Diffusion Branching Processes with Several Types of Particles

MILOSLAV JIŘINA

Let us consider a sequence of one-type-particle branching processes with basic first moments $M_n = 1 + \frac{\alpha}{n}$ and let us transform the time parameter and the states of the n^{th} process in such a way that one new time unit corresponds to *n* time units of the original process and one unit in the new state space corresponds to *n* particles of the original process. Feller discovered (see [1]) that the transition probabilities of the transformed processes converge with $n \to \infty$ to transition probabilities of a diffusion process and that the characteristic functions of the limit transition probabilities satisfy a partial differential equation the explicit solution of which is known. A complete proof of this assertion is contained in [2]; more precisely, it is proved in [2] that the logarithms of the Laplace transforms of the transformed transition probabilities converge to a function $\psi(t, s)$ defined by an explicit formula (see [2] (8)). This function satisfies a partial differential equation analoguous to the partial differential equation mentioned above, but this fact is not used in the proof of [2].

It is natural to expect that branching processes with r types of particles will behave in a similar way and that the logarithms $\psi_{ni}(t, s)$ of the Laplace transforms of the transformed basic transition probabilities will converge to functions $\psi_i(t, s)$ satisfying analoguous differential equations (see (5) and (6) of this paper). It seems that there is no explicit solution of these equations if r > 1 and the method of [2] is therefore not applicable. An attempt to prove directly (using estimates similar to those of [2]) that the sequences $\psi_{ni}(t, s)$ are convergent, failed too. For these reasons the method of the present paper is different from that used in [2]. It follows the ideas of the proof of the continuity theorem for characteristic functions, i.e. it consists of the following three steps: (a) the existence of a convergent subsequence of $\psi_{ni}(t, s)$ is established, (b) it is proved that the limits $\psi_i(t, s)$ satisfy the system (5) of differential equations and (c) the uniqueness of the solution of (5) is then used in proving that the whole sequence $\psi_{ni}(t, s)$ is convergent.

In the paper we shall deal with r-dimensional vectors and $r \times r$ matrices. For a vector $a = (a_1, ..., a_r)$, |a| will denote the vector $(|a_1|, ..., |a_r|)$ and $||a|| = \max\{|a_1|, ..., |a_r|\}$; similarly, for a matrix $A = (A_{ij})_{i,j}$, |A| will denote the matrix $(|A_{ij}|)_{i,j}$. If a, b are vectors then ab will denote their inner product. We shall not distinguish explicitly between row and column vectors. Thus, in the product Aaof a matrix A and a vector a, a will be automatically considered a column vector. Inequalities between vectors or matrices will mean that the indicated inequalities hold between all corresponding components of the vectors or matrices. The i^{th} unit vector (0, ..., 1, ..., 0) will be denoted by $e^{(i)}$ and, consequently, $e_j^{(i)} = 0$ if

 $i \neq j$, $e_i^{(i)} = 1$; e will denote the vector (1, 1, ..., 1), 0 the zero vector or zero matrix, E the diagonal unit matrix and I the matrix all elements of which are equal to 1. If A(t) is a matrix $(A_{ij}(t))_{i,j}$ of functions of a variable t, then $\int A(t) dt$ will denote the matrix $(\int A_{ij}(t) dt)_{i,j}$.

Let \mathscr{P}_n be a sequence of homogeneous Markov branching processes with discrete time parameter $t \in T = \{0, 1, ...\}$ and with r types of particles, i.e. with state space N^r, where $N = \{0, 1, ...\}$. The probability of transition from the state $a = (a_1, ..., a_r) \in N^r$ to the state $b \in N^r$ in \mathscr{P}_n will be denoted by $P_n(t, a, b)$. The probability distribution induced on N^r by $P_n(t, a, b)$ will be denoted by $P_n(t, a, \cdot)$. To each \mathscr{P}_n we shall assign a new Markov process \mathscr{Q}_n with discrete time parameter $t \in T_n = \{0, 1/n, 2/n, ...\}$ and with state space N_n^r , where $N_n = \{0, 1/n, 2/n, ...\}$. The transition probabilities $Q_n(t, a, b)$ of \mathscr{Q}_n will be defined by

$$Q_n(t, a, b) = P_n(n t, n a, n b), \quad t \in T_n, \quad a, b \in N_n^r.$$
 (1)

b)

Let R_{+}^{r} be the non-negative cone of the r-space. For $s = (s_1, \ldots, s_r) \in R_{+}^{r}$, put

$$\Phi_n(t, a, s) = \sum_{b \in N^r} e^{-sb} P_n(t, a, b)$$
$$\phi_n(t, a, s) = -\log \Phi_n(t, a, s)$$

and

(i.e.
$$\phi_n$$
 is the negative logarithm of the Laplace transform of $P_n(t, a, \cdot)$). Similarly,
put
 $\psi(t, a, s) = -\log \sum_{b \in N_D^c} e^{-sb} Q_n(t, a, b)$

