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Point Processes and Completely Monotone Set Functions 

Thomas G. Kurtz* 

I. Introduction 

Inherent in the proof of Renyi's Theorem [9] (as observed by Kallenberg [4] 
and M6nch [8]) is the fact that the distribution of an orderly point process (a 
process without multiple points) is determined by the zero probability function 
4)(B)--P{N(B)=O} (N(B)=number of points in B). It is natural to ask what set 
functions ~b can arise as zero probability functions of point processes. In this paper 
we characterize these set functions in terms of a property that can naturally be 
called complete monotonicity. 

In his classical paper on capacities [1], Choquet studies a class of set functions 
which he calls alternating capacities of order infinity. Based on the integral rep- 
resentation of these functions in terms of extremal functions, Choquet observes 
that a class of these functions can be interpreted as giving the probability that sets 
intersect a random compact set. The extremal functions are of the form 

fr(B)= if rc~B+O. 

An alternating capacity of order infinity ~9(B) can be represented by 

~(B) =~fw(B) dl~(T). 

if # is in an appropriate sense a probability measure on the collection of compact 
sets, then Choquet's interpretation is clear. Of course 1-~(B)  is what we call a 
zero probability function. 

Based on Choquet's work Math6ron [6] characterizes the zero probability 
functions of processes whose realizations are convex closed sets. 

The proof of our characterization is based on a simple probabilistic construction 
of the point process corresponding to a zero probability function and is much 
closer to the work of Kendall [5] than to that of Choquet. Kendall uses the notion 
of complete monotonicity in his study of very general set valued processes. His 
avoidance function corresponds to our zero probability function. 

We will assume that the points of our processes lie in a complete, separable, 
locally compact, metric space X that is a-compact (i.e. is a countable union of 
compact sets). We will denote the metric by p(x, y) and the a-algebras of Borel sets 
by ~. All sets considered will be Borel sets. B will denote the closure of B and B ~ 
the interior. 
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Let S(X) denote the set of all countable collections of points in X, possibly 
with multiplicities. For x~S(X) and B6J3, N(B, x) will denote the cardinality 
of {x ~ x: x ~ B}, counting multiplicities. Let 50 denote the a-algebra generated by 
sets of the form {x: N(B, x) = k}. We will think of a point process as a measurable 
mapping ~ of a probability space (~2, ~,, P) into (S(X), 5~). Ordinarily N(B, ~) 
will be denoted by N(B), perhaps with appropriate subscripts, and ~b(B)= 
P {N(B)= 0}. The process is orderly if P {~ has multiple points} = 0. 

2. Characterization of Zero Probability Functions 

Let q~ be a real valued function defined on ~ .  For A ~ define 

A A r = dp(A w B ) -  ~b(B). 

If 4) is the zero probability function of a point process then 

- -  A A dp(B) = P {N(A) > 0, N(B) = 0} 

and in general if A 1 A 2 ... A, ,e~  then 

(2.1) (-- I)'AA, AAz ... AA.~5(B)=P{N(A1)>O ... N(A,)>0,  dV(B)=0}. 

Classically a completely monotone function is a non-negative function f 
defined on (0, ~ )  and satisfying ( -  1)" A hi Ah2... Ah,f(x) >= 0 for all x, hi, h2, ..., h,, > 0 
where Ahf(x)=f(x +h)- f (x) .  (All such functions have the representation f ( x ) =  
~ e-Xt#(dt) for some measure #. See, for example, Meyer [7, p. 237].) Analogously, 
we call a non-negative function q5 defined on ~ completely monotone if 
( -  1)'AA, AA2... Zla,~)(B)>=O for all B, A1, A2 . . . .  , A , , ~ .  The identity (2.1) insures 
that all zero probability functions are completely monotone. 

In order to avoid subscripts with subscripted subscripts in what follows we 
introduce the notation 

A(A1, A2, ..., A,,)=-AA1AA 2 ... AA . 

If A c B  then complete monotonicity implies O(A)>(o(B) (in particular 
~b(~) > (b(B)) and 

~b(A) - q~(B) =< ~b(~) - ~b(B - A). 

Complete monotonicity also implies 

r ~ ~b(~)- ~b(A) 
is subadditive, i.e. 

