
Z. Wahrscheinlichkeitstheorie verw. Geb. 18, 34-46 (1971) 
�9 by Springer-Verlag 1971 

Diffusion Branching Processes 
with Several Types of Particles 

MILOSLAV JIP..INA 

Let us consider a sequence of one-type-particle branching processes with 

basic first moments M , =  1 +~-~- and let us transform the time parameter and 
n 

the states of the n th process in such a way that one new time unit corresponds 
to n time units of the original process and one unit in the new state space 
corresponds to n particles of the original process. Feller discovered (see [1]) that 
the transition probabilities of the transformed processes converge with n--.oo 
to transition probabilities of a diffusion process and that the characteristic 
functions of the limit transition probabilities satisfy a partial differential equation 
the explicit solution of which is known. A complete proof of this assertion is 
contained in [2]; more precisely, it is proved in [2] that the logarithms of the 
Laplace transforms of the transformed transition probabilities converge to a 
function O(t, s) defined by an explicit formula (see [2] (8)). This function satisfies 
a partial differential equation analoguous to the partial differential equation 
mentioned above, but this fact is not used in the proof of [2]. 

It is natural to expect that branching processes with r types of particles wilt 
behave in a similar way and that the logarithms tp, i(t, s) of the Laplace trans- 
forms of the transformed basic transition probabilities will converge to functions 
Oi(t, s) satisfying analoguous differential equations (see (5) and (6) of this paper). 
It seems that there is no explicit solution of these equations if r > 1 and the method 
of [2] is therefore not applicable. An attempt to prove directly (using estimates 
similar to those of [2]) that the sequences 0,/(t, s) are convergent, failed too. For 
these reasons the method of the present paper is different from that used in [2]. 
It follows the ideas of the proof of the continuity theorem for characteristic 
functions, i.e. it consists of the following three steps: (a) the existence of a con- 
vergent subsequence of 0,~(t, s) is established, (b) it is proved that the limits 
Oi(t, s) satisfy the system (5) of differential equations and (c) the uniqueness of the 
solution of(5) is then used in proving that the whole sequence O,~(t, s) is convergent. 

In the paper we shall deal with r-dimensional vectors and r x r matrices. For 
a vector a = ( a  1 . . . . .  at), la[ will denote the v e c t o r  ( [ a l ]  . . . .  , ]at] ) and ]tall= 
max{lall . . . . .  ]arl}; similarly, for a matrix A=(Ai j ) i , j ,  ]A] will denote the matrix 
([Aijl)i. j. If a, b are vectors then a b will denote their inner product. We shall not 
distinguish explicitly between row and column vectors. Thus, in the product A a 
of a matrix A and a vector a, a will be automatically considered a column vector. 
Inequalities between vectors or matrices will mean that the indicated inequalities 
hold between all corresponding components of the vectors or matrices. The i th 
unit vector (0, ..., 1, ..., 0) will be denoted by e ") and, consequently, eJ. ~)=0 if 
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i't=j, el i)= 1; e will denote the vector (1, 1 . . . .  ,1), 0 the zero vector or zero matrix, 
E the diagonal unit matrix and I the matrix all elements of which are equal to 1. 
If A(t) is a matrix (Ai~(t))i, j of functions of a variable t, then 5A(t)dt will denote 
the matrix (5 Air(t)dt)i,J" 

Let ~,  be a sequence of homogeneous Markov branching processes with 
discrete time parameter te T = {0, 1 . . . .  } and with r types of particles, i.e. with 
state space N r, where N =  {0, 1, ...}. The probability of transition from the state 
a=(a 1 .... , ar)eN r to the state b~N ~ in ~, will be denoted by P,(t, a, b). The prob- 
ability distribution induced on N" by P~(t, a, b) will be denoted by P,(t, a, "). To 
each N, we shall assign a new Markov process 2,  with discrete time parameter 
t e T , =  {0, 1/n, 2/n . . . .  } and with state space N, ~, where 5/.={0, 1/n, 2/n, ...}. The 
transition probabilities Q,(t, a, b) of 2,  will be defined by 