 $(t \in T_n, a \in N_n^r).$

It is well known that the process \mathscr{P}_n is uniquely determined by the basic transition probabilities $P_n(t, e^{(i)}, b)$. For simplicity reasons we shall write $P_{n,i}(t, b)$ instead of $P_n(t, e^{(i)}, b)$ and the same rule will apply to all other functions; thus, $\phi_{ni}(t, s) = \phi_n(t, e^{(i)}, s)$ e.g. $\phi_n(t, s)$ will denote the vector $(\phi_{n1}(t, s), \dots, \phi_{nr}(t, s))$, $\psi_n(t, s)$ the vector $(\psi_{n1}(t, s), \dots, \psi_{nr}(t, s))$ etc. In \mathscr{P}_n processes, the value t = 1 will be also ommitted, i.e. we shall write $P_{ni}(b)$ instead of $P_{ni}(1, b)$, $\phi_n(s)$ instead of $\phi_n(1, s)$ etc. To simplify symbols for derivatives, we shall write $\phi_{nij}(t, s)$ instead of $\frac{\partial}{\partial s_j} \phi_{ni}(t, s)$ and $\phi_{nijk}(t, s)$ instead of $\frac{\partial^2}{\partial s_j \partial s_l} \phi_{ni}(t, s)$. The same rule will apply to $\psi_{ni}(t, s)$ and other functions.

We shall assume that the first and second moments of \mathcal{P}_n are finite and we shall denote the first moments of $P_{ni}(t, \cdot)$ by

$$M_{nii}(t) = \phi_{nii}(t,0).$$

 $M_n(t)$ will denote the matrix $(M_{nii}(t))_{i,j}$. It is well known that

 $M_n(t) = M_n^t$ (with $M_n = M_n(1)$).

The covariances of $P_{ni}(\cdot)$ will be denoted by

$$D_{nijk} = -\phi_{nijk}(0).$$

For each $t \ge 0$ let $[t]_n$ denote the largest $\tau \in T_n$ less or equal to t, i.e. $[t]_n = [t_n]/n$, where $[y] = [y]_1$ denotes the integral part of y. Similarly, for a vector $a = (a_1, \ldots, a_r)$, we shall write $[a]_n = ([a_1]_n, \ldots, [a_r]_n)$. M. Jiřina:

Theorem. Let us assume that finite limits

$$\lim_{n \to \infty} n(M_n - E) = A = (\alpha_{ij})_{i,j}$$
⁽²⁾

and

$$\lim_{\substack{n \to \infty \\ s \to 0}} \phi_{nijk}(s) = -2\beta_{ijk} \tag{3}$$

exist. Then there exist, for each $t \ge 0$ and $a \in \mathbb{R}_{+}^{r}$, probability measures $Q(t, a, \cdot)$ on \mathbb{R}_{+}^{r} such that and the functions $Q_{n}([t]_{n}, [a]_{n}, \cdot) \xrightarrow[n \to \infty]{} Q(t, a, \cdot)$ (weakly) (4)

$$\psi_i(t,s) = -\log \int e^{-sb} Q(t,e^{(i)},db)$$

satisfy the following system of ordinary differential equations

$$\frac{\partial}{\partial t}\psi_i(t,s) = \sum_j \alpha_{ij}\psi_j(t,s) - \sum_{j,k} \beta_{ijk}\psi_j(t,s)\psi_k(t,s)$$
(5)

with initial conditions $\psi_i(0, s) = s_i$ (i = 1, ..., r). Each $\psi_i(t, s)$ satisfies also the partial differential equation

$$\frac{\partial}{\partial t}\psi_i(t,s) = \sum_j C_j(s)\frac{\partial}{\partial s_j}\psi_i(t,s)$$
(6)

where

$$C_i(s) = \sum_j \alpha_{ij} s_j - \sum_{j,k} \beta_{ijk} s_j s_k.$$
⁽⁷⁾

Remarks. (a) It follows from (3) that

$$\frac{1}{2}D_{nijk} \to \beta_{ijk} \tag{8}$$

but the stronger condition (3) is needed in the proof. It can be proved that (3) follows from (8), if the third cummulants $\phi_{nijkl}(0)$ are uniformly bounded with respect to *n*.

(b) The notation introduced in the theorem might be confusing, because $\psi_n(t, s)$ denotes by the previous agreement the vector of functions $(\psi_{n1}, \ldots, \psi_{nr})$, while $\psi_i(t, s)$ defined in the theorem means another (single) function. All possible confusion will be avoided, if we make an agreement that the letter *n* will be always used as the first index only and its presence will express the fact that the corresponding function (or vector etc.) belongs to the *n*th process \mathcal{P}_n or \mathcal{Q}_n , while *n* missing will mean that the function belongs to the limit process.