~(A u B)< ~9(A) + ~(B), 
in fact 

r u B)+~b(A ~B)<~h(A)+~h(B). 

For any completely monotone function with ~ ) =  1 (in fact for any function 
such that 1 - q~ is subadditive) we can define a measure by 

24, (A)= sup ~ ( 1  -q~(A~)) 
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where the supremum is taken over all collections of disjoint sets with A = Y Ai. 
If q~ is a zero probability function, then 2, is the intensity measure for the point 
process. (See Daley and Vere-Jones [1, p. 349].) 

We now prove three lemmas that will be needed for the proof of the main 
characterization theorem, Theorem (2.13) below. 

(2.2) Lemma. Let (a be any real valued function defined on ~3. Suppose A 1, A 2 . . . .  , A,, 
are disjoint subsets on J3 and let A = Y~'=l Ai. Then 

( (k  - -AA4J(B)=E( - -1 )kA(A , , . . .A jO  B u  A - U A i ~ ) )  
I=1 /I 

(2.3) 

and 

(2.4) A i  t 1 -q~(Ai)=~ k ( -  1)J'A(Ai, ... Aik ) d? A - 
i=1  

where the sums on the right range over all non-empty subcollections of{A1, Az .... , A,,}. 

Proof We observe that A =A~ w A 2 implies 

(2.5) 

- A A ( o ( B )  = dp(B) - ~ ( B  u A )  

= ~ ( B u  A~)--~(Bvo Aa vo A2) + ~b(B u A 2 ) -  0(B w A 1EYA2) 

+ ~b(B u A 1 u A2) - qS(B u A 1 ) -- q~(B u A2) + ~b(B) 

= - A(A2) O(Bu A1)-A(A1) (o(Bw A2)+A(A 1 , A2) q~(B). 

We emphasize that both (2.3) and (2.4) are purely algebraic and could be verified 
by an induction argument starting with (2.5). However, if 4) is the zero probability 
function of a point process, then the probabilistic interpretation of the identities 
makes their verification immediate. The identity (2.3) becomes 

k 

Observing that N(A)>0 if and only if some N(Ai)>O, see that the events on the 
right are disjoint and their union is the event on the left. 

To verify (2.4), let Y be the cardinality of {A V N(Ai)> 0} then 

E(Y)= ZP{N(Ai )>O}  = 1-q~(A,) 
i=1  i = l  

J ,  

(2.6) Lemma. Let ~ be completely monotone with ~b(~)= 1. Suppose A1, A2 .. . .  
are disjoint and let A=  U•=l Ai. I f  

k 

(2.7) t - ~b (A) = • ( -  1) k A (Ai,... Ai k) 0 (A - U Ai,) 
\ 1=1 / 
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where the sum ranges over aU finite non-empty subcollections of {A t, A 2 . . . .  } then 

(2.8) m-q  U_ A, A-UA,,) 
I = 1  / 

where the sum ranges over all finite non empty subcollections of{A,,, A,, + I , ...}. 

Remark. For a finite collection of sets {A1 A2 ... A,}, (2.7) is just a special case 
of (2.3) (B =~). A limiting argument implies that the left hand side of (2.7) is always 
greater than or equal to the right hand side. If q5 is a zero probability function 
1-(a(A)=P{N(A)>O} and the right hand side is P(N(A)}>O and only finitely 
many N(Ai) > 0}. 

Proof Identity (2.3) implies 

(2.9) dp i Ai -dP(A)=~,(-1)"A(A, , . . .Aik)dp A -  l Ai, 

where the sum ranges over non empty subcollections of {A1 A2 ... A,,_ 1}. Identity 
(2.8) is the difference between (2.7) and (2.9). 

(2.10) Lemma. Let c~ be the zero probability function of a point process. Then for 
BEY), 

(2.11) ~b(B) = infq~(K)= sup q~(U), 
U=B 

where the K are compact and the U open. 

Proof First assume B c F where F is compact. Define 

7k(A) = E(N (A ) Z~:v~r, <_ k~). 

Then vk(A) is a regular measure on the Borel subsets of E (See Rudin [-10, p. 47].) 
For K compact, K ~ B we have 

P {N(K) = 0, N(F) <= k} - n {N(B) = 0, N(F) <= k} 

(2.12) = P { N ( B - K ) > O ,  N(K)=0,  N(F)____k} 

<_'~k(B- K). 

