Marches aléatoires sur le groupe des déplacements de \mathbb{R}^d

B. Roynette

Summary. We intend to prove here that under a moment condition the potential of an aperiodic random walk of the group of Euclidian motions in \mathbb{R}^d , $d \ge 3$ tends to zero at infinity, at a speed which we shall give.

Résumé. Nous nous proposons de prouver ici que le potentiel d'une marche aléatoire apériodique sur le groupe des déplacements de \mathbb{R}^d , pour $d \ge 3$, et sous une condition de moments, tend vers zéro à l'infini, avec une vitesse que nous préciserons.

Introduction et Notations

Soit G_d le groupe des déplacements de \mathbb{R}^d . G_d est un groupe de Lie connexe égal au produit semi-direct de $\mathrm{SO}(d)$ x_ϕ \mathbb{R}^d , où $\mathrm{SO}(d)$ est la composante connexe du groupe orthogonal de \mathbb{R}^d , et où l'homomorphisme ϕ est donné par l'action naturelle de $\mathrm{SO}(d)$ sur \mathbb{R}^d : $\phi(v)(\lambda) = v \cdot \lambda(v \in \mathrm{SO}(d), \lambda \in \mathbb{R}^d)$. Tout élément g de G_d sera noté (v,λ) (ou encore $(v(g),\lambda(g))$ avec $v \in \mathrm{SO}(d)$ et $\lambda \in \mathbb{R}^d$). Si $\lambda \in \mathbb{R}^d$, $|\lambda|$ désignera la norme euclidienne de λ , et σ sera la mesure de Haar normalisée de $\mathrm{SO}(d)$. Les éléments du groupe G_d , ainsi que ceux de $\mathrm{SO}(d)$ et de \mathbb{R}^d , seront désignés par des lettres minuscules. Soit (Ω, \mathcal{A}, P) un espace de probabilité et (U_1, Y_1) , (U_2, Y_2) , ..., (U_n, Y_n) ... une suite de variables aléatoires indépendantes, définies sur Ω , à valeurs dans G_d et de même loi μ . (avec U_i de loi v, à valeurs dans $\mathrm{SO}(d)$ et Y_i à valeurs dans \mathbb{R}^d). Pour $g = (v, \lambda) \in G_d$, soit Z_n^g la marche aléatoire droite de loi μ partant de (v,λ) à l'instant O, ie: $Z_n^g = (v,\lambda) \cdot (U_1, Y_1) \cdot \cdots \cdot (U_n, Y_n)$. Bien sûr, vu la forme de la multiplication dans G_d , on a:

$$Z_n^g = (v \cdot U_1 \cdot U_2 \cdot \cdots \cdot U_n, X_n^g)$$

οù

$$X_n^g = \lambda + v \cdot Y_1 + v \cdot U_1 \cdot Y_2 + \cdots + v \cdot U_1 \cdot U_2 \dots U_{n-1} \cdot Y_n.$$

Dans ce qui suit, les variables aléatoires seront notées par des lettres majuscules.

Si $h: G_d \to \mathbb{R}$ est une fonction positive, nous noterons Vh son potentiel, c'est à dire:

$$Vh(v,\lambda) = Vh(g) = E\left(\sum_{n=0}^{\infty} h(Z_n^g)\right) = \sum_{n=0}^{\infty} \varepsilon_g * \mu^{*n}(h)$$

(où $g \in G_d$ et où ε_g est la masse de Dirac au point g).

Nous ferons dans cet article les deux hypothèses suivantes:

 H_1 : Il existe $\delta > 0$ tel que la mesure μ admette un moment d'ordre $2 + \delta$,

ie:
$$\int\limits_{G_d} |\lambda(g)|^{2+\delta} \, \mu(dg) < +\infty.$$

 H_2 : La mesure μ est apériodique, c'est à dire que le plus petit sous-groupe fermé contenant le support de μ est G_d tout entier (remarquons que cette hypothèse implique que ν est apériodique).

Sous ces hypothèses, on sait d'après Crépel (2) que la marche de loi μ est récurrente sur G_2 . Aussi la question du comportement à l'infini du potentiel ne se pose pas dans ce cas. C'est pourquoi nous supposerons $d \ge 3$ dans tout ce qui suit. Le but de ce papier est de prouver le théorème suivant:

Théorème 1. Nous supposons $d \ge 3$, et les hypothèses H_1 et H_2 réalisées. Il existe une constante $\alpha > 0$ telle que, pour toute h positive bornée et à support compact, il existe une constante C telle que:

$$|Vh(v,\lambda)| \leq \frac{C}{|\lambda|^{2\alpha}}$$
 pour $|\lambda|$ assez grand.