Proof of the Theorem. In order to prove (4) it is sufficient to show that for each $t \ge 0$ and $a \in \mathbb{R}_+^r$ the functions $\psi([t]_n, [a]_n, s)$ converge to a function $\psi(t, a, s)$ and that $\psi(t, a, s)$ is the negative logarithm of the Laplace transform of a probability measure $Q(t, a, \cdot)$. By (1)

$$\psi_n(t, a, s) = \phi_n\left(n t, n a, \frac{1}{n} s\right) \quad (t \in T_n, \ a \in N_n^r) \tag{9}$$

and from the basic identity for branching processes

$$\phi_n(t, a, s) = \sum_i a_i \phi_{ni}(t, s) \qquad (t \in T, \ a \in N^r)$$
(10)

we have

$$\psi_{ni}([t]_n, s) = n \phi_{ni}\left([t n], \frac{1}{n} s\right) \quad \text{for all } t \ge 0 \tag{11}$$

and

$$\psi_n(\llbracket t \rrbracket_n, \llbracket a \rrbracket_n, s) = \sum_i \llbracket a_i \rrbracket_n \psi_{ni}(\llbracket t \rrbracket_n, s)$$

for all $t \ge 0$ and all $a \in R_{+}^{r}$. Since $[a_{i}]_{n} \to a_{i}$, it is sufficient to prove the convergence of $\psi_{ni}([t]_{n}, s)$. We have defined the functions $\psi_{ni}(t, s)$ for $t \in T_{n}$ only, but it will simplify the notation and the proof, if we define them for all $t \ge 0$, i.e., if we write

$$\psi_{ni}(t,s) = n \phi_{ni}\left([t n], \frac{1}{n}s\right) \quad \text{for all } t \ge 0.$$

Put $A_n = n(M_n - E)$ and let α_{nij} be the elements of A_n . By (2), $\alpha_{nij} \xrightarrow[n \to \infty]{} \alpha_{ij}$ for all *i*, *j*. The well known formula

$$\phi_n(t_1 + t_2, s) = \phi_n(t_1, \phi_n(t_2, s))$$
(12)

and also the obvious relations

$$\phi_n(0,s) = s, \quad \psi_n(0,s) = s$$

will be used frequently. The proof of the theorem will consist of several lemmas.

(i) To each $t_0 \ge 0$ there exists k > 0 such that

$$M_n^t \leq k I$$
 for all n and all $t = 0, 1, \dots, [t_0 n]$.

Proof. α_{nij} are convergent (with $n \to \infty$) and therefore bounded by a constant c > 0. Then

$$M_n^t = \left(E + \frac{1}{n}A_n\right)^t \leq \left(E + \frac{c}{n}I\right)^t \leq \left(E + \frac{c}{n}I\right)^{\left[t_0 n\right]} \xrightarrow[n \to \infty]{} \exp(c t_0 I).$$

(ii) To each $t_0 \ge 0$ there exists k > 0 such that

$$0 \leq \phi_{ni}(t,s) \leq k \|s\|$$

for all n, all $t=0, 1, ..., [t_0 n]$, all i and all $s \in \mathbb{R}_+^r$.

Proof.

$$\phi_{ni}(t,s) = \sum_{j} M_{nij}(t) \, s_j + \frac{1}{2} \sum_{j,k} \phi_{nijk}(t,\sigma) \, s_j \, s_k \tag{13}$$

where $0 \le \sigma \le s$. Since $(-\phi_{nijk}(t, \sigma))_{j,k}$ is the covariance matrix of the probability distribution $e^{-\sigma b} P_{ni}(t, b)/\phi_{ni}(t, \sigma)$ (on N^r),

$$\sum_{jk} \phi_{nijk}(t,\sigma) \, s_j \, s_k \leq 0 \, .$$

Hence $\phi_{ni}(t, \sigma) \leq \sum_{j} M_{nij}(t) s_j$ and the assertion follows from (i).

(iii) To each $t_0 \ge 0$ there exists x > 0 such that

$$0 \leq \phi_{nij}(t,s) \leq 2M_{nij}(t)$$

for all n, all $t=0, 1, \ldots, [t_0 n]_1$ all i, j and all $s \in [0 x]^r$.

Proof.

$$\phi_{nij}(t,s) = -\frac{\Phi_{nij}(t,s)}{\Phi_{ni}(t,s)}$$

and $0 \leq -\Phi_{nij}(t, s) \leq M_{nij}(t)$ for all s. Hence,

$$\Phi_{ni}(t,s) = 1 + \sum_{j} \Phi_{nij}(t,\sigma) s_j \ge 1 - \sum_{j} M_{nij}(t) s_j.$$

By (i), $M_{nij}(t)$ are uniformly bounded for all *n* and all $t=0, 1, ..., [t_0 n]$ and, consequently, $\Phi_{ni}(t, s) > \frac{1}{2}$ for sufficiently small *s*.

(iv) To each x > 0 there exists k > 0 such that

$$0 \leq \phi_{nij}\left(\frac{1}{n}s\right) \leq e_j^{(i)} + \frac{k}{n}$$

for all n, all i, j and all $s \in [0x]^r$.