For ~ > 0, the regularity of ?k implies the existence of a compact set K k ~ B for which 
the right hand side of (2.12) is less than e. Let A=U/ ,~  ~ K k. Replacing K by A 
in (2.12) and letting k go to infinity we have ~(A)-~(B)<=~. But 

n 

and, since ~,=~ Kk is compact, inf~b(K)< q~(B)+e. Hence we have the first part 

of (2.11) for B relatively compact. Since X is o--compact, we can represent B as a 
countable union of relatively compact sets and obtain the first part of (2.11) in 
general. The second equality follows in a similar fashion. 

(2.13) Theorem. A non-negative function dp defined on ~ is the zero probability 
function of a point process if and only if the following hold: 
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(2.14) 

(2.15) 

(2.16) 

(2.17) 

~b is completely monotone; 

~b(f~)= 1; 

let K1 ~K2 c K a  ... be a sequence of compact sets with X = Uj~= l K,, then 

~(B)=limc~(BmK,,) for every B e ~ ;  

for every compact set K and every e>O there exists a 1r such that if K =  
Ui%1 Bi and the B i a r e  disjoint then 

k 

where the sum ranges over all non-empty, finite subcollections {Bi, ... Bik}c 
{B1, B2 ... .  } with k<k, .  

Remark. We need condition (2.16) to exclude the pathological completely 
monotone function: qS(B)= 1 if B is relatively compact, qS(B)=0 otherwise. If ~b 
satisfies conditions (2.14), (2.15) and (2.17)then 4)(B)=,!imO(Bc~K,, ) . ~  satisfies all 

four conditions and q~(B)=~b(B) for all relatively compact B. Condition (2.17) 
insures that compact sets contain only a finite number of points. A sufficient 
condition for (2.17) is that 2~(K)< oo for every K. Note that (2.17) implies that the 
left hand side of the inequality is one if the sum is over all finite subcollections. 

Proof The necessity of (2.14), (2.15) and (2.16) is immediate. The necessity of 
(2.17) follows from the observation that if q5 is a zero probability function then the 
left hand side of the inequality is greater than P {N(K)__< k,}. 

The proof of sufficiency divides into two parts. First we construct a point 
process using q~ and then we verify that ~b is the zero probability function of that 
process. The proof, in fact, represents an alternative approach to the existence of 
point processes. 

Let H, be an increasing sequence of countable partitions of X, that is,/7,, = {AT} 
where the AT's are disjoint and X = 0 i  AT; and each set in 17, is a union of sets in 
/7, +1. Assume also that lira sup diameter (AT)= 0, where diameter (B)= sup p(x, y), 

n ~ o o  ~ X, y E B  

that the A7 are relatively compact, and that only a finite number of A['s intersect 
a compact set for any fixed n. 

Let /7=  U~=I/7,. Using the Kolmogorov Extension Theorem we construct 
a family of random variables {XB: Bel l}  such that XB is 0 or 1 and 

P{XB,= 1 ... X ,k= l, Xc,=O ... Xc,=O} 

(2.18) = ( _  I )k A(B1, B2, ..., Bk) 4)( @=I Ci) " 

It is easy to check that these distributions are consistent, and that, except for an 
event with probability zero, B, Cel l ,  B c C and XB = 1 imply Xc = 1. It also follows 
that 

NAn= m a x  A'A,!+I. Ay+l cA? J 

IfXB = 1 then X8 is part of one or more sequences {XB.} with B,~II, and B, ~B,+~ 
such that X~. = 1 for all n. For each such sequence (],7=, B. consists of a single 
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point. Our point process is 

(2.19) ~= B,: B,~H, Bn~Bn+I, XB =1 . 

It remains to be shown that N(K, ~) is finite with probability one for every compact 
set. 