Q,(t,a,b)=P,(nt, na, nb), t~T,, a,b~N,~. (1) 

Let R ~ be the non-negative cone of the r-space. For s=(sj, s~)~R+, put + . . . 7  

eb,(t, a, s)= ~ e-sbp,(t, a, b) 
and bENr 

q~, (t, a, s)= --log ~,(t, a, s) 

(i.e. 4), is the negative logarithm of the Laplace transform of P.(t, a, .)). Similarly, 

put ~(t, a, s)= - l o g  ~ e-~bQ,(t, a, b) 
(t~T~, a~N,~), b~Nn 

It is well known that the process ~, is uniquely determined by the basic 
transition probabilities P,(t, e (~ b). For simplicity reasons we shall write P~, ~(t, b) 
instead of P~(t, e (~ b) and the same rule will apply to all other functions; thus, 
c~,i(t , s)=~b,(t, e ~~ s) e.g. qS,(t, s) will denote the vector (q~nl(t, s) . . . . .  ~nr(t, S)), 
~,,(t, s) the vector (~,,(t, s) . . . .  , O,,(t, s)) etc. In ~, processes, the value t =  1 will 
be also ommitted, i.e. we shall write P,i(b) instead of P,I(1, b), ~b,(s) instead of 
~b,(1, s) etc. To simplify symbols for derivatives, we shall write ~b,ij(t, s) instead of 

Os~7. q3,~(t, s) and q~,~jk(t, S)instead of ~ - ~ b , ~ ( t ,  s). The same rule will apply 
a a l  

to O,i(t, s) and other functions. 
We shall assume that the first and second moments of ~, are finite and we 

shall denote the first moments of P,~(t, .) by 

M, ij(t ) = r 0). 

M,(t) will denote the matrix (M, ij(t))i, J. It is well known that 

M . ( t ) = i  t, (with M,=M,(1)).  

The covariances of P,i(') will be denoted by 

D. iSk = - -  ~ n  i j  k ( 0 ) ,  

For each t > 0  let [t], denote the largest z~ T, less or equal to t, i.e. [t],, = [t,]/n, 
where [y] = [Y]I denotes the integral part ofy. Similarly, for a vector a = (a, . . . .  , a~), 
we shall write [a], = ([a,] . . . . .  , [at],). 
3* 
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Theorem. Let us assume that finite limits 

and 

exist. 
on R r such that + 

Q,([t] , ,  [a], ,  ") ~ Q(t, a, .) (weakly) 
and the functions 

~9i(t, s)= - l o g  ~ e-~bQ(t, e (~ db) 

satisJy the Jollowing system of ordinary differential equations 

0 
 i(t, s)=y  % r s)-y   ,jk s)Ok(t, s) (5) 

j j , k  

with initial conditions Oi(O, s)= s i (i = 1 . . . . .  r). Each ~9i(t , s) satisfies also the partial 
differential equation 

0 
~i(t, s ) = ~  Cj(s)~s. ~i(t, s) (6) 

St 
J 

where 
Ci(s) = Z ~ij s j -  Z fl,jk S1Sk" (7) 

j j , k  

Remarks. (a) It follows from (3) that 

�89 D, ijg ~ flijk (8) 

but the stronger condition (3) is needed in the proof. It can be proved that (3) 
follows from (8), if the third cummulants qS,~jkl(0 ) are uniformly bounded with 
respect to n. 

(b) The notation introduced in the theorem might be confusing, because 
~,(t, s) denotes by the previous agreement the vector of functions (ft,1 . . . .  , if,r), 
while ffi(t, s) defined in the theorem means another (single) function. All possible 
confusion will be avoided, if we make an agreement that the letter n will be always 
used as the first index only and its presence will express the fact that the 
corresponding function (or vector etc.) belongs to the n th process ~, or ~. ,  while n 
missing will mean that the function belongs to the limit process. 