Proof. For $i \neq j$, the assertion follows from (iii) and the fact that $e_j^{(i)} = 0$, $M_{nij} = \frac{1}{n} \alpha_{nij}$ (at least for sufficiently large *n*; but then it must hold for all *n*). For i = j we have

$$\phi_{nii}\left(\frac{1}{n}s\right) - 1 = -\frac{\Phi_{ni}\left(\frac{1}{n}s\right) + \Phi_{nii}\left(\frac{1}{n}s\right)}{\Phi_{ni}\left(\frac{1}{s}s\right)}$$

and

$$\begin{split} \Phi_{ni}\left(\frac{1}{n}s\right) + \Phi_{nii}\left(\frac{1}{n}s\right) &= 1 - M_{nii} + \sum_{j} \left(\Phi_{nij}(\sigma_n(s)) + \Phi_{niij}(\sigma_n(s))\right) \frac{s_j}{n} \\ &= \frac{1}{n} \left[\alpha_{nii} + \sum_{j} \left(\Phi_{nij}(\sigma_n(s)) + \Phi_{niij}(\sigma_n(s))\right) s_j\right]. \end{split}$$

where $0 \leq \sigma_n(s) \leq \frac{1}{n} s$. The sequences α_{nij} , $\Phi_{niij}(\sigma_n(s))$ and $|\Phi_{nij}(\sigma_n(s))| \leq M_{nij}$ are uniformly bounded with respect to all *n* and $s \in [0x]^r$ because of (2) and (3). From the proof of (iii) it follows that $\Phi_{ni}\left(\frac{1}{n}s\right) > \frac{1}{2}$ for sufficiently large *n* and all $s \in [0x]^r$ and, consequently, the functions $1/\Phi_{ni}\left(\frac{1}{n}s\right)$ are bounded uniformly with respect to all *n* and all $s \in [0x]^r$. Hence $n\left[\phi_{nii}\left(\frac{1}{n}s\right) - 1\right]$ is bounded uniformly with respect to all *n* and all $s \in [0x]^r$. This proves the assertion of (iv) for i=j.

38

(v) To each $t_0 \ge 0$ and x > 0 there exists k > 0 such that

$$\left|\phi_{nijk}\left(t,\frac{1}{n}s\right)\right| \leq k t$$

for all n, all $t = 0, 1, \dots, [t_0 n]$, all i, j, k and all $s \in [0x]^r$.

Proof. Differentiating the relation $\phi_n(t+1, s) = \phi_n(\phi_n(t, s))$ (see (12)) we obtain

$$\phi_{n \cdot jk}(t+1,s) = w_{njk}(t,s) + m_n(t,s) \phi_{n \cdot jk}(t,s)$$
(14)

where $\phi_{n \cdot jk}(t, s)$ denotes the vector $(\phi_{nijk}(t, s))_{i=1, ..., r}$, $w_{njk}(t, s)$ the vector $\sum_{l,m} \phi_{n \cdot lm}(\phi_n(t, s)) \phi_{nlj}(t, s) \phi_{nmk}(t, s)$ and $m_n(t, s)$ the matrix $(\phi_{nij}(\phi_n(t, s)))_{i,j}$.

From (14) we have

$$\phi_{n \cdot jk}(t, s) = \sum_{\tau=1}^{t} \prod_{\nu=1}^{\tau-1} m_n(t-\nu) w_{njk}(t-\tau).$$
(15)

It follows from (3) that there exists $x_1 > 0$ such that the functions $\phi_{niik}(s)$ are bonunded uniformly with respect to all n and all $s \in [0 x_1]^r$.

By (ii), $\phi_n\left(t, \frac{1}{n}s\right) \in [0 x_1]^r$ for all sufficiently large *n*, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$. Hence $\phi_{nijk}\left(\phi_n\left(t, \frac{1}{n}s\right)\right)$ are bounded uniformly with respect to all *n*, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$.

By (i) and (iii), $\phi_{nij}\left(t, \frac{1}{n}s\right)$ are bounded uniformly with respect to all *n*, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$. Consequently, there exists $k_1 > 0$ such that

$$\left| w_{njk} \left(t, \frac{1}{n} s \right) \right| \leq k_1 e \tag{16}$$

for all *n*, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$.

By (ii), there exists $x_2 > 0$ such that

$$0 \leq n \phi_{ni}\left(t, \frac{s}{n}\right) \leq x_2$$

for all n, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$. Hence, by (iv), there exists $k_2 > 0$ such that

$$0 \leq \phi_{nij} \left(\frac{1}{n} \cdot n \, \phi_n \left(t, \frac{1}{n} s \right) \right) \leq e_j^{(i)} + \frac{k_2}{n},$$

$$0 \leq m_n \left(t, \frac{1}{n} s \right) \leq E + \frac{k_2}{n} I \qquad (1)$$

or

$$0 \le m_n \left(t, \frac{1}{n} s \right) \le E + \frac{k_2}{n} I \tag{17}$$

for all *n*, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$.

By (15), (16) and (17) we have

$$\left|\phi_{n \cdot jk}\left(t, \frac{1}{n}s\right)\right| \leq k_1 \sum_{\tau=0}^{t-1} \left(E + \frac{k_2}{n}I\right)^{\tau} e$$
(18)

for all *n*, all $t \leq [t_0 n]$ and all $s \in [0 x]^r$.

For the same reasons as in the proof of (i), the sequence $\left(E + \frac{k_2}{n}I\right)^t$ is bounded with respect to all *n* and all $t \leq [t_0 n]$ and the assertion of (v) follows then from (18).

