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The Accuracy of the Normal Approximation 
for Minimum Contrast Estimates 

R. MICHEL* and J. PFANZAGL 

1. Introduction 

Theorems on the asymptotic  behavior of an estimate are useless for practical 
purposes, because they give no information on the behavior of the estimate for 
any sample size, however large. The usual practice disregards this fact. It  is for 
instance common to use the asymptotic variance for computing the error of the 
estimate or for comparing the accuracy of two estimates. This reflects the common 
belief that asymptotic  assertions provide a good approximation for the behavior 
of estimates for even small sample sizes. 

This belief is supported by numerical computat ions occasionally performed 
for particular estimates. There are, however, hardly general results available. 
Kiefer ([,9], p. 141) has called this a "terrifically difficult problem". The only 
pertinent result known to the authors is that of Linnik and Mitrofanova ([,10] 
and [11]). F rom their Theorem 1 one can derive that for maximum likelihood 
estimates 0,,  n ~ N, of a shift parameter  family Po, 0 ~ O: 

O . (x ) -O  1 ~ exp - ar _ c n  for [ t l<a~.  n <t 

Our result obtained below holds for arbitrary families of probabili ty measures 
(fulfilling certain regularity conditions) and for all tslR. It  does, however, not 
contain the result of Linnik and Mitrofanova as a special case, because we obtain 
an upper bound of the order n-~(log n) ~ only instead of n -~. The method of 
proof  is entirely different 1. 

2. The Main Result 

Let (X, d )  be a measurable space and P~[d, 0 ~ O, a family of probabili ty meas- 
ures. In the following, O will be assumed to be an open interval (possibly O = IR). 
Let O c denote the closure of O in IR:= [--o0,  + o0] and N the pertaining Borel 
field over O c. 

A family of sr  functions fo: X--> IR, 0 c O  c, is a family of contrast  
f unc t ions  for {Po: 0cO},  if Po(f~) exists 2 for all 0 s O ,  ~ 0  c and if 

P~(fo)<P~(f~) for all O ~ O ,  v ~ O  ~, O + z .  (1) 

* The paper was written while this author was employed by a grant of the Deutsche Forschungs- 
gemeinschaft. 

Note Added in Proof In the meantime, one of the authors has been able to establish a bound 
of the order n -~ (to appear: Metrika 17, Heft 2). 

2 This means that not P~(L-)=Po(s oc. 
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An estimate for the sample size n is an d~-measurable map 8n: X ~  N, 
which depends on xD. . . ,  x n only. 

A minimum contrast (m.c.) estimate for the sample size n is an estimate 0 n 
for which 8n(XN)c O c and 

n n 

i = l  " =  

We remark that maximum likelihood estimates are particular m.c. estimates. 
Let # be a a-finite measure such that e a l d ~ l d ,  OEO, and h_~ a density of 
P~ld relative to #[d .  Assume that there exist functions ha: X ~ I R ,  8 e O  c, such 
that 

(i) h a = h a for 0 ~ O; 

(ii) O ~ ha(x ) is continuous on O ~ for every x e X ;  

(iii) Pa(log h~)<Pa(log h a) for all g e O  and ~ O  r ~=~. 

(We remark that condition (iii) is necessarily fulfilled for all "c e O such that 
Pa(log h,)< m (z~=O) if ~ : ~  implies P,:~ P~ and if, furthermore, - oe <Pa(log ha) 
for all 0EO.) 

If conditions (i), (ii), (iii) are fulfilled, then fa: = - l o g  h a, ~ O r is a family of 
contrast functions. The pertaining m.c. estimates are maximum likelihood esti- 
mates. 

For more details as well as for general conditions on the existence and con- 
sistency of m.c. estimates see Pfanzagl [12-]. 