Proof oJ" the Theorem. In order to prove (4) it is sufficient to show that for 
each t > 0  and a~R~+ the functions ~([ t ] . ,  [a] , ,  s) converge to a function ~9(t, a, s) 
and that ~b (t, a, s) is the negative logarithm of the Laplace transform of a prob- 
ability measure Q(t, a, "). By (1) 

O.(t ,a ,s)=~.  nt, n a , - - s  (teT.,  aeN2) (9) 
g 

and from the basic identity for branching processes 

4).(t,a,s)=~'ai~).i(t,s) (teT, a~N ~) (10) 
i 

!iron ( M , -  E) = A = (~ij)i,j (2) 

r  - 2 ,jk (3) 
s---~ 0 

Then there exist, for each t>O and aeR+, probability measures Q(t,a, .) 

(4) 
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we have 

and 

Oni([t]., s)= n 4)ni ( [ t n], l s )  

~9.([t]., [a]n, s) = ~ [ai] n ~9.i([t]n, s) 
i 

for all t>O (11) 

for all t >  0 and all a~R+. Since [ai] n ~ ai, it is sufficient to prove the convergence 
of 0.1(It]n, s). We have defined the functions 0,~(t, s) for t~T n only, but it will 
simplify the notation and the proof, if we define them for all t>0 ,  i.e., if we write 

tkn~(t, s)=n 4)n~ ( [t n], l s )  for all t > 0. 

Put  A ~ = n ( M n - E  ) and let %~j be the elements of An. By (2), O~ni j 

for all i, j. The well known formula 

4)n(tl -[- [2, S) = 4)n(tl, 4)n(t2, S)) 

and also the obvious relations 

n ~  cqj 

02) 

4).(0, s) = s,  On (0, s) = s 

will be used frequently. The proof of the theorem will consist of several lemmas. 

(i) To each to>O there exists k > 0  such that 

M~ < k I Jot all n and all t = 0, 1 . . . .  , [t o n]. 

Proof c%~j are convergent (with n - .  oo) and therefore bounded by a constant 
c > 0. Then 

1 t 
M ~ _ / E + ; A n \  ) ( E + n l ) < ( E + C I )  t n~oo'eXp(CtoI)" 

(ii) To each t o >= 0 there exists k > 0 such that 

O ~ 4).i(t, s) ~ k ll sl[ 

./'or all n, all t=0 ,  1, ..., [ton], all i and all seR~+. 

Proof 
4).,(t, s)= E M.~j(t) sj + �89 E 4).,jk(t, ~) sjs~ (13) 

j j ,k  

where 0-< o-_< s. Since (-4)nljk(t, tT))j, k is the covariance matrix of the probability 

distribution e-~b P~i(t, b)/4)ni(t , a) (on Nr), 

~. 4).,j~(t. ~) s~s~ <=o. 
jk 

Hence 4).i(t, a) < ~ M.ij(t ) s~ and the assertion follows from (i). 
J 
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(iii) To each t o >= 0 there exists x > 0 such that 

0 <= ~,ij(t, s) <= 2M, ij(t ) 

Jbr all n, all t=O, 1 . . . . .  [to nil  all i,j  and all ss[Ox] ~. 

Proof. 
�9 .~j(t, s) 

4,u(t ,  s)= ~,i(t,  s) 

and 0 <  - dP.u(t, s )<M,u( t  ) for all s. Hence, 

�9 ., (t, s) = 1 + ~ ~ . u  (t, a) sj > 1 - ~ M.u(t)  sj. 
J J 

By (i), M,u(t  ) are uniformly bounded for all n and all t = 0 ,  1, . . . ,  [ ton ] 
consequently, q~,i (t, s) > 1 for sufficiently small s. 