(vi) To each $t_0 \ge 0$ there exist n_0 and k > 0 such that

$$|M_n^{[tn]-[t'n]}-E| < k(t-t')I$$

for all $n \ge n_0$ and all $0 \le t' \le t \le t_0$.

Proof.

By (i),

$$\begin{split} M_n^{[tn]-[t'n]} - E &= (M_n - E) \sum_{\tau=0}^{[tn]-[t'n]-1} M_n^{\tau}.\\ |M_n^{[tn]-[t'n]} - E| &\leq \frac{1}{n} |A_n| \cdot ([tn] - [t'n]) k_1 I \end{split}$$

for some $k_1 > 0$, and the assertion of (vi) follows from the fact that the sequence $|A_n|$ is bounded and that $\frac{1}{n}([\tau n] - [\tau' n]) \xrightarrow[n \to \infty]{} \tau - \tau'$.

(vii) To each $t_0 \ge 0$ and x > 0, there exist n_0 and k > 0 such that

$$|\psi_{ni}(t,s) - \psi_{ni}(t',s)| \leq k |t-t'|$$

for all $n \ge n_0$, all i, all $t \le t_0$, $t' \le t_0$ and all $s \in [0, x]^r$.

Proof. Assume t' < t. By (12)

$$\psi_{ni}(t,s) - \psi_{ni}(t',s) = n \phi_{ni}\left([t n] - [t' n], \phi_n\left([t' n], \frac{1}{n} s\right)\right)$$

- $n \phi_{ni}\left([t' n], \frac{1}{n} s\right) = n \sum_j (M_{nij}^{[tn] - [t'n]} - e_j^{(i)}) \phi_{nj}\left([t' n], \frac{1}{n} s\right)$
+ $\frac{n}{2} \sum_{j,k} \phi_{nijk}([t n] - [t' n], \sigma_n(t, t', s)) \phi_{nj}\left([t' n], \frac{1}{n} s\right) \phi_{nk}\left([t' n], \frac{1}{n} s\right)$

where

$$0 \leq \sigma_n(t, t', s) \leq \phi_n\left([t' n], \frac{1}{n} s\right).$$
⁽¹⁹⁾

By (ii)

$$\phi_{ni}\left([t\,n],\frac{1}{n}s\right) \leq \frac{k_1}{n}x \tag{20}$$

for some $k_1 > 0$, all $t \leq t_0$ and all $s \in [0 x]^r$.

By (v), (19) and (20)

$$\phi_{nijk}([t\,n] - [t'\,n], \,\sigma_n(t,t',s)) \leq ([t\,n] - [t'\,n]) \cdot k_2$$
(21)

for all *n*, all $t, t' \leq t_0$, all $s \in [0 x]^r$ and some $k_2 > 0$. Using (vi), (20) and (21) we have finally

$$|\psi_{ni}(t,s) - \psi_{ni}(t',s)| \leq k_3(t-t') + k_4 \frac{\lfloor tn \rfloor - \lfloor t'n \rfloor}{n}$$

for some positive constants k_3 , k_4 , for all sufficiently large *n*, all *t*, $t' \leq t_0$ and all $s \in [0 x]^r$.

(viii) Let $Q_{n,m}$ be a double sequence of probability measures on R_+^r . Then there exist an infinite sequence \mathscr{S} of natural numbers and finite measures Q_m on R_+^r such that

$$Q_{n,m} \xrightarrow[n \in \mathcal{S}]{n \in \mathcal{S}} Q_m$$
 for each m (weakly).

This assertion is well known for simple sequences. Its proof applies verbally to double sequences

(ix) There exist an infinite sequence \mathscr{S} of natural numbers and probability measures $Q_i(t, \cdot)$ on R_+^r such that

$$Q_{ni}([t]_n, \cdot) \xrightarrow[\substack{n \to \infty \\ n \in \mathcal{S}} Q_i(t, \cdot) \quad (weakly)$$
(22)

for each $t \ge 0$.

Proof. Consider first rational $t \ge 0$ only. In this case, the probability measures $Q_{ni}(t, \cdot)$ can be arranged into a double sequence Q_{nm} and by (viii), there exist finite measures $Q_i(t, \cdot)$ and an infinite sequence \mathscr{S} such that (22) holds for all rational $t \ge 0$. Put, for each rational $t \ge 0$,

$$\psi_i(t,s) = -\log \int_{\mathbf{R}_+^r} e^{-bs} Q_i(t,db) \quad (s \in \mathbf{R}_+^r).$$
(23)

It follows from (21) that

$$\psi_i(t,s) = \lim_{\substack{n \to \infty \\ n \in \mathscr{S}}} \psi_{ni}(t,s)$$
(24)

for all rational $t \ge 0$ and all $s \in \mathbb{R}^r_+$, s > 0.