Theorem. Assume that 0 ~ IR is an open interval. Let ~,, n~N, denote a sequence 
of minimum contrast estimates. Under the regularity conditions listed below, for 
every compact K c 0 there exists celR (depending on K)  such that 

<cn-~(logn)  ~ for all telR, OeK, h e N ,  
where 

p, , [ a((f (', ~))2)]�89 
/~(~)." = p, te, ,~.  

a ~ .  , , ~)) 

Remark. For maximum likelihood estimates the last formula reduces to 

A straightforward application of Schwarz's inequality yields that under suitable 
regularity conditions 

p, ~r,,~ ~) )>0 ,  namely P~(f '( ' ,8))=O, a ~  ~', 

, 
and ~ - # ( f  (', 8)ha)= p ( ~ ( f ' ( . , O ) h s ) ] ]  

(? 2 -~ 
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for any family of contrast functions. This is in accord with the fact that maximum 
likelihood estimates are asymptotically efficient (see Bahadur [2], Schmette- 
rer [13-1). 

The theorem in its present form has no immediate practical consequences, 
because it asserts the existence of a number c, but gives no method for determin- 
ing its value for a given family of probability measures. Work in this direction 
by one of the authors is, however, in progress. 

Let X = { 0 ,  1}, O=(0,  1) and P~{0}= 1-`9, Ps{1}=`9, `9~(0, 1). Then f~(x)= 
(x - 1) log (1 - O) -  x log 0, x a X, 0 ~ [0, 1 ] (where 0 co = 0), is a family of contrast 

tl 

functions and 0 , ( x ) = n - t  ~ x~ is the pertaining sequence of m.c. estimates. For 

every compact subset K c O with �89 we obtain from Esseen ([4], p. 161) that" 

, m(sups p   t , ~  \ ~ t ~  t~R - 0 ~ ( 1 - ` 9 )  ~ n~<t 

1 ~  -~exp  - dr > - ~ 2 ~ "  

Hence a better bound than c n -  + cannot be achieved in general. The range between 
cn -~ and cn-~(log n) ~ remains to be explored. 

The theorem is proved under the following 

Regularity Conditions. 
(i) 0-~P~ is continuous in O with respect to the supremum-metric on 

{P~: 0 ~ O } (defined by the distance function d (P, Q) = sup IP (A)-  Q (A)t). 
Ae~ 

(ii) For each xeX,  0-~fo(x) is continuous in O c. 

(iii) For every 0~ O and every compact K c O: 

(a) sup P~(/o2) < oo. 

(b) fo is uniformly integrable on {P~: ~ K } .  

(g is uniformly integrable on {P~" zEK}, if for every e > 0  there exists a~>0 
such that sup P~(Igl l(x: Ig(x)l ,a~)<e.) 

~aK 

(iv) For each xeX,  O~f~(x) is twice differentiable in O. With 

~2 

f '  (x, O)." = ~ O  fo (x) and f "  (x, ,9): = ~ fo (x) 

we have for all 0~O:  Po(f ' ( ' ,  0))=0. 

(We remark that, because of (i), this condition and the condition P~ ( f" ( - ,  0)) > 0 
mentioned below essentially require that the order of differentiation and integra- 
tion may be interchanged.) 

(v) For every compact K c O : 
(a) 
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(b) jnf P~((f"(', O)- P~(f"(', O)))a)>o. 

(c) 17ra(f,,(., 0))>0. 
(By (i)and (iv), these conditions are fulfilled if Po ( f" ( ' ,  0))> 0 and P~ ((f"(-, 0 ) -  

p~ , ,  O 2 ~(f  ( - , ) ) ) > 0  for all 0e O, and if ( f ' ( . ,0) )  2 and ( f ' ( ' , 0 ) )  2 are uniformly 
integrable on {P~: ~eK}.) 

(vi) For every compact K c O" 
(a) sup Po(]f'( ' ,  0)13) < oo. 

~ K  

(b) sup Po(lf"( ' ,  0)la) < oo. 
,geK 

(vii) For every 0 e 8  c there exists a neighborhood Uo of 0 such that 

(a) for every neighborhood U of 0, U c U~, and every compact K c 0 

sup P~((inf f,)  2) < m. 
8EK a~U 

(b) for every compact K ~ 0 the function inf f~ is uniformly integrable 
from below on {P~: z~K}. ~v~ 

(g is uniformly integrable from below on {P~: z~K}, if for every e>0  there 
exists a~ > 0 such that inf P~ (g l{x: g(~) < - ~ol) > - e.) 

z~K 

(viii) For every 0 ~ 0  there exists an open neighborhood Va of 0 and a meas- 
urable function ka: X ~ IR such that sup P,(k 2) < ~ for every compact K c 0 and 

$ e K  

It , tl ~ t If ( x , z ) - f  (x, 'c)]=]~-~]ko(x ) for all z',zeV~, xEX. 