Nous préciserons au cours de la démonstration comment peut être choisie la constante α en fonction de δ et de d.

Démonstration du théorème 1. Nous aurons besoin de quelques lemmes, que nous allons déjà établir.

Un lemme préliminaire. Fixons d'abord quelques notations. Dans ce qui suit, f désignera la fonction de $\mathbb{R}^d \setminus (0)$ dans \mathbb{R} définie par

$$f(x_1, x_2, ..., x_d) = 1 - \frac{1}{(x_1^2 + x_2^2 + ... + x_d^2)^{\alpha}}.$$

Si $\rho \geq 0$, B_{ρ} sera la boule de \mathbb{R}^d de centre 0 et de rayon ρ , et S_{ρ} la sphère de centre 0 et de rayon ρ . Si A est une matrice dxd à coefficients réels, nous noterons $\|A\| = d \sup_{1 \leq i,j \leq n} |A_{ij}|$, et nous désignerons par I_d la matrice unité de dimension d. Si M est une variable aléatoire à valeurs dans \mathbb{R}^d ayant des moments d'ordre 2, K_M sera sa matrice de covariance.

Lemme 1. Soit X une variable aléatoire centrée, à valeurs dans \mathbb{R}^d , avec $d \ge 3$. Supposons qu'il existe $\delta > 0$ tel que $E |X|^{2+\delta} < +\infty$. Alors, il existe $\alpha < \frac{d-2}{2}$, $\varepsilon > 0$, ρ_1 et $\rho_0 > 0$ tels que, si $\|K_X - I_d\| < \varepsilon$, et si $x \notin B_{\rho_1}$ on ait:

$$E(b(x+X)) \ge b(x)$$

où $b(x) = \sup \{ f(x), \xi \cdot 1_{B_{\rho_0}} \}$ (ξ étant la valeur de f sur S_{ρ_0}).

Démonstration. Nous allons procéder en plusieurs étapes.

1. Ici h désigne un élément de \mathbb{R}^d , de composantes h_1, \ldots, h_d . Pour tout $\beta > 0$, le développement en série de Mac Laurin suivant est convergent, si $|h| \leq \rho^{1-\beta}$, $x \in S_\rho$, et si ρ est assez grand:

(D)
$$f(x+h) = f(x) + \sum_{i=1}^{d} h_i \frac{\partial f}{\partial x}(x) + \frac{1}{2} \sum_{i,j=1}^{d} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x) + \cdots$$

Il suffit, pour prouver ceci, de montrer que le reste de Taylor à l'ordre n tend vers 0 quand $n \to \infty$. Sous les hypothèses indiquées, il n'est pas difficile de voir que ce reste est majoré par $C_1^n - \frac{1}{\rho^{\beta n}}$, et tend donc vers 0 si ρ est assez grand.

2. Nous supposons ici que la loi de X est à support compact et que $K_X = I_d$. Dans ces conditions, il existe un ρ' tel que le support de la loi de X soit inclus dans $B_{(\rho')^{1-\beta}}$. Aussi, pour x en dehors d'un compact, pouvons nous substituer X à h dans (D). On obtient:

$$f(x+X) = f(x) + \sum_{i=1}^{d} X_i \frac{\partial f}{\partial x^i}(x) + \frac{1}{2} \sum_{i,j=1}^{d} X_i X_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x) + \cdots$$

où X_i est la *i*-ème composante de X. Faisant la somme terme à terme des espérances de cette expression (ce qui se justifie sans peine, X étant bornée), on a:

$$E(f(x+X)) = f(x) + \sum_{i=1}^{d} E(X_i) \frac{\partial f}{\partial x_i}(x) + \frac{1}{2} \sum_{i,j=1}^{d} E(X_i \cdot X_j) \frac{\partial^2 f}{\partial x_i \partial x_j}(x) + \cdots$$