Consider now an irrational t'>0 and take any $\varepsilon >0$ and $s \in R'_+$. There exists a rational $t \ge 0$ such that $|t-t'| < \varepsilon$ and, by (vii),

$$\begin{aligned} |\psi_{ni}(t',s) - \psi_{mi}(t',s)| &\leq |\psi_{ni}(t',s) - \psi_{ni}(t,s)| + |\psi_{mi}(t',s) - \psi_{mi}(t,s)| \\ &+ |\psi_{ni}(t,s) - \psi_{mi}(t,s)| < k \varepsilon + |\psi_{ni}(t,s) - \psi_{m,i}(t,s)| \end{aligned}$$

for some k>0 and sufficiently large m, n. Using (24) we see that the limit $\lim_{\substack{n\to\infty\\n\in\mathscr{S}}} \psi_{ni}(t,s)$ exists also for each irrational t>0, i.e. for all $t\ge 0$ (and all $s\in R_+^r$, $n\in\mathscr{S}$

s>0). By a well known theorem, there exist then finite measures $Q_i(t, \cdot)$ such that (22) holds for all $t \ge 0$, and if we define $\psi_i(t, s)$ by (23) for all $t \ge 0$ this time, the relation (24) holds (for all $t \ge 0$ and all $s \in \mathbb{R}^r_+$, s>0). It remains to show that $Q_i(t, \cdot)$ are probability measures.

Take a fixed $t \ge 0$. By (ii)

$$\psi_{ni}(t,s) = n \phi_{ni}\left([t n], \frac{1}{n}s\right) \leq k \|s\|$$

for some k > 0, all *n* and all *s* from a finite interval $[0x]^r$. Hence, by (24), $\psi_i(t, s) \leq k ||s||$ for all $s \in [0x]^r$, s > 0, and since $\psi_i(t, s)$ is continuous in s, $\psi_i(t, 0) = 0$.

(x) The relation (24) holds for all $s \in \mathbb{R}^r_+$ and the functions $\psi_i(t, s)$ are continuous in (t, s).

M. Jiřina:

Proof. Since we have shown that $Q_i(t, \cdot)$ are also probability measures, the first part of the assertion follows from (22). By (vii),

$$|\psi_{i}(t,s) - \psi_{i}(t',s)| < k |t-t'|$$

for some k>0, all $t, t' \leq t_0$ and all $s \in [0x]^r$ and each $\psi_i(t, s)$ is continuous in s. This proves the second part of the assertion.

In the next lemmas, the following notation will be used:

$$\begin{aligned} R_{ij}(t,s) &= \alpha_{ij} - \sum_{k} \beta_{ijk} \psi_k(t,s), \qquad R(t,s) = (R_{ij}(t,s))_{i,j}, \\ S_m(t,s) &= \int_{0 \le t_1 < \cdots t_m \le t} R(t_m,s) R(t_{m-1},s) \dots R(t_1,s) dt_1 \dots dt_m, \\ S_0(t,s) &= E, \\ \psi(t,s) &= (\psi_1(t,s), \dots, \psi_r(t,s)). \end{aligned}$$

(xi) For each $t_0 > 0$ and x > 0, the series

$$\sum_{m=0}^{\infty} S_m(t,s)$$

is convergent uniformly with respect to $(t, s) \in [0 t_0] \times [0 x]^r$.

Proof. By (x), $R_{ij}(t, s)$ are bounded in $[0 t_0] \times [0 x]^r$. Hence,

$$|S_m(t,s)| \le \frac{k^m t_0^m}{m!} I \tag{25}$$

for some k > 0, all m and all $(t, s) \in [0 t_0] \times [0 x]^r$.

(xii)

$$\psi(t,s) = \left(\sum_{m=0}^{\infty} S_m(t,s)\right) s$$

Proof. By (13) (with t = 1) we have

$$\phi_n(s) = [M_n + Z_n(s)] s \tag{26}$$

where $Z_n(s)$ is the matrix $(Z_{nii}(s))_{ij}$ and

$$Z_{nij}(s) = \frac{1}{2} \sum_{k} \phi_{nijk}(\sigma_n(s)) s_k, \quad 0 \leq \sigma_n(s) \leq s.$$

Using $\phi_n(\tau+1, s) = \phi_n(\phi_n(\tau, s))$ and (26), we obtain

$$\phi_n(t,s) = \prod_{\tau=1}^{1} (M_n + Z_n(\phi_n(t-\tau,s))) s.$$

For each $t \ge 0$, put

$$R_n(t,s) = A_n + n Z_n\left(\phi_n\left([t\,n],\frac{1}{n}s\right)\right).$$

Then

$$\psi_n(t,s) = n \phi_n\left(\left[t \ n\right], \frac{1}{n} s\right) = \prod_{\tau=1}^{\left[t \ n\right]} \left(E + \frac{1}{n} R_n\left(\frac{\left[t \ n\right] - \tau}{n}, s\right)\right) s$$
$$= \left(\sum_{m=0}^{\left[t \ n\right]} s_{n,m}(t,s)\right) s,$$

where

$$S_{n,m}(t,s) = \frac{1}{n^m} \sum_{\substack{0 \le t_1 < \dots < t_m \le [tn] - 1 \\ (\text{integers})}} R_n\left(\frac{t_m}{n}, s\right) \dots R_n\left(\frac{t_1}{n}, s\right)$$
$$= \int_{\substack{0 \le t_1 \le \dots < t_m \le [t]_n}} R_n(t_m, s) \dots R_n(t_1, s) \, dt, \dots, dt_m$$

and $S_{n,0}(t,s) \equiv E$.