Let K be compact and let 6 > 0  be such that Ko={x:  infp(x,y)<5} is also 
yeK 

compact. If {Bn} is one of the sequences contributing to ~ in (2.19), then ~,~=l B, ~ K 
n c 2  implies B, ~ K~ for all sufficiently large n. Let I1, be the cardinality of {A~': A~ K~ 

and XAT= 1}. Then 1I,< Yn+~ and N(K, O< lim I1,. For e>0,  let k, be the integer 
t t~oo 

associated with K~ by condition (2.17). We claim P { I1, > k~} < e. To see this let 

B= K~-  U AT. 
A~cK5 

Then by (2.17) 
~ ( - - 1 )  k+lA , , ( i , )  (B,A, 1 ...A,k)dp K o - B u  UAT, 

/ = i  I (2.20) k 

+ ~ (-1)k A(Ai'~ "" A"~) cP (Ko-  ?IAT') 

where the sums are over subcollections of {AT: A7 c Ko} with k > k~. 

Using the definition of AB the left hand side of (2.20) becomes 

1) A(A h ... A,~) K o - B ) -  U A 
\ 1=1 1 

= ~ P {XAT~ = 1 .. . . .  XAT~ = 1, Xa7=O for all other A7 ~ Ka} 

=P{Y,>k~}. 

Let [p(B)=P{N(B, ~)=0}. We must verify that qb(B)=q~(B). Let d be the 
algebra containing all finite unions of sets in (..),~=IH,. For A e d ,  r 
P{XAT=0 all A'~A}.  It follows that ~(A)<2p(A ~ and (~(A)<r Any open 
set U can be represented as a union of an increasing sequence A,e~r in such a way 
that U = U An = (.J A ~ We then have 

(2.21) q~ (U) _-< lirn r (A,) <= lirn ~a (A ~ ) = ~9 (U). 

The last equality follows from the fact that q~ is a zero probability function. Similarly 
any compact set K can be represented as an intersection of a decreasing sequence 
of sets A , ~ d  in such a way that K = (~ An = (']/In" As before 

(2.22) ~b(K) > lim c~(A,)> lim q](.4,)= q~(K). 

Combining (2.21) and (2.22) we have 

(2.23) ~ (K) ~ q~(K) ~ ~(K ~ ~ ~ (K~ 
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Consequently, if q~(K)= q~(K ~ we have equality. To see that there is no shortage 
of K for which this is true observe that for Br(x)= {y: p(x, y)<r} 

1 _-> E P {N(ff,(x)) > 0, N(Br(x)) = O} 
r 

= 2 
r 

Consequently, ~o(Br(x))=~(B,(x)) for all but countably many values of r. We also 
observe that if ~(Kk)=~(K ~ k = l ,  2, . . . ,  ^ ~ ^ " o then c~(Uk=lKk)=4)(Uk=lKk). To 
complete the proof we need the following lemma. 

(2.24) Lemma. Let B I ~ B  2~B  3 ... and suppose B 1 is relatively compact. Then 

B oo b) Let B I ~ B 2 c . . .  and suppose --=U~=IBn is relatively compact. Then 

lim ~b (Bn)= qS(B). 
n ~ c t 3  

Proof In part a) we may as well assume B 1 is compact and (~ B, = g  (since 
O((~L~ Bk)-O(B~)< 1 -dp(B, -  ~=~  Bk)). Let A, =B~-B,+~.  Condition (2.17) 
implies Condition (2.7) of Lemma (2.6) with A = B~, and hence 

1 - q ~ ( B ~ )  = 1 - A~  
' =  rn 

k 

where the sum ranges over finite subcollections of {A~, Am+~ . . . .  }. Consequently 
as m goes to infinity the sum goes to zero. Part b) follows from part a) and the 
inequality 4(B,) - q~(B) =< 1 - q~(B - B~). 

Every compact K can be represented as an intersection of compact sets K~ 
with ~(K~)= ~(K ~ and every open, relatively compact U can be represented as 
a union of such sets. Consequently Lemma (2.24) implies ~b(K)= ~(K) for all 
compact K and q~(U)=~(U) for all open, relatively compact U. The fact that 
~b(B)=~(B) for all relatively compact B now follows by Lemma(2.10). Condi- 
tion (2.16) then gives the equality for all B. 

Remark. Given any completely monotone set function with 4~(~)= t, the con- 
struction used produces a process ~ whose realigations are closed sets. 

These considerations are related to what Kendall [5] calls avoidance functions. 
We should also note that Kendall has shown that a function f (x)= P {N([0, x] )=  0} 

for some stationary point process on the line if and only if f(x)=~o ( 1 - t )  +#(dt) 

for some probability measure #, i .e.fmust be nonnegative, convex and decreasing 
and f(0) = 1. 