The following notations will be used: 

~b(t).' _ ~/w_ e x p -  dr, 
- o o  

u (x, 0), = - [Po ((f '  ( ' , 0))2)] - ~f'(x, 0), 

a(O),= (., o))] -1 

The letter c will be used to denote a generic constant. In this way we avoid 
the useless distinction between a great number of different constants. 

Proof of the Theorem. Let d be the distance between K and ~ , -  O. If 0 ~ K 
and L0,(_x)-0] <d,  the m.c. estimate 0, fulfills 

n 

Z f '  (xi, O,(x))= O. 
i=~ 

Starting from the expansion 
n n n 

~f ' (x i ,  O, (x)) = ~ f ' ( x  i, O)+ (0 , (_x)-O)~f"(x  i, ~,(x, 0)), (2) 
i = l  i=I  i = i  

[~n(_x, 0)-- O[ _--< [On(_x)-- 0], we therefore obtain: 

[ _ O . ( x ) - O  V c"lx 
l.-a a \ i~ n~ fl(O) n-la(O) i = 1  ~n(X-'O) = n - - ~  E ( 3 )  
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Condition (iv) implies Ps(u(', 0))=0. Furthermore, P~((u(., 0))2) = 1. 

In the following we shall apply Lemma i for Z = X ~, Q = Po ~s, r = an-~(log n) + 
(where a is the constant occurring in Lemma 7), 

n n 
1 t/ f: x--,n-+2u(x~,O), g: x_-~n- a(O)2 f (x.g~.(x_,O)). 

i = 1  i = l  

We remark that g is measurable because of (2). 
Since - 1 " ,, 

n a(O)~,f (x~,O,(x,~q))>0 
i = 1  

implies 

iff 

O.(x)-O 
- n ~ <  t 

fi(o) 
n n 

n --k ~ u(x,, O) < tn-' a(O) ~,f"(x~, 5,(x, 0)), 
i = 1  i = 1  

we obtain from L e m m a l  for all tclR, OeK, n6N:  

p~{x~X~: ~,(x_)-~fl(O) n'<t}--~(t) 

<Py{x~X~: io.(x)- ol >=a} 

+sup Py {x-eXN: n-~ i u(xi'O)<s} i= 1 
n 

_ -i ,, ^ ~ �9 +P~{xaX~q: n i~= (a(~9)f (xi, 0,(x, 0 ) ) - l ) = a n - ~ ( l o g n )  ~} 

+ an-}(log n){ 
n 

- -1  It (Hint: n a(O)~,f (x i, O,(x, 0))<0 implies 
i = 1  

n 

n-li~=~ (a(O)f'' (x,, O,(x, 0 ) ) -  1) > an-~(log n) ~, 

except an-}(log n)~> 1; in the latter case the inequality is trivial.) 

As the regularity conditions (v)(a), (vi)(a) are fulfilled, the Berry-Esseen 
theorem (see e.g. Feller [6], p. 515, Theorem 1) yields the existence of a constant 
c" such that 

sup P~ { " } ~(s) x eX~:n-~u(xi ,  O)<s - <_c"n --k forall  OeK, n e N .  
seLR. i =  1 

Together with Lemmas 4 and 7 this implies 

p~{xsX~: 0.(x)-0 , fi(o~ " ~ <  tj- ~(t) 

<c'n-a+c"n-~+c n ~+an ~(logn) ~ 

C tt!  for all t~lR, OeK, and neN,  where c', c", are real numbers depending on K. 
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3. A Few Lemmas 

Lemma 1. Let (Z, cg, Q) be a probability space and f:  
Cg-measurable functions. Then: 

[Q {ze Z : f (z) < t g(z)} - ~(t)l 

<=sup[Q{zeZ:f(z)<s}-~(s)[+Q{zeZ: [g(z)- l l>r}+r forall tell(, r>O.  
segl. 