Puisque X est centrée et de matrice de covariance égale à I_d , on a:

$$E(f(x+X)) = f(x) + \frac{1}{2} \Delta f(x) + \cdots$$

Le calcul des dérivées successives de f prouve alors que, pour $x \in S_a$:

$$\Delta f(x) = 2\alpha \frac{d - 2(\alpha + 1)}{(\rho^2)^{1 + \alpha}} = \frac{2C_2}{(\rho^2)^{1 + \alpha}}, \quad \text{avec } C_2 > 0 \text{ si } \alpha < \frac{d - 2}{2}.$$

D'autre part, les termes d'ordre supérieur à 2 dans le développement précédent sont de la forme $\frac{1}{(\rho^2)^{1+\alpha}} \varepsilon_1(\rho)$ où $\varepsilon_1(\rho) \xrightarrow{\rho \to \infty} 0$.

On a donc finalement, si $x \in S_{\rho}$:

$$E(f(x+X)) \ge f(x) + \frac{C_3}{(\rho^2)^{1+\alpha}}$$
 pour ρ assez grand.

3. Nous supposons toujours que le support de la loi de X est compact, mais la matrice de covariance K_X n'est plus égale à I_d . Le calcul précédent reste juste, à condition de remplacer l'opérateur Δ par l'opérateur

$$L = \sum_{i,j=1}^{n} E(X_i \cdot X_j) \frac{\partial^2}{\partial x_i \partial x_j}.$$

Puisque, pour

$$x \in S_{\rho}$$
, $\Delta f(x) = \frac{2C_2}{(\rho^2)^{1+\alpha}}$

avec $C_2>0$, il est clair qu'il existe $\varepsilon>0$ tel que si $\|K_X-I_d\|<\varepsilon$, alors $Lf(x)\geq \frac{2\,C_2'}{(\rho^2)^{1+\alpha}}$ (avec $C_2'>0$ et $x\in S_\rho$). En conclusion, sous les hypothèses précédentes, il existe $\varepsilon>0$ tel que si $\|K_X-I_d\|<\varepsilon$, alors il existe $C_4>0$ tel que, pour $x\in S_\rho$:

$$E(f(x+X)) \ge f(x) + \frac{C_4}{(\rho^2)^{1+\alpha}}$$
 (\rho assez grand).

4. Nous ne supposons plus que le support de la loi de X est compact, mais nous supposons que $||K_X - I_d|| < \varepsilon/2$, où ε a été choisi précédemment. Soit ρ assez

grand pour que la matrice de covariance $K_{X_{\rho}}$ de la v.a $X_{\rho} = X \cdot 1_{|X| \leq \rho^{1-\beta}}$ satisfasse à $|K_{X_{\rho}} - I_d| < \varepsilon$. Remplaçant, comme dans l'alinéa 2, h par X dans (D) si $|X| \leq \rho^{1-\beta}$, et prenant l'espérance, on a, pour $x \in S_{\rho}$:

$$E(f(x+X); |X| \leq \rho^{1-\beta}) \geq f(x) P\{|X| \leq \rho^{1-\beta}\}$$

$$+ \sum_{i=1}^{d} E(X_i; |X| \leq \rho^{1-\beta}) \frac{2\alpha x_i}{(\rho^2)^{1+\alpha}} + \frac{C_4}{(\rho^2)^{1+\alpha}}.$$

Compte-tenu du fait que X_i est centrée et que $E(|X|^{2+\delta}) < +\infty$, on a, pour $x \in S_o$:

$$\begin{split} & \left| E(X_i; |X| \leq \rho^{1-\beta}) \frac{2\alpha \, x_i}{(\rho^2)^{1+\alpha}} \right| \leq \frac{2\alpha}{\rho^{2\alpha+1}} \left| E(X_i; |X| > \rho^{1-\beta}) \right| \\ & \leq \frac{2\alpha \, C_5^i}{\rho^{2\alpha+1}} \, P\{|X| > \rho^{1-\beta}\}^{1/2} \text{ d'après l'inégalité de Schwarz} \\ & \leq \frac{2\alpha \, C_5^i}{\rho^{2\alpha+1}} \, \frac{1}{\rho^{1-\beta+\frac{\delta}{2}-\frac{\beta\delta}{2}}}. \end{split}$$

