* 
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# on S d whose centre of mass 

Sd 

so, in particular, we will have the scaling property if# is symmetric about the origin. 
If the scaling property is satisfied, then all the arguments of Sections 4, 5, and 6 
are valid provided we do not have 

c q = d l = l  or a l = d l = 2 .  (9.1) 

The case ei = d~ = 2, i > 2 cannot arise, and ei = d~ = 1, i > 2 will make no difference 
to any of the arguments since, for components other than the first, it is the first 
passage time distribution that matters and this has the same form for a =  1. In 
Section 7, the critical case will be c~u= dN= 1, and in Section 8, the only critical 
case is ea = d I = 2. We do not give the detailed computations in the present section, 
but rather just summarise the results and indicate any differences in the methods 
required to obtain them. 

In order to obtain the results of Sections 5 and 6 when Xl(t ) is interval recur- 
rent, we simply need the analogs of Lemmas 5.1, 5.2, and 5.3. Arguments similar 
to those used in the proof of Lemma 5.1 yield: 

Lemma 9.1. I f  X(t) is a process with stable components satisfying (1.1) and 
N >  2, c~l=dt, then there are positive constants c62 , c63 such that for all s> a ~ 
and a< 1, 

c62 a~ [log a l _-<E {T(a, s)}-< E {T(a)} < c 63 a~' [log a[. 

When N =  1, T(a)= oo, but the upper and lower bounds are still valid for E {T(a, s)} 
provided a s < s < 1 for some 7 < ~1. 

In order to replace Lemma 5.2, we first need a result to take the place of 
Lemma 3.3 for the interval recurrent processes. To prove this result we shall 
make use of an inequality which holds for both planar Brownian motion and the 
symmetric Cauchy process on the line. For  ~ < ~, a < 1, and Ix I< �89 a, 

PXEin f [X( t ) [>=�89  C64 (9.2) 
= = = [log a[ " 

For  Brownian motion this can be proved by combining the logarithmic 
potential theory estimates for the probability of exiting from the sphere of radius 
a (~+e)/2~ prior to hitting the sphere of radius �89 starting from X(a ~) with the 
estimates for the distribution of P(a (~+~)/2~) given in Lemma 4.1. In the Cauchy 
case, it can be obtained by utilizing the connection between the Cauchy process 
and planar Brownian motion as in the proof of Lemma 12 of [-16]. 

Lemma 9.2. Let X(t)  be a stable process in R d of index a = d =  1 or 2. Then if 
?<c~, there are positive constants c65 , c66 , c67 , and 20 such that for all a~<_s<_ 1, 
) ~ o ~ a  ~(~-~), a ~ c 6 7  , 

e-C65z<P[T(a, s )>2a  ~ [log all < e  -C66x. 
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Proof The upper bound is obtained in the usual way from Lemma 9.1 and 
the Corollary to Lemma 3.1. For  the lower bound, we use a combination of the 
methods of Ray [9] with those of the present paper. The methods of [-91 need to 
be modified since the Cauchy process is not continuous and they can be some- 
what simplified at the same time. Define a sequence of stopping times by 

% = 0 ,  Zk=inf{t>Zk_t +a~: [X(t)[<�89 

Since the process is interval recurrent, these times are finite a.s. and [X(rk)l<�89 
Let T k be the time spent in the sphere of centre X(Zk_I), radius �89 during the 
interval (~k- ~, rk- ~ + a ')  �9 Then T~, T 2 . . . .  , T, are independent, identically distrib- 
uted and 

T(a, %)> ~ T i. 
i = 1  

It follows that 

P[r(a,s)<Ra~]loga[]<=P[z,>a~]+P T/<Ra~ ]log a] . (9.3) 
t - i =  1 

To estimate the first term, we note that for n__< a 2 0-~)/3, 

( ;, P[z,<a~]>P[,Zk--Zk_l<a~/n, k = l ,  2, . n ] >  1 c64 (9.4) 
"" ' ] log a] 

where the final inequality is a consequence of(9.2). For  the other term we can use 
the basic inequality since there is a positive constant c68 such that 

and then 
e { e x p ( -  a -~ T0} =e -C% 

F" 1 P ~ T / < R a = l l o g a ]  <e ~'11~ 
t - i =  1 

(9.5) 

Letting n = [-2 c62 2 I log a 1] and combining (9.3), (9.4), and (9.5) completes the proof. 

Arguments  similar to those in Section 5 will now suffice to prove the next 
two lemmas which take the place of Lemmas 5.2 and 5.3. One difference that 
occurs in the proof  of Lemma 9.4 is that the sequence a k must be defined by 

a k = e x p ( -  c~9 ) 

where 1 <c69<~a/7.  Lemma 9.4 is a modification of Lemma 3 of [,,14]. 

Lemma 9.3. Let X(t) be a process with stable components satisfying (1.1) and 
N >  2, ~1=dl. Then, / f e 2 < 7 < ~ 1 ,  there are positive constants c7o , c71, cv2, and 
20 such that for a<=c7o and 2 o < 2 < a  -~(~-~'), 

e ....  ~<P[r(a,a~)>=2a ~L [log a[] 

<P[T(a)>2a  ~1 [log all < e -cTzz. 
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Lemma 9.4. Let X(t) be a process with stable components satisfying (1.1) and 
cq =d 1. Then for every s>O there are positive constants c73, c74, and 70 such that 

P [ sup T(a, s)/(p (a) < c 73 ] < exp [ - c 74 (log [log 7 [)~] 
~<a<~ 

provided 0< 7< 70  and 6>exp{-I logT]~},  where 

q~ (a)= a "1 Ilog a[ log log Ilog a]. 

As in Section 5, Lemma 9.4 shows that 

T(a, S) 
l imsup ~o(a) >c73 

almost surely. The upper bound is a consequence of the corresponding limit 
law for TI, since T(a, s) < Tl(a, s). (The result for Tx(a, s) is in [9] for planar Brownian 
motion, and similar techniques will prove it for the symmetric Cauchy process 
on the line.) The asymptotic law 

T(a, s) 
lira sup (9.6) a~0 ~o(a) =c75 

then follows; (9.6) also holds for s=  ~ when N > 2 .  Now the arguments outlined 
in Section 6 lead to 

Theorem 9.1. Let X(t) be a process with stable components satisfying (1.1) 
with ~ = d 1 = 1 or 2, and 

q~(h) = h ~1 Ilog hi log log Ilog hi. 

Then there is a finite positive constant c76 such that q2-m[R(s)]=c76s for all 
s>O with probability one, where R(s) denotes the range of X(t) up to time s. 

Finally, we remark that in Section 7 the result of Theorem 7.2 is still valid when 
Xn(t ) is a symmetric Cauchy process on the line provided one takes (p(a)= 
a log a log log log a. The proof of this is similar to that of (9.6). 
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