Proof. As the assertion is trivial for r > l ,  we shall assume re(O, 1) in the 
following. 

(i) Lower bound for Q {zeZ:f(z)  < tg(z)} - ~#(t): 
(a) t>=0: 

f(z) < t(1 -- r) implies f(z) < tg(z) or g(z) < 1 -- r. Hence 

Q{z~Z:f(z)<t(1-r)}<=Q{z~Z:f(z)<tg(z)}+Q{z~Z: ]g(z)-l[>r}. (4) 

Fur thermore,  

] ~b ( t ) -  O(t(1 - r))[ =< min (�89 It[ r (2 ~z) -~ exp [ - � 8 9  t 2 (1 - r)2]) 

< min(�89 (2~ e) - r  r(1-r)- l)<r.  
Together  with (4) this implies: 

Q {z~Z:f(z)< tg(z)} - ~(t)> -[ Q {zEZ:f(z)< t ( 1 -  r ) / -  ~ ( t (1 - r ) ) [  

- Q  {z s Z : Ig(z)- l] > r} - r ,  
(b) t<0:  

f(z) < t(1 + r) implies f(z) < tg(z) or g(z) > 1 + r. Hence  

Q{zeZ:f(z)<t(1-~r)}<_<_Q{zeZ:f(z)<tg(z)}+Q{zeZ: ] g ( z ) - l [ > r } .  (5) 

Fur thermore,  

[ 4~(t (1 + r ) ) -  ~(t)[ ___ [t[ r(2~) -~ exp [ - � 8 9  t 2] ~ r(2zr e) --~ =< r. 

Together  with (5) this implies: 

Q {z~ Z: f (z)< t g(z) } -~b(t)>= -[ Q {z~ Z: f (z)< t( l + r)} - ~(t( l + r))] 

- Q { z e Z :  [g(z)- l[>r}-r ,  

Regardless of whether t=> 0 or t < 0, we therefore obtain the following lower 
bound:  

Q {zeZ:f(z)< tg(z)}- q)(t)>= - sup IQ {zsZ:f(z)<s} - ~(s)l 

- Q { z e Z :  Ig(z) - l [>r}-r .  

(ii) Similarly as in (i) we obtain the following upper  bound:  

Q {zeZ:f(z)< t g(z)} - ~/,(t)__< sup IQ {zeZ:f(z)<s} - 0) (s)l 
s ~ .  

+Q{zeZ:  Ig(z)-l l>r}+r.  

(Hint: For  t > 0  use thatf(z)<tg(z) impliesf(z)<t(1 +r) or g(z)> 1 + r ;  for t < 0  
use that  f(z) < tg (z) implies f(z) < t (1 - r) or g (z) < 1 - r.) 

Z ~ , .  g: Z ~ I R  
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Lemma 2. Let (X, d )  be a measurable space, ~31ag a family of probability meas- 
ures and g: X ~ IR an d-measurable function which is uniformly integrable from 
below [above] on ~.  Then P--+ P(g) is lower [upper] semicontinuous on ~.  

Proof We shall restrict ourselves to prove lower semicontinuity at Po for the 
case Po (g)< oo. The case Po (g)= oo requires obvious modifications. 

(i) At first we shall show that P ~ P ( g )  is lower semicontinuous ifg is non- 
negative. For every ~>0 there exists b, such that with B~:={xeX:  g(x)<b~}, 
Po (g lB.) ;> Po (g) - e/2. This implies P (g) > P (g 1Bo) > Po (g 1B~)- 2 b~ d (P, Po). Hence 
d (P, Po) =< e/4 b~ implies P (g) > Po (g) - e. 

(ii) Now we shall show that P--+P(g) is lower semicontinuous for functions 
g which are uniformly integrable from below. By assumption, for every e > 0  
there exists a~>0 such that, with A, :=  { x e X :  g(x)< -as}:  

Therefore, 
P (g 1a~ ) > -- e/2 for all P ~ ~ .  