Si β a été choisi suffisamment petit pour que $\frac{\delta}{2} > \beta + \frac{\beta \delta}{2}$, on en déduit alors

$$\sum_{i=1}^d E(X_i;|X| \leq \rho^{1-\beta}) \leq \frac{C_6}{(\rho^2)^{1+\alpha}} \, \varepsilon_2(\rho) \text{ où } \varepsilon_2(\rho) - \xrightarrow[\rho \to \infty]{} 0.$$

D'où, pour ρ assez grand:

$$E(f(x+X);|X| \le \rho^{1-\beta}) \ge f(x) - f(x) P\{|X| > \rho^{1-\beta}\} + \frac{C_7}{(\rho^2)^{1+\alpha}}$$

Du fait que $f(x) \xrightarrow{\rho \to \infty} 1$ et puisque:

$$P\{|X| > \rho^{1-\beta}\} \le \frac{C_8}{\rho^{(2+\delta)(1-\beta)}}$$

on en déduit que, si α a été choisi assez petit pour que $2+\delta-2\beta-\beta\,\delta>2+2\alpha$ $E\{f(x+X);|X|\leq \rho^{1-\beta}\}\geq f(x)$ pour $x\in S_\rho$ et ρ assez grand. Le lemme 1 est alors démontré, puisque:

$$E\{b(x+X)\} \ge E\{f(x+X); |X| \le \rho^{1-\beta}\} \ge f(x) = b(x)$$

si $x \in S_{\rho}$ et si $\rho \ge \rho_1$ (où le ρ_0 servant à définir la fonction b est choisi arbitrairement, et où ρ_1 dépend de ρ_0).

Remarque. Le choix de α dépend de δ , mais il suffit que $\delta > d-2$ pour que α puisse être choisi aussi proche que l'on veut de $\frac{d-2}{2}$.

Lemme 2. Soit v une mesure de probabilité apériodique sur le groupe SO(d), pour $d \ge 3$. Alors v^{*n} converge vaguement vers la mesure de Haar σ de SO(d) quand n tend vers l'infini.

Démonstration. D'après Collins (1), il suffit de prouver que le support de v n'est inclus dans aucune partie de la forme g. H, où $g \in SO(d)$ et où H est un sous groupe

fermé distingué propre de SO(d). Soit so(d) l'algèbre de Lie du groupe SO(d), et $so(d, \mathbb{C})$ sa complexifiée. Nous savons (voir par exemple (3), p. II, 6 et 7) que $so(d, \mathbb{C})$ est une algèbre de Lie simple pour $d \ge 3$, sauf pour d = 4. En conséquence, pour tout $d \ge 3$, $d \ne 4$, l'algèbre de Lie so(d) est simple. Nous allons distinguer deux cas:

1. $d \neq 4$. Supposons que $(\sup y) \subset g \cdot H$, où H est un sous groupe distingué fermé propre de SO(d). Soit H_0 la composante connexe de H. Puisque H est distingué, la sous-algèbre de Lie de SO(d) correspondant à H_0 est un idéal, et puisque H est propre et SO(d) simple, cet idéal est nul. H est donc discret, et central.

On a donc: $(\text{supp } v) \subset g \cdot Z$, où Z est le centre de SO(d). Dans ces conditions, puisque v est apériodique, g. Z engendre topologiquement SO(d), ce qui est absurde, puisque SO(d) serait alors abélien.

2. d=4. Soit $S_3 \times S_3 \xrightarrow{H}$ SO(4) le revêtement universel de SO(4) (S_3 est le groupe des quaternions de norme 1). Le noyau de Π est formé de deux éléments. Il est clair qu'il existe une mesure de probabilité unique v sur $S_3 \times S_3$ telle que $\Pi(\tilde{v}) = v$ et telle que $\tilde{v}(\tilde{O}) = \frac{1}{2} v(O)$ si \tilde{O} est un ouvert de $S_3 \times S_3$ en homéomorphisme par Π avec 0. Si on suppose v apériodique et (supp v) $\subseteq g$. H, avec H distingué, fermé, propre, on voit sans peine que (supp \tilde{v}) $\subseteq \tilde{g} \cdot \tilde{H}$ avec \tilde{H} distingué, fermé, propre, et $\Pi(\tilde{g}) = g$. De plus \tilde{v} est apériodique. Il reste donc à prouver que cette assertion est absurde. La composante connexe \tilde{H}_0 de \tilde{H} a une algèbre de Lie qui est un idéal. Or l'algèbre de Lie $S_3 \times S_3$ est so(3) \oplus so(3). Cet idéal est donc (so(3), 0), (0, so(3)) ou (0, 0). Le groupe \tilde{H}_0 est donc (S_3 , e), (e, S_3) ou (e, e). Examinons déjà le premier cas. Dans ces conditions \tilde{H} est de la forme $S_3 \times \Gamma$, où Γ est un sous groupe distingué discret, et donc central de S_3 . On en déduit que (supp \tilde{v}) $\subseteq S_3 \times g_1 \cdot Z$, où Z est le centre de S_3 , et où $g_1 \in S_3$. Puisque \tilde{v} est apériodique, $g_1 \cdot Z$ engendre topologiquement S_3 ce qui est absurde (S_3 serait abélien).