It is natural to ask if there is any relationship between classical completely 
monotone functions and completely monotone set functions. The following 
result in that direction is easy to verify. 
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(2.25) Proposition. Let 7 be an infinite non-atomic measure on Y3. Then ~ ( A ) -  
f(y(A)) is a completely monotone set function if and only if f is completely monotone 
as a function on (0, oo) and lim f ( x )=  f(O)< Go. Ill(O)= 1 and ~ is finite on compact 

sets, then (o(A) is the zero probability function of a mixture of Poisson processes 
(i.e. c~ (A) = ~ e-t  ~(a) ti (d t) for some probability measure ke). 

Remark. This is essentially Theorem 5.1 of Kallenberg [4]. 
If q5 is a function on ~ that satisfies condition (2.16), then to show that q5 is 

completely monotone it is sufficient to verify 

(2.26) ( -  I)kA(A1 ... Ak) d~(B)>O 

for relatively compact sets. We also note that (-1)kA(A1 ... Ak)Ch(B) can be 
written as a sum of similar expressions in which each term involves only disjoint 
sets. (This can be verified most readily by using the probabilistic interpretation 
in the special case that ~b is a zero probability function.) Consequently, we only 
need to verify (2.26) for B, Aa, A 2 . . .  A k disjoint. 

Using Lemma (2.2) we observe that we can take A~ A 2 ... A~, to have diameter 
less than e for any e>0. This suggests an "infinitesimal" approach to complete 
monotonicity. 

For each k let #~, be a measure on (X k, ~(~)), where X ~' is the k-fold Cartesian 
product of X and ~(k) is the product a-algebra. Let FP be as in the proof of Theo- 
rem (2.13). Define 

( -  1)kA(C1, ..., Ck) ffa Ci 
(2.27) q~(xl, x 2 ... x~, B)= lim 

n ~  k e k ( C 1  X C 2 X " "  X C k )  

where for each n, C~ ... CkelI,  and xi~ C~, whenever the limit exists. Observe that 
x i = x  J some i+ j  implies q~(xl, x 2 ... xk, B)=0. 

(2.28) Theorem. Let dp be a function satisfying (a(B)=limO(K,r~B) for an 
n ~ ct3 

increasing sequence of compact sets with X = U,~=I K,,  and q~(("]~= 1 B,)= !irn ~b(B,,) 

for every decreasing sequence of relatively compact sets. Let ~ be the algebra of 
finite unions of sets on II = ~,~= 1 II,. 1 

Let kek be a measure in (X k, ~(k)) such that ~ - k T  kek(K • K • • K) < ~ for 
every compact K, and suppose that 

(2.29) I A ( C~ ... C~,) c~(B) l < C(K) #k(C~ ... Ck) 

where B, C 1 ... C k are disjoint subsets of K compact with B e d ,  C 1 C 2 ... CgEH 
and C(K) is a constant depending only on K. 

I f  for every k, ~b(Xl, x 2 ... xl, , B) exists and is nonnegative a.e. keg for every B E d ,  
then 0 is completely monotone. 

Proof By the continuity assumptions made on q~, it is sufficient to verify the 
monotonicity inequality (2.26) for A 1 A2 ... Ak and B disjoint subsets in d .  For 
sufficiently large n, A 1 A2 ... Ak are finite unions of sets in//n and hence 

l 

(2.30) ( -  1)kA(A, ... Ak) q~(B)= • ( -  1)'A ( C 1  . . .  Cl)  if9 ( B L3 A 1 Lg " "  k.) Ak-- U Ci) 
\ i ~ l  , '  
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where the sum is over all finite nonempty subsets {C1 ... Cz} of / / ,  with 

l k I 

and A  Uc,,0 
i = 1  j = l  i = 1  

for each j. This identity follows from Lemma (2.2) and the fact that Aa, A2 ... Ak 
and B are disjoint. Let Zc(X) denote the indicator function of C, and note that 