P (g) - eo (g) = P (g 1A) - Po (g h )  + P (g l~r) - Po (g l x )  

>-e/2+P(gl )-Po(gl ) ~ A~ �9 
Furthermore, 

P (g l&) - Po (g 1,L) -> P ((g + as) 1~=) - Po ((g § a~) 1~) - a, d (P, Po). 

As (g + as) 1xo is nonnegative, the proof can be concluded by using the result of (i). 

Lemma 3. Let (X, ag, P) be a probability space and T a Hausdorff space ful- 
filling the first axiom of countability. Assume that g,: X + ]R, te T, is a family of 
d-measurable functions such that for t o ~ T: 

(i) for every x e X ,  t ~ & ( x )  is lower semicontinuous in t o, 

(ii) infg t is ag-measurable for every open neighborhood U of t o, 
t ~ U  

(iii) P(infg,) > - oo. 

Then sup P(inf gt)= P(g,o), where ql o denotes the system of all open neighbor- 
Ueqlo teU 

hoods of t o . 
(From this we easily conclude that t--* P(gt) is lower semicontinuous in to, i.e., 

sup inf P(gt) = P (gto)-) 
Ue~ teU 

Proof. Let U,e~//o be such that U,+ 1 c U, and (~/.I,= {to}. By (i) we have 

lira in fg ,=g t . By (ii) the monotone convergence theorem is applicable and 
nc2g t e U n  0 

yields lim,~r~ P(inf, gt)= P(gto). From this the assertion follows easily. 

The following lemma is related to results of Wald ([14], p.599, Theorem 1), 
Brillinger ([3], p. 576, Theorem), and Kaufmann ([7], p. 168, Theorem 4.1). 

Lemma 4. Let On, n ~N, be a sequence of  re. c. estimates. Assume that regularity 
conditions (i), (ii), (iii), and (iv) are fulfilled. Then for every e > 0 and every compact 
K c O  there exists celR (depending on e and K)  such that 

P~{xeX~:  ]O,(x_)-~q[>>_e} <=cn -1 for all 9 e K ,  n e N .  
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Pro@ Let C.'= {(0, z)6K x OC: [0-'c[>~}. W.l.g. C~=~. (0, z)e C implies O:t=r 
and therefore by (1) P~ (fs)< Po (s Because of conditions (ii) and (vii)(b), Lemma 3 
may be applied for P = P~, T=  U~, g~ =ft,  to = z to obtain the existence of an open 
neighborhood U(~,~)c U~ of z such that P~(fs)<P~(g(o,0, where g(o,~):=inf{f~: 
a~ U(o,~)}. Because of conditions (i), (iii)(b), and (vii)(b), Lemma 2 implies that 
the map 6--+Pa(fo) is continuous and the map 6--+P~(g(~,0 is lower semicontin- 
uous. Hence there exists a compact neighborhood C(o,,)cO of 0 such that 
Pa (f~) < P~ (g(~, ~)) for all 6 E C(~, ~). 

Let A ~ denote the interior of A. As {C(~ _U(o,~): (0, z)e C} covers the com- 
pact set C (recall that O c is the closure of O in IR), there exists a finite subcover 
determined by (0j, zj)e C, j =  1 . . . . .  m, say. For  notational convenience, let C / =  
C(~j,~j), Uj:= U(~j,v) and gJ:=g(oj,~A" 

As 0,(x)~ U~ implies . , 
n -1 Y~ g~(x,)<n -~ Y~ s 

i = 1  i = 1  

by definition of the m.c. estimate, we obtain that 
n 

n-x y~ (gj (x ,I - P~ (gj)) =< - ) (g (g) - P~ (L))  
o r  i =  1 

n 

n -~ Y (L,(x , ) -  g ( L ) ) = � 8 9  g ( L ) ) .  
i = 1  

As 6~Pa(g~)-Pa(fa) is lower semicontinuous and positive on Cj, we have 

a / =  inf  (P~ (gj)-P~ (fa))> O, j = l  . . . .  ,m. 