(iv) To each x > 0 there exists k > 0 such that 

and, 

t/ 

Jbr all n, all i ,j  and all sE[0x]  r. 

Proof For i+j, the assertion follows from (iii) and the fact that  e~~ 
1 

M,u=-n -  a ,u  (at least for sufficiently large n; but then it must  hold for all n). For  

i= j  we have 

and 

J 

=_1 D.,,+E 
n j 

1 
where O<_a.(s)<=--s. The sequences %u, ~. j (a.(s))  and [~.u(a.(s))l<=M.u are 

uniformly bounded with respect to all n and s~ [0x ]  ~ because of (2) and (3). From 

the proof of ( i i i ) i t  follows that ~ i (~s )  >�89 forsufficiently largenand allsE[Ox] r 
and, consequently, the functions 1/(bni(~S ) are bounded uniformly with 

respect to all n and all s~[-0x] r. Hence n [ q S , u ( l s )  - 1] is bounded uniformly 

with respect to all n and all s e [ 0 x ]  r. This proves the assertion of (iv) for i=j. 
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(V) To each t o > 0 and x > 0 there exists k > 0 such that 

Jot all n, all t=0 ,  1, ..., [ton ], all i,j,k and all s~[0x] ' .  

Proof Differentiating the relation r  + 1, s)= ~b, (qS,(t, s))(see (12)) we obtain 

O,.jk(t+ 1, S)=W,jk(t, s)+m,(t, S) (O,.jk(t, S) (14) 

where O,.jk(t,s) denotes the vector ((O,ijk(t,s))i= 1 ....... W,jk(t,s ) the vector 
On. ira(On( t, s)) Onl)(t, s) ~gnmg(t , S) and m.(t, s) the matrix (O,i~(O,(t, s)))i,j. 

l ,m 

From (14) we have 

r ~ ~-[~m,(t-- = v) w , j k ( t -  ~). (15) 
r = l  v = l  

It follows from (3) that there exists x l > 0  such that the functions O,ijk(S) are 
bonunded uniformly with respect to all n and all se[0 Xl] r. 

By (ii), 0,  t , - -s  e [ 0 x l ]  for all sufficiently large n, all t<=[ton ] and all 

s e [ 0 x ] .  Hence r 0, t,~-S are bounded umformly with respect to 

all n, all t<[ton ] and all se[Ox] r. 

By(i) and(iii),d?,ij(t,-~s ) are bounded uniformly with respect to all n, all 

t <  [t o n] and all s e [0x] ' .  Consequently, there exists k1>0 such that 

Wnjk(t,-~S ) <kle (16) 

for all n, all t<[ton ] and all s e [0x] ' .  

By (ii), there exists x 2 > 0 such that 

0<nr t, <x2 

for all n, all t <  [t o n] and all s~ [0 x]'. Hence, by (iv), there exists k 2 > 0 such that 

0 . . . .  ~ \ n  " n O ,  t, s < n 

or 

for all n, all t=< [t o n] and all se[0  x]'. 
By (15), (16) and (17) we have 

~ 

for all n, all t=< [t o n] and all se[0  x]'. 
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For the same reasons as in the proof  of (i), the sequence E +  I is 

bounded with respect to all n and all t <  [t o n] and the assertion of (v) follows 
then from (18). 

(vi) To each to>O there exist n o and k > 0  such that 

IM~.1- L,'.1 _ El < k ( t - t') I 

Jor all n>=n o and all O<_t' <_t<-t o. 
Proof It,l- [,' .1-1 

M[.'"]-rt'"I-E=(M, -E)  Z M~. 

By (i), Mr,.1-~,',1 _ E] < 1 Ia. ]" ([t n] - [t' n]) k i I 
/1 

for some k 1 > O, and the assertion of (vi) follows from the fact that  the sequence 

]A,I is bounded and that-~-I ([r n ] -  [z' n ] ) ~  z - r ' .  
n 

(vii) To each to>=O and x>O, there exist n o and k>O such that 

[@.i(t, s)-O.i(t', s)l <=klt-t'l 

for all n>=no, all i, all t<=to, t'<=t o and all se[0,  x] r. 