(--1)zA(C1 ... C,)dp ( B u A i  u . . . ~  A k -  ~) Ci ) 
i = 1  

i = l  

= I # , ( c l  • c 2  ... c , I  

Splitting the sum into a series of sums with l fixed, the right hand side of (2.30) 
can be written as 

l 

(-1)ZA(C1.. .Ct)c~ B w A 1 u A 2 u ' " t ~ A k -  i 

(2.31) Z I Z l~ Zc,(X~) ~!d#l  
. #l(C1 Cz) " ' "  i = 1  

(2.33) 

and 

where the inner sum is over all ordered collections {Ca C2 ... Cl} with Ci~II ,  
(the fact that the collections in this sum are ordered introduces the factor 1/l !) and 
Dt = {(Xl, x2 . . .  xz) ~Xt:  xi~ 1,_)~=1 Aj  for all i and some x i ~ A  i for all j =  1, 2 . . .  k}. 

Note that Dl~(()~= a Ai) l and U~-I A, is 1 _ relatively compact so that ~ / ~  #l(Dl) < Go. 

Condit ion (2.29) insures that the integrand in (2.31) is bounded and hence the 
Dominated Convergence Theorem implies 

A(A1 ... Ak) ~b(B) =~ ,  ~. cb(xl , x 2 ... x~, B ~ A a w "" w AI,) l dlh >O. 
DI t '  

(2.32) Corollary. Let  X = IR and let f t(x 1 ... xl) be nonnegative, continuous functions 
on ]I( 1 such that for every compact K there is a p >0  with ft(xl, x 2 ... x t )<p  t for all 
x 1, x 2 ... x l~K.  Take f o -  1, and assume fl is invariant under permutation of  the 
arguments. I f  

~ ( B ) - - ~  ~ ( -1 ) t  r l ' '"  
j . . .  jJ1(Yl, Y2 ... Yz) dYl dy2 ... dyz>O 

I = 0  ~" B B 

(2.34) q~(xl' x2 "" xk' B)=,=o ~ (-l! 1)~ n ~' ' ' .~A+t(xl '  Xe ... xk, Yl, Y2 ... Yt)dya ... dy, 

_->0 

for all k, Xl , x 2 ... xk, and B then q~ is completely monotone. Furthermore, ~o is a zero 
probability function, the functions fl are the product density functions for the point 
process (see Fisher [3, p. 473]), and 

(2.35) E ( N ( B ) ( N ( B ) -  1)... ( N ( B ) - l +  1))= ~... ~f~(Yl, Y2.-. Yl) d Y l . . ,  dyl. 
B B 

5 Z. Wahrscheinlichkeitstheorie verw. Geb. Bd. 31 
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Remark. The above Theorem also holds for more general X and measures 
other than Lebesgue measure. 

Proof  Let K be compact and let p satisfy f t(x 1 x 2 ... xt) < pz for xl ,  x 2 ... x k E K. 
Then letting #k be pkmk, where m k is Lebesgue measure on IR k, Theorem (2.28) 
implies q~(B) is completely monotone on the Borel subsets of K, but this being true 
for every compact K implies qS(B) is completely monotone on N. 

There are many examples of completely monotone functions with the form 
(2.33). For example taking ft(x 1 x 2 ... xl)= HI= 1 g(xi), ~b(B) is the zero probability 
function of a Poisson process. More generally, if )o(x) is a nonnegative stochastic 
process bounded by a constant on each compact set, then the zero probability 
function of the doubly stochastic Poisson process with parameter function 2 is 

4 9 ( B , : E ( e x p { - ~ 2 ( x ,  dx} )= ~ ~ (--l~. )t (~. . .~  E(2(x,)2(x2) . . .  2(xt)))dx, ... dx,. 

Unfortunately, examples of completely monotone set functions which are not 
already known to be zero probability functions are harder to find. The following 
is a not very satisfying example: 

Let f/(X 1 X 2 . . .  Xl) satisfy 

(2.36) ~f,(y) d y <  1 

and 

(2.37) 5ft+l(Xl x2 ... xl, y) d y <  ft(xl , x2 ... xt). 
IR 

Then it is easy to verify that the terms on the sums in (2.33) and (2.34) alternate in 
sign and decrease in absolute value. Consequently, the sums are nonnegative 
and ~b is a zero probability function. However, by (2.36) 

E(N(IR)) = ~ f t  (Y) d y <  1. 
hR 

If (2.36) and (2.37) hold with integration over a set K rather than IR, then q~ will be 
completely monotone on the Borel subsets of K. 
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