If 0 e K and ]0,(x) - O l > e, then (0, 0,(x)) e C and therefore (0, O, (x)) e Cj x Uj 
for some je{1 . . . . .  m}. This implies 

g~'{xeX~: 1O.(x_)-ol_>-~} 

= p~ ~ex~: n -~ ~ (g~(x,/-g%))__< - a / 2  
j = l  i = 1  

-[- J X_ C" X24 :  n - l i = 1  J (xi) - P~ ( f~  a j 2  . 

As conditions (iii)(a) and (vii)(a) are fulfilled, the assertion now follows from 
Chebychev's inequality. 

The reader will note that ideas related to Bahadur ([-1], p.248, Lemma 5.3) 
are used in the proofs of the following lemmas. 

Lemma 5. Let 0,, n~N, be a sequence of m.c. estimates. Assume that regularity 
conditions (i)-(iv), (v)(c), (vi)(b), (vii), and (viii) are fulfilled. Then for every com- 
pact subset K c O  there exists c6lR (depending on K)  such that 

Po~{x~X~: n-~= (a(~)f"(x,, ' ,(x_,~))-l) >�89 -~ 

for all OeK, n e N  and every sequence ~,, n~N, with the following properties: 
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(a) ~.: X~•  O ~ O c depends on x 1 . . . . .  x.  only; 

(b) [~.(x_,O)-O]<=lO.(x)-Olfor all x_eX ~, OeO; 
ia 

(c) x_--+ ~ f ' ( x i ,  $.(x_, `9)) is d~-measurable. 
i = 1  

Proof. Condition (viii) implies that for every compact K c O there exist e > 0 
and k: X ~ .  (both depending on K) such that `geK, `9'eO ~, and 1`9'-`9[<e 
imply I f ' (x ,  `9') - f ' ( x ,  0)1 < 10'-  01 k(x) for all x e X ,  and such that sup Pa(k 2) < oo. 

a s k  

To see this let V a and k a be given by condition (viii). As K is compact, there 

exist 01 . . . .  , 0 , . e K  such that K c  0 Vaj" Let k :=max{ka j : j= l  . . . .  ,m}. By the 
j=l 

uniform cover theorem (see e.g. Kelley [-8], p. 199, Theorem 33) there exists e > 0  
such that for every `9 6 K there exists j such that 10' - `9[ < e implies 0' e V~j, whence 

[ f "  (x, `9')-f"(x, `9)1 =< 1`9'- 01 kaj (x ) < 1`9'-`91 k(x). 

The relations `9 e K and ]`9, ( x ) -  0] < e therefore imply 

P, " 0 n-l~= (a(`9)f"(x~,~.(x,O))-l) N a  n--li~l(fH(xi,`9 )- 8(f ( ' , ) ) )  

(6) ll 

+ a  1`9.(_x)- 01 n 1 ~ k(xi), 
where a'.= sup a(`9), i= 1 

a s K  

Let ko:=SU p Po(k2). If ko=0,  the assertion is trivial. Hence we may assume 
a e K  

k o > 0 in the following. Then 

`geK, [0,,(y)-`9, < e': =min  (e, L o  ) , 
and 

n-'ii(a(̀ 9)f"(xi,__l ,~,,(_x, ̀9))-1) __>�89 
imply 

-1=~1( " - -  a ( f  ( ' ,)))-->4a-a or k(xi)>_2ko. f (xi,`9) P " ,9 1 n-  1 
t'/ i i = 1  - -  

The second inequality, in turn, implies 

n 

n-1 ~ (k (x~) - Po (k)) => k o . 
Hence for O~K: i=l 

n ,2} _x~XN: ~ (a(O) f"(x~,~.(x_,9))-l)  > 
i = l  

_-< g~{_x~x~: IO.(_x)-Ol =>e'} 

_ n - ~  " O ) - P a ( f " ( .  O)) )  >= + xeXN:  ( f  (xl, , 
1 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 18 
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Because of conditions (v)(c), (vi)(b), and (viii), Chebychev's inequality may be 
applied to show that the second and the third term have upper bounds of the 
type c n- i. The proof can now be concluded by an application of Lemma 4. 