Proof Assume t '<  t. By (12) 

tk.~(t,s)-O~(t',s)=n~o.~([tn]-[t'n-], ~ . ( [ t ' n ] , l s ) )  

-n4).i ([t'n], l s )  =n ~(M~}>  t~'"l- e} ~ 4).j([t'n], i s )  

j ,k  

where 
O<=G(t, t', s)<= 4). ([t' n-l, l s )  . (19) 

Oni([tn] ~ s )  < kl , = x ( 2 0 )  
/I  

By (ii) 

for some k l>0 ,  all t<=t o and all s e [ 0 x ]  r. 

By (v), (19) and (20) 

q~. , , ( [ t /1 ]  - [t '  h i ,  ~ . ( t ,  t', s))__< (It/1] - I t ' /1]) .  k2 (21) 

for all n, all t, t ' -  < _ to, all s e l0  x] r and some k 2 > 0. Using (vi), (20) and (21) we have 

finally It n] - It '  n] 
I~.i(t, s ) -  0. i  (t', s)] =< k 3 ( t -  t') + k .  

/1 

for some positive constants k3, k4, for all sufficiently large n, all t, t'<=t o and 
all s s [0 x] r. 
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(viii) Let Q,, ,, be a double sequence oJprobability measures on R+. Then there 
exist an infinite sequence 5: of  natural numbers and finite measures Qm on R~+ 
such that 

Q,, ~ - ~  ~o ~ Q,~ Jbr each m (weakly). 
n E  S: 

This assertion is well known for simple sequences. Its proof applies verbally 
to double sequences 

(ix) There exist an infinite sequence 50 of  natural numbers and probability 
measures Qi(t, ") on R ~+ such that 

Q.i(Et]., ") ._+~  Qi(t, .) (weakly) (22) 

Jbr each t > O. 

Proof Consider first rational t > 0 only. In this case, the probability measures 
Q,~(t, ") can be arranged into a double sequence Q,,, and by (viii), there exist 
finite measures Qi(t, .) and an infinite sequence 5: such that (22) holds for all 
rational t__> 0. Put, for each rational t >  0, 

O i ( t , s ) = - l o g  ~ e-bSQi(t, db ) (s~R~). (23) 
R~+ 

It follows from (21) that 
~i(t, s)= lim ~,i(t, s) (24) 

n - + o o  
n E ~  

for all rational t > 0  and all seR~+, s>0.  

Consider now an irrational t ' > 0  and take any e > 0  and seR~+. There exists 
a rational t > 0 such that I t - t ' l  < e and, by (vii), 

I~., (t', s) - Cm~ (t', sl ~ 10.~ (t', s ) -  ~,~ (t, s)l + 1Om, (t', s) - r  (t, s)l 

+ I@,i(t, s)-@~i(t, s)l < k e +  Ir s)-@m,i(t, s)l 

for some k > 0  and sufficiently large m, n. Using (24) we see that the limit 
limr s) exists also for each irrational t>0 ,  i.e. for all t > 0  (and all s~R+, 

n ~ o o  

s>0).  By a well known theorem, there exist then finite measures Qi(t, .) such 
that (22) holds for all t>0 ,  and if we define Oi(t, s) by (23) for all t > 0  this time, 
the relation (24) holds (for all t > 0  and all sER~,  s>0). It remains to show that 
Qi(t, ") are probability measures. 

Take a fixed t__> 0. By (ii) 

~ , i ( t , s ) = n ~ , i ( [ t n ] , l s )  <k"s't 

for some k>0 ,  all n and all s from a finite interval [0x]  r. Hence, by (24), 
gq (t, s) < k [] s ]l for all s ~ [0 x] r, s > 0, and since Oi (t, s) is continuous in s, Oi (t, 0) = 0. 