Les deux autres cas se traitent de la même façon.

Il va de soi qu'on peut remplacer la marche de pas (U_1, Y_1) par la marche de pas $\sigma(U_1, Y_1)$, où σ est un automorphisme intérieur du groupe G_d , sans rien changer au résultat annoncé. Remarquons en effet qu'un automorphisme intérieur ne change pas le comportement à l'infini de la norme de la composante sur \mathbb{R}^d , puisque si $(v, \lambda)(w, \mu)(v, \lambda)^{-1} = (vwv^{-1}, \lambda + v\mu - vwv^{-1}\lambda)$ alors

$$|\lambda + v\mu - vwv^{-1}\lambda|_{\mu \tilde{\to}_{\infty}} |\mu|.$$

Nous allons prouver qu'on peut supposer $E(Y_1)=0$, quitte à remplacer la marche initiale par son image par un automorphisme intérieur bien choisi

Lemme 3. Il existe un automorphisme intérieur du groupe G_d par un élément (v, λ) bien choisi tel que, si $\sigma(U_1, Y_1) = (U_1', Y_1')$, alors $E(Y_1') = 0$.

Démonstration. Puisque $(v, \lambda)^{-1} = (v^{-1}, -v^{-1}\lambda)$, on a:

$$(v, \lambda)(U_1, Y_1)(v, \lambda)^{-1} = (v \cdot U_1 \cdot v^{-1}, \lambda + v Y_1 - v U_1 v^{-1} \lambda).$$

On a donc $Y_1' = \lambda + v Y_1 - v U_1 v^{-1} \lambda$. Soit:

$$E(Y_1') = \lambda + v E(Y_1) - v E(U_1) v^{-1} \lambda$$
.

Il nous faut donc prouver qu'il existe v et λ tels que $E(Y_1) = 0$, soit:

$$v^{-1}(I_d-v E(U_1) v^{-1})\lambda = -E(Y_1).$$

Il est clair qu'il suffit alors de prouver que dét $(v^{-1}(I_d-v E(U_1) v^{-1})) \neq 0$. Or, $\det(v^{-1} \cdot (I_d-v E(U_1) v^{-1})) = \det(I_d-E(U_1))$. Si cette quantité était nulle, 1 serait valeur propre de la matrice $E(U_1)$. Il existerait donc un vecteur γ de \mathbb{R}^d , de norme 1, tel que:

 $E(U_1) \cdot \gamma = E(U_1 \cdot \gamma) = \gamma$.

Or, le vecteur $U_1 \cdot \gamma$ appartient à la sphère unité de \mathbb{R}^d . Cette dernière étant strictement convexe, on en déduit que $U_1 \cdot \gamma = \gamma$ presque sûrement, et donc que la mesure ν ne change que le sous groupe d'isotropie de γ , sous groupe isomorphe à SO(d-1), ce qui est absurde, ν étant apériodique.

En vertu de ce lemme, nous supposerons dans tout ce qui suit $E(Y_1)=0$.

Lemme 4. Soit
$$v \in SO(d)$$
, et $M_k^v = \frac{1}{\sqrt{k}} \{ v \cdot Y_1 + v U_1 Y_2 + \dots + v U_1 \dots U_{k-1} Y_k \}.$

La variable aléatoire M_k^v est centrée pour tout k et sa matrice de covariance tend vers $\theta \cdot I_d$ quand $k \to \infty$ $(\theta > 0)$. La convergence est uniforme en v.