By (2), (3), (ii) and (x),

$$R_n(t,s) \xrightarrow[n \to \infty]{n \to \infty} R(t,s)$$

for each $t \ge 0$ and $s \in R_+^r$. Further, for each $t \ge 0$ and s, the functions $R_n(\tau, s)$ are uniformly bounded with respect to n and $\tau \in [0 t]$ because of (2), (3) and (ii). Hence

$$S_{nm}(t,s) \xrightarrow[n \to \infty]{n \to \infty} S_m(t,s)$$
(27)

for each m, t, s. Also, by (2), (3) and (ii), to each t and s there exists $k_1 > 0$ such that

$$|S_{n,m}(t,s)| \le \frac{k_1^m t^m}{m!} I$$
(28)

for all *n* and *m*. Finally

$$\begin{split} \psi_n(t,s) - \left(\sum_{m=0}^{\infty} S_m(t,s)\right) \, s &= \sum_{m=0}^{l} \left(S_{n,m}(t,s) - S_m(t,s)\right) \cdot s \\ &+ \left(\sum_{m=l+1}^{[tn]} S_{m,m}(t,s) - \sum_{m=l+1}^{\infty} S_m(t,s)\right) \cdot s \end{split}$$

for any l, 0 < l < [tn] and the assertion of (xii) follows from (25), (27) and (28).

(xiii) The functions $\psi_i(t, s)$ satisfy (5) with initial conditions $\psi_i(0, s) = s_i$.

Proof. Differentiating formally (xii) we obtain

$$\frac{\partial}{\partial t} \psi(t, s) = \left(\sum_{m=1}^{\infty} \frac{\partial}{\partial t} S_m(t, s)\right) s$$
$$= R(t, s) \left(\sum_{m=0}^{\infty} S_m(t, s)\right) s = R(t, s) \psi(t, s).$$

Since by (xi) the series on the right-hand side is convergent uniformly with respect to t in each finite interval, the term-by-term differentiation is justified and (5) holds. The initial conditions follow from

$$\psi_{ni}(0,s) = s_i.$$

M. Jiřina :

(xiv) $\psi_n(t,s) \xrightarrow[n \to \infty]{} \psi(t,s)$ for all t and s.

Proof. By (x), the limit relation holds if *n* runs through the sequence \mathscr{S} . Let us assume that (xiv) does not hold. Then there exists a sequence \mathscr{S}_1 of natural numbers such that

$$\psi_{ni}(t_0, s_0) \xrightarrow[n \to \infty]{n \to \infty} l \neq \psi_i(t_0, s_0)$$
⁽²⁹⁾

for some i, t_0, s_0 . Using the same method as before we can select a subsequence $\mathscr{G}_2 \subset \mathscr{G}_1$ such that

$$\psi_n(t,s) \xrightarrow[n \to \infty]{n \to \infty} \overline{\psi}(t,s) \quad \text{for all } t \text{ and } s, \tag{30}$$

and prove that the limit function $\overline{\psi}(t, s)$ satisfies (5) with the same initial conditions $\overline{\psi}(0, s) = s$. Hence, $\overline{\psi}(t, s) \equiv \psi(t, s)$ which contradicts (29) and (30).

In the last three lemmas, the functions $C_i(s)$ defined by (7) and the functions

$$C_{ni}(s) = n^2 \left(\phi_{ni} \left(\frac{1}{n} s \right) - \frac{s_i}{n} \right)$$

will be used.

(xv) For each i and s

$$C_{ni}(s) \xrightarrow[n \to \infty]{} C_i(s).$$

Proof.

$$\phi_{ni}\left(\frac{1}{n}s\right) = \sum_{j} M_{nij} \frac{s_{j}}{n} + \frac{1}{2} \sum_{j,k} \phi_{nijk}(\sigma_{n}) \frac{s_{j} s_{k}}{n^{2}}$$
$$= \frac{s_{i}}{n} + \frac{1}{n^{2}} \left[\sum_{j} \alpha_{nij} s_{j} + \frac{1}{2} \sum_{jk} \phi_{nijk}(\sigma_{n}) s_{j} s_{k} \right],$$

where $0 \le \sigma_n < \frac{1}{n}$ s. The assertion follows from (2) and (3).

(xvi) To each t_0 and x > 0 there exists n_0 and k > 0 such that

$$|\psi_{nij}(t,s) - \psi_{nij}(t',s)| \leq k |t-t'|$$

for all $n \ge n_0$, all i, j, all $t \le t_0$, $t' \le t_0$ and all $s \in [0 x]^r$.