(x) The relation (24) holdsJbr all sER+ and the fimctions Oi(t, s) are continuous 
in (t, s). 
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Proof Since we have shown that Q~(t, .) are also probability measures, the 
first part of the assertion follows from (22). By (vii), 

10i (t, s) - ~J~ (t', s)[ < k { t -  t'[ 

for some k>0,  all t, t '< t  o and all s~[0 x] r and each gJi(t, s) is continuous in s. 
This proves the second part of the assertion. 

In the next lemmas, the following notation will be used: 

Rij(t, s)= c~ij- Z flijk Og(t, s), R(t, s)= (Rii(t, s)),.j, 
k 

S•(t,s)= f R(tm, s )R( t , ,_ l , s  ) ... R(q ,s)dt~  ... dt,,, 
O <=tl <,,.t~a <~t 

So (t, s) = E, 

0(t, s)= (r (t, s) . . . . .  0r(t, s)). 

(xi) For each t o > 0 and x > 0, the series 

S,.(t, s) 
m = O  

is convergent uniformly with respect to (t, s)e[0 to] x [0 x]q 

Proof By (x), Ris(t, s) are bounded in [0 to] x [0 x] ". Hence, 

k m t ~ 
ISm(t, s)l < ~ . ~ ~  1 (25) 

for some k>0,  all m and all (t, s)e[0 to] x [0 x] r. 

(xi i )  | 
~(t,s)=( Y~ s~(t,s)) s. 

"m= 0 

Proof  By (13) (with t = 1) we have 

~ = [M. + z ,  (s)] s (26) 

where Z.(s) is the matrix (Z.ij(s))ij and 

z,,j(s)=~Z 4).,jk(~.(s))s~, o<=~~ 
k 

Using qS.(z + 1, s)= ~b. (~b.(z, s))and (26), we obtain 

t 

~,(t, s)= H(M.+Z.(4~,(t-~, s))) s. 
For each t>0,  put 
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Then 

where 

[ [tnl 

S., re(t, s )=  n ~  ~ R .  , s ... R .  , s 
O < = q < . . . < t m  <-_[tn] - 1 

( integers)  

= ~ Rn(tm, s ) . . . R , ( t p s ) d t  . . . .  ,dtm 
0 ~tl<="'tm<=[t]n 

and Sn, 0 (t, S) =- E. 
By (2), (3), (ii) and (x), 

R. (t, s) --~,~ co n (t, s) 
n E ~ '  

for each t>=0 and s~R%. Further, for each t__>0 and s, the functions Rn(r, s) are 
uniformly bounded with respect to n and z ~ [0 t] because of (2), (3) and (ii). Hence 

S~m(t, s) ~ S,,(t, s) (27) 

for each m, t, s. Also, by (2), (3) and (ii), to each t and s there exists k 1 > 0 such that 

k m  frn 

IS,,m(t, s)l < ~ . ~  I (28) 

for all n and m. Finally 

~,o(t, s ) -  s=  E (s,,.m(t, s)-S~(t ,  s)). s 
-- m = 0  

m = l + l  r n = / + 1  

for any l, 0 < 1 < [t n] and the assertion of (xii) follows from (25), (27) and (28). 

(xiii) The Junctions Oi(t, S) satisfy (5) with initial conditions Oi(O, s)= s i. 

ProoJ2 Differentiating formally (xii) we obtain 

ot 0(t,s)=/E = - -  s~ , ( t ,  s)  s 
\m=l 0t 

= R (t, s) s = R (t, s) 0 (t, s). 

Since by (xi) the series on the right-hand side is convergent uniformly with respect 
to t in each finite interval, the term-by-term differentiation is justified and (5) 
holds. The initial conditions follow from 

0hi(0, s)= si. 
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(xiv) On(t, s) ,~-z~ O(t, s) f o r  all t and s. 