Démonstration. Soit \mathscr{F}_n la σ -algèbre engendrée par $(U_1, Y_1), (U_2, Y_2), \dots, (U_n, Y_n)$. Nous avons, pour tout n, $E(vU_1, \dots, U_n, Y_{n+1}) = E(vU_1, \dots, U_n, E^{\mathscr{F}_n}Y_{n+1}) = 0$ car Y_{n+1} est indépendante de \mathscr{F}_n et centrée, ce qui prouve que M_k^v est centrée pour tout k.

D'autre part, pour p>0 et $1 \le i, j \le d$, on a:

$$E\{(v \cdot U_1 U_2 \dots U_n \cdot Y_{n+1})_i \cdot (v U_1 \dots U_{n+p} \cdot Y_{n+p+1})_j\}$$

= $E\{(v U_1 \dots U_n Y_{n+1})_i \cdot (v U_1 \dots U_{n+p} E^{\mathcal{F}_{n+p}} Y_{n+p+1})_j\} = 0.$

Supposons maintenant que v est l'élément neutre e de SO(d), et notons K_{γ} la matrice de convariance de Y_n , et K_n celle de $U_1 \ldots U_n Y_{n+1}$. Un calcul simple prouve alors que:

$$K_n = \int_{SO(d)} g K_Y g^t d\sigma_n(g),$$
 où σ_n est la loi de $U_1 \dots U_n$.

D'après le lemme 2, σ_n converge vaguement vers la mesure de Haar σ de SO(d). Donc:

$$K_n \xrightarrow[n \to \infty]{} \int_{SO(d)} g K_{\gamma} g^t d\sigma(g) = K.$$

Comme il est clair que $wkw^{-1} = K$ pour tout $w \in SO(d)$, la matrice K commute aux éléments de SO(d), et est donc scalaire. Elle est d'autre part strictement définie positive, car la relation $\gamma^t K \gamma = 0$ ($\gamma \in \mathbb{R}^d$) implique $\gamma^t g^t K_\gamma g \gamma = 0$ pour tout $g \in SO(d)$, et donc $\gamma'^t K_\gamma \gamma' = 0$ pour tout $\gamma' \in \mathbb{R}^d$, soit donc $K_\gamma = 0$ et Y = 0 puisque Y est centrée, ce qui est absurde, μ étant apériodique. La matrice K est donc de la forme θI_d , avec $\theta > 0$. On en déduit alors

$$K_{M_k^e} = \frac{1}{k} \sum_{n=1}^k K_n \xrightarrow{k \to \infty} \theta I_d.$$

Enfin, si $v \in SO(d)$, et si K_n^v est la matrice de covariance de la $v \cdot a \cdot v \cdot U_1 \dots U_n \cdot Y_{n+1}$, on a:

 $K_n^v = v K_n v^t$

D'où:

$$\begin{split} \|K_{n}^{v} - \theta I_{d}\| &= \|v K_{n} v^{t} - \theta v I_{d} v^{t}\| \\ &= \|v (K_{n} - \theta I_{d}) v^{t}\| \leq \|v\|^{2} \|K_{n} - \theta I_{d}\| \\ &\leq d^{2} \|K_{n} - \theta I_{d}\| \xrightarrow{n \to \infty} 0 \end{split}$$

uniformément en v, et cela achève la preuve du lemma 4.

Nous appellerons marche alétoire de pas $(U_1, Y_1) \cdot (U_2, Y_2) \cdot \cdots \cdot (U_k, Y_k)$ la marche alétoire $Z_{nk}^g(n \ge 0)$. Nous noterons V^k le potentiel de cette marche. Si h est positive à support compact, on a donc:

$$V^k h(v,\lambda) = \sum_{n \ge 0} \varepsilon_{v,\lambda} * \mu^{*nk}(h) = E\left(\sum_{n=0}^{\infty} h(Z_{nk}^{v,\lambda})\right)$$

Lemme 5. Il existe un k tel que la conclusion du théorème 1 soit vraie pour la marche de pas $(U_1, Y_1) \cdot (U_2, Y_2) \cdot \cdots \cdot (U_k, Y_k)$, ie, pour toute h positive bornée à support compact

 $|V^k h(v,\lambda)| \le \frac{C_9}{|\lambda|^{2\alpha}}$ pour λ en dehors d'un compact.

Démonstration. 1. Soit $\varepsilon > 0$ choisi comme dans le lemme 1. D'après le lemme 4, il existe un k tel que

 $\|K_{\frac{1}{\sqrt{\theta}}M_k^{\nu}}-I_d\|<\varepsilon.$

Fixons ce k.