Lemma 6. Let 0,, n E N,  be a sequence of  re. c. estimates. Assume that regularity 
conditions (i)-(iv), (v)(a), (v)(c), and (vi)-(viii) are fulfilled. Then for every compact 
K c O  there exists cMR (depending on K )  such that 

P~{x_eX~: 18"(-x)-Ol~2n-~(logn)-i}< -~ _ c n  for all 8 e K ,  n e N .  
/~(0) 

Proof. Let d be the distance between K and P , - O .  Using (3) we obtain for 
0eK: 

fl(0) =zn  tiogn) 4 

< P~ {x_eXN: IO.(_x)-81>d} 

+PY{_xeXr~: n-+i~iu(xi, O)>(logn) 4} 

+Par~{_xeXIN: n- iii= ia(O) f "  (xi, ' , (x ,  8)) < �89 

We have 

as 

PsN{x~XN~ n-�89 ) >(logn) -~} 

-4 +2~(--(logn)~)<c ' n-�89 +c'' n , 

sup x_~XN: -• u(xi, O ) >'c --2~(--z) <c'n -~ 
~>0 

by the Berry-Esseen theorem (which is applicable by virtue of conditions (iv), 
(v)(a), and (vi)(a)), and as 2 ~(-( log n) ~)__< c" n- ~ by Feller ([5], p. 166, Lemma 2). 

As 
. 

i 2 a ( O ) f " ( x i , ~ , ( x ,  <=�89 n 
i=1 

implies 
n 

n-li~=l(a(O)f"(xi, g.(_x, 0))- 1) > !  ~2~ 

the assertion follows from Lemmas 4 and 5. 

Lemma 7. Let 0,,  h e N ,  be a sequence of  m.c. estimates. Assume that regularity 
conditions (i)-(viii) are fulfilled. Then for every compact K c 0 there exist a, c~lR 
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(both depending on K) such that 

P~ {x_~XN: n-li~i(a(O) f"(xi, O.(x_, O))- I ) >=an-i(log n)+} <=cn-~ 

for all O~K, neN, and for every sequence 0,, heN, with the properties (a), (b), (c) 
stated in Lernma 5. 

Proof. The reader will note that the following proof is a suitable modification 
of the proof of Lemma 5. 

Let 
p,  " a : =  5 max {sup a(O) [ a (((f (., 0 ) -  Ps(f"(-,  0)))a)] ~, sup fl(O) a (0) Ps(k)}. 

,.ask 

Starting from (6) we obtain that OeK, [0.(x_)-0[ <e,  and 

imply 

o r  

" o ) ) - a )  n ii__~ i > (a(O)f"(x i, O.(_x, = an- - ( log  n) } 

n 

f (x,,O)-P~(f"(.,O))) > n-~(logn) ~ 

[0.(_x)-0J " 4a 
fl (0) n- 1 ~ m (x i, ,9) >-~- n-- (log n) ~ 

i = 1  

with m(x, 0), =fl(0) a(O) k(x). 
n 

The second inequality, in turn, implies n - l ~  rn(x~, O)>2a and therefore 
i = 1  - - 5  

n 

n-1 2 (re(x,, 0)- 0))==_a, 
i= I  ) 

o r  

Hence for 0 E K: 

I 0 .  (x) - 01 > 2 n -  4 ( log n) 4. 
/~(o) = 

P~ {x_6X~: n-li~=l(a(O) f"(xi, O.(x_, O))- i ) > an-�89 ~} 

_-__~{x+S~: 10.(x)-Ol_->e} 

+ xeX~: a(O) - 1  " O ] - - P  {~ '"["  0)))  = 5 
- f (xi, , stJ ~, n-+(logn) ~ 

+ xex~: n-1 y (m(x~, s ) -  P~(m(-, O))) _>_ 
i = 1  

/~(o) 
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As conditions (v) (b) and (vi) (b) are fulfilled, the Berry-Esseen theorem applies 
and yields the existence of a number c' such that 

P~ xeX~:a(~)- I i=~l , . . . . .  O)-P~(f'(.,O))) > ~ n - - ( l o g n )  ~ 

n 

__< xeX : n (logn)  

<=c' + 2  (-(log 

This inequality together with Lemmas 4 and 6 implies the assertion. 
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