Proof. Assume t' < t. By (11) and (12)

$$\begin{split} \psi_{nij}(t,s) - \psi_{nij}(t',s) &= \sum_{k} \phi_{nik} \left([t \ n] - [t' \ n], \phi_{n} \left([t' \ n], \frac{1}{n} \ s \right) \right) \phi_{nkj} \left([t' \ n], \frac{1}{n} \ s \right) \\ &- \phi_{nij} \left([t' \ n], \frac{1}{n} \ s \right) = \sum_{k} \left(M_{nik}^{[tn] - [t'n]} - e_{k}^{(i)} \right) \phi_{nkj} \left([t' \ n], \frac{1}{n} \ s \right) \\ &+ \sum_{k,l} \phi_{nikl} ([t \ n] - [t' \ n], \sigma_{n}(t, t', s)) \phi_{nl} \left([t' \ n], \frac{1}{n} \ s \right) \phi_{nkj} \left([t' \ n], \frac{1}{n} \ s \right) \end{split}$$

where

$$0 \leq \sigma_n(t, t', s) \leq \phi_n\left([t' n], \frac{1}{n} s\right).$$

The assertion of (xvi) can be now proved in a similar way as that of (vii), if, in addition, the inequality

$$\phi_{nkj}\left([t\,n],\frac{1}{n}\,s\right) \leq c \tag{31}$$

is used. (31) holds for some c > 0, all $t \leq t_0$ and all $s \in [0 x]^r$ and follows easily from (i) and (iii).

(xvii) (6) holds for each i.

Proof. We shall prove the assertion for s > 0 only, but it would possible to show that it holds for all $s \in R_+^r$ (with the convention that $\psi_{ii}(s)$ means the righthand side derivative if $s_j = 0$).

By (12),

$$\phi_{ni}(t+1,s) = \phi_{ni}(t,\phi(s)) = \phi_{ni}(t,s) + \sum_{j} \phi_{nij}(t,s)(\phi_{nj}(s) - s_{j}) + \frac{1}{2} \sum_{jk} \phi_{nijk}(t,\sigma_{n}(t,s))(\phi_{nj}(s) - s_{j})(\phi_{nk}(s) - s_{k}) |\sigma_{n}(t,s) - s| \le |\phi_{n}(s) - s|.$$
(32)

where

$$|\sigma_n(t,s) - s| \le |\phi_n(s) - s|.$$

Hence

$$\psi_{ni}(t,s) = n \phi_{ni} \left([t n], \frac{1}{n} s \right)$$

= $s_i + \frac{1}{n} \sum_{j} C_{nj}(s) \sum_{\tau=0}^{[tn]^{-1}} \psi_{nij} \left(\frac{\tau}{n}, s \right)$
+ $\frac{1}{2n^3} \sum_{jk} C_{nj}(s) C_{nk}(s) \sum_{\tau=0}^{[tn]^{-1}} \phi_{nijk} \left(\tau, \sigma_n \left(\tau, \frac{1}{n} s \right) \right).$

Since $Q_{ni}([t]_n, \cdot) \xrightarrow[n \to \infty]{} Q_i(t, \cdot)$ weakly,

$$\psi_{nij}(t,s) \to \psi_{ij}(t,s) \tag{33}$$

for each $t \ge 0$ and $s \in \mathbb{R}^r_+$, s > 0. Further, by (31)

$$\psi_{nij}(t,s) = \phi_{nij}\left([t\,n], \frac{1}{n}s\right) \leq c$$
 for some $c > 0$, all n and all t

from any given finite interval. Hence

$$\frac{1}{n}\sum_{\tau=0}^{[tn]-1}\psi_{ni}\left(\frac{\tau}{n},s\right) = \int_{0}^{[t]_n}\psi_{nij}(\tau,s)\,d\tau \xrightarrow[n\to\infty]{} \int_{0}^{t}\psi_{ij}(\tau,s)\,ds.$$
(34)

By (ii) and (32), $n \sigma_n \left(t, \frac{1}{n} s\right) \leq x$ for some x, all t and all n and consequently, by (v),

$$\left|\sum_{\tau=0}^{\lfloor tn \rfloor-1} \phi_{nijk}\left(\tau, \sigma_n\left(\tau, \frac{1}{n}s\right)\right)\right| \leq k \sum_{\tau=0}^{\lfloor tn \rfloor-1} \tau \leq k t^2 n^2$$
(35)

for some k > 0 and all *n*.

Using (xiv), (xv), (34) and (35) we see that

$$\psi_{i}(t,s) = s_{i} + \sum_{j} C_{j}(s) \int_{0}^{t} \psi_{ij}(\tau,s) d\tau.$$
(36)

By (33) and (xvi),

 $|\psi_{ii}(t,s) - \psi_{ii}(t',s)| \leq k(t-t')$

for all t, t' from a finite interval. Hence, $\psi_{ij}(t, s)$ is continuous in t and we can therefore differentiate (36) with respect to t. This proves the existence of $\frac{\partial}{\partial t}\psi_i(t, s)$ and (6).

References

- 1. Feller, W.: Diffusion processes in genetics. Proc. 2nd Berkeley Sympos math. Statist. Probability, 227-246 (1951).
- 2. Jiřina, M.: On Feller's branching diffusion processes. Časopis. Mat. 94, 84-90 (1969).

Miloslav Jiřina The Flinders University of South Australia School of Math. Sciences Bedford Park, South Australia 5042

(Received February 23, 1970)