D'autre part, puisque pour tout $a \in \mathbb{R}^d$, l'application σ_a : $G_d \to G_d$ définie par $\sigma_a(v,\lambda) = (v,a\lambda)$ est un automorphisme de G_d , on ne change rien en remplaçant l'étude de la marche de pas

$$(U_1, Y_1) \cdot (U_2, Y_2) \cdot \cdots \cdot (U_k, Y_k) = (U_1 U_2 \dots U_k, Y_1 + U_1 Y_2 + \cdots + U_1 \dots U_{k-1} Y_k)$$

par la marche de pas

$$(U', Y') = \left(U_1 \dots U_k, \frac{1}{\sqrt{\theta k}} (Y_1 + U_1 Y_2 + \dots + U_1 \dots U_{k-1} Y_k)\right).$$

Aussi est-ce pour cette dernière marche que nous allons établir la conclusion du lemme 5. Remarquons que Y' est centrée et $||K_{Y'}-I_{\delta}|| < \varepsilon$.

2. Soit $(U_1', Y_1'), (U_2', Y_2), \ldots, (U_n', Y_n'), \ldots$ une suite de $v \cdot a$ indépendantes et de même loi que (U', Y'). Soit, si $g = (v, \lambda) \in G_d$,

$$X_n'^g = \lambda + v Y_1' + v U_1' Y_2' + \cdots + v U_1' \ldots U_{n-1}' Y_n'.$$

Fixons n un instant, et supposons que les $v \cdot a$ (U'_i, Y'_i) soient définies sur un espace de probabilité produit $\Omega_1 \times \Omega_2$, les (U'_i, Y'_i) $(i \le n)$ étant définies sur Ω_1 et (U'_{n+1}, Y'_{n+1}) sur Ω_2 . On a:

$$X_{n+1}'^g(\omega_1,\omega_2) = X_n'^g(\omega_1) + v \cdot U_1' \dots U_n'(\omega_1) Y_{n+1}'(\omega_2) (\omega_1 \in \Omega_1, \omega_2 \in \Omega_2).$$

D'après le lemme 4 et le choix de Y', la matrice de covariance de la $v \cdot a$ centrée $\omega_2 \to v \ U'_1 \dots U'_n(\omega_1) \ Y'_{n+1}(\omega_2)$ est, pour tout v et tout ω_1 , proche de I_d à moins de

 ε près. D'après le lemme 1, il existe donc un compact $K \in \mathbb{R}^d$ tel que, si $X_n^{rg}(\omega_1) \notin K$, on ait:

 $E_{\omega_2}(b(X_{n+1}^{\prime g}(\omega_1,\omega_2))) \ge b(X_n^{\prime g}(\omega_1))$

où le symbole espérance dans le terme de gauche de l'inégalité est pris par rapport à ω_2 , à ω_1 fixé. Soit maintenant T_K^z le temps d'entrée dans K de la suite de $v \cdot a X_n^{r_z}$, ie:

 $T_k^g = \inf\{n; X_n^{\prime g} \in K\}; \quad (g = (v, \lambda) \in G_d, \lambda \notin K)$

et soit \mathscr{F}_n' la σ -algèbre engendrée par $(U_1', Y_1'), (U_2', Y_2'), \dots, (U_n', Y_n')$. Si $A \in \mathscr{F}_n'$, on a:

$$\begin{split} E_{\omega_1} \big\{ \mathbf{1}_A(\omega_1) \, E_{\omega_2} \big(b(X_{n+1}'^{\mathsf{g}}(\omega_1, \omega_2) \big); \, T_K^{\mathsf{g}}(\omega_1) > n \big\} \\ & \quad \quad \geq E_{\omega_1} \big\{ \mathbf{1}_A(\omega_1) \cdot b \big(X_n'^{\mathsf{g}}(\omega_1) \big); \, T_K^{\mathsf{g}}(\omega_1) > n \big\}. \end{split}$$

Soit:

$$E\{1_A \cdot b(X_{n+1}'^g); T_K^g > n\} \ge E\{1_A \cdot b(X_n'^g); T_K^g > n\}.$$

Il en résulte alors immédiatement que la suite de $v \cdot a$ $b(X_{n \wedge T_K}^{rg})$ est une sous-martingale par rapport à la famille de tribus \mathscr{F}_n .