P r o o f  By (x), the limit relation holds if n runs through the sequence 5(. Let us 
assume that (xiv) does not hold. Then there exists a sequence ~ of natural numbers 
such that 

Oni(to, So) ~ I#  Oi(to, So) (29) 
n~5~1 

for some i, to, So. Using the same method as before we can select a subsequence 
5f2 c ~ such that 

0n(t, s) ~ ~(t, s) for all t and s, (30) 
neS#2 

and prove that the limit function ~(t, s) satisfies (5) with the same initial conditions 
tp (0, s) = s. Hence, 0 (t, s ) -  0 (t, s) which contradicts (29) and (30). 

In the last three lemmas, the functions C i (s) defined by (7) and the functions 

will be used. 

(xv) For  each i and s 

P r o o f  

Cni(S) ~ Q(S). 

( 1 )  sj 1 s i s  k 
S =ZMn,jT+TZ4 n, k( .) n2 

j j , k  

1 
where 0 < an < - -  s. The assertion follows from (2) and (3). 

n 

(xvi) To each t o and x > 0 there ex is t s  n o and k > 0 such that 

]Onij(t, s) -- ~gnij(t', s)] < k I t -  t'l 

Jo t  all n >= n o, all i, j,  all t < t o, t' < t o and all s~[0 x] r. 

P r o o f  Assume t ' < t .  By (11) and (12) 

k ~X'~nlk 

k,l 

where 
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The assertion of (xvi) can be now proved in a similar way as that of (vii), if, in 
addition, the inequality 

Onkj ( [ t n ] , l -  s) <=C (31) 

is used. (31) holds for some c > 0, all t < t o and all s e [0 x] r and follows easily from 
(i) and (iii). 

(xvii) (6) holds Jbr each i. 

Proof We shall prove the assertion for s > 0  only, but it would possible to 
show that it holds for all seR+ (with the convention that Oij(s) means the right- 
hand side derivative if sj = 0). 

By (12), 
~,i(t + 1, S)•ff)ni(t , ff)(S)) 

= (o,i(t, s)+ ~ O,ij(t, S)(dp,j(s) -- Sj) 
J 

+ ~ Y O.~k(t, ~.(t, sl)(+.jIs)- s~)(+.k(s)--~k) 
jk  

where 

Hence 
I~.(t, s ) -  s l~  I~ . ( s ) -  sI , (32) 

~ni(t,s)=n~)ni ([tn], l s )  

1 N-1 ( ) 
j z=O 

1 [tn]- 1 

2 n  j k  = 

Since Q,i([t] , ,  ") ~ Qi(t, ") weakly, 

O.~j(t, s)--. ~j(t,  s) (33) 

for each t > 0  and s~R+, s>0.  Further, by (31) 

tpn i j ( t , s )=(a , i j ( [ tn] , l s )<c  for some c>0 ,  all n and all t 

from any given finite interval. Hence 

1 [tn]- 1 72 

- -  ~ tp, i ~-, s = tp,ij(z, s) dr ~ Oij(z, s) ds. (34) 
Y/ "c=O 0 

By (ii, and (32), n a, (t, l s) < x for some x, all t and all n and consequently, by (v), 

for some k > 0 and all n. 
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U s i n g  (xiv), (xv), (34) a n d  (35) we see t h a t  

t 

j o 
By (33) a n d  (xvi), 

I 0ij(t, s ) -  4,~j(t', s)l _-__ k ( t -  t') 

(36) 

for  al l  t, t' f r om a f inite in te rva l .  Hence ,  ~i j ( t ,  s) is c o n t i n u o u s  in t a n d  we can  there-  

0 t fore d i f fe ren t ia te  (36) w i th  r e spec t  to  t. This  p r o v e s  the  ex is tence  o f ~ - O i ( ,  s) 
a n d  (6). 
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