3) De cela, on déduit que, pour tout n, si $\lambda \notin K$ (avec $g = (v, \lambda)$)

$$E(b(X_{n \wedge Tg}^{\prime g})) \geq b(\lambda).$$

D'où:

$$b(\lambda) \leq E\{b(X_n'^g); n \leq T_K^g\} + E\{b(X_{T_K^g}'); n > T_K^g\}$$

b étant majorée par 1, on a:

$$b(\lambda) \leq P\{n \leq T_K^g\} + \xi P\{n > T_K^g\}$$

où ξ est le sup des valeurs prises par b sur K, (et donc $\xi < 1$). Faisant tendre vers n l'infini, on a: $b(\lambda) \le 1 - P\{T_k^g < \infty\} + \xi P\{T_k^g < \infty\}.$

Supposons maintenant λ assez grand pour que $b(\lambda) = f(\lambda) = 1 - \frac{1}{|\lambda|^{2\alpha}}$, on a:

$$P\{T_K^{v,\lambda}<+\infty\}\leq \frac{1-\zeta}{|\lambda|^{2\alpha}}.$$

Soit maintenant $K' = SO(d) \times K$ un compact de G_d . On a alors:

$$P\{T_{K'}^{v,\lambda}<+\infty\}\leq \frac{1-\xi}{|\lambda|^{2\alpha}},$$

où $T_{K'}^{v,\lambda}$ est le temps d'entrée dans K' de la marche de pas (U', Y') partant de (v, λ) à l'instant 0. Passer de cette dernière relation à la conclusion du lemme 5 est alors classique.

Nous pouvons maintenant achever la démonstration du théorème 1. Soit h une fonction positive bornée à support compact dans G_d . D'après le lemme 5, il existe k, C_9 et α tels que:

$$|V^k h(v,\lambda)| \leq \frac{C_9}{|\lambda|^{2\alpha}}.$$

Mais on a bien sûr:

$$Vh(v,\lambda) = (\varepsilon_{v,\lambda} + \varepsilon_{v,\lambda} * \mu + \dots + \varepsilon_{v,\lambda} * \mu^{*k-1}) V^k h$$

= $\varepsilon_{v,\lambda} * \eta(V^k h)$

où la mesure $\eta = \varepsilon_e + \mu + \mu^{*2} + \dots + \mu^{*k-1}$ admet comme μ un moment d'ordre $2 + \delta$. On a donc:

$$V h(v,\lambda) = \int_{G_d} V^k h((v,\lambda) \cdot g) d\eta(g)$$

$$= \int_{|\lambda(g)| \ge \frac{\lambda}{2}} V^k h((v,\lambda) \cdot g) d\eta(g) + \int_{|\lambda(g)| < \frac{\lambda}{2}} V^k h((v,\lambda) \cdot g) d\eta(g).$$

Le second terme de cette expression est, pour λ assez grand, d'après le lemme 5, plus petit que $\frac{C_9}{\left|\frac{\lambda}{2}\right|^{2\alpha}}$. Le premier terme, la fonction $V^k h$ étant bornée, est plus

petit que $C_{10} \int_{|\lambda(g)| > \frac{\lambda}{2}} d\eta(g) \leq \frac{C_{11}}{|\lambda|^{2+\delta}}$. Finalement, si $2+\delta > 2\alpha$, on en déduit:

$$|Vh(v,\lambda)| < \frac{C_{12}}{|\lambda|^{2\alpha}}.$$

Remarque. En examinant précisément les contraintes imposées aux différentes constantes, on voit sans peine que α peut être choisi arbitrairement proche de $\frac{(d-2) \wedge \delta}{2}$.

Bibliographie

- 1. Collins, H.S.: Convergence of convolutions iterates of measures. Duke Math. J. 259-264 (1962)
- Crepel, P.: Marches aléatoires sur le groupe des déplacements du plan. C. R. Acad. Sci. Paris Sér. A. t278, 961 – 963 (1.4.1974)
- 3. Serre, J. P.: Algèbres de Lie semi-simples complexes. New York-Amsterdam: Benjamin 1966

Bernard Roynette Université d'Orléans Dépt. de Mathématiques domaine de la Source F-45000 Orléans France

(Reçu le Juin 27, 1974)