Z. Wahrscheinlichkeitstheorie verw. Geb. 18, 34-46 (1971)
© by Springer-Verlag 1971

Diffusion Branching Processes
with Several Types of Particles

MILOSLAV JIRINA

Let us consider a sequence of one-type-particle branching processes with
- a .
basic first moments M,,=1+7 and let us transform the time parameter and

the states of the n'™ process in such a way that one new time unit corresponds
to n time units of the original process and one unit in the new state space
corresponds to n particles of the original process. Feller discovered (see [1]) that
the transition probabilities of the transformed processes converge with n— oo
to transition probabilities of a diffusion process and that the characteristic
functions of the limit transition probabilities satisfy a partial differential equation
the explicit solution of which is known. A complete proof of this assertion is
contained in [2]; more precisely, it is proved in [2] that the logarithms of the
Laplace transforms of the transformed transition probabilities converge to a
function ¥ (¢, s) defined by an explicit formula (see [2] (8)). This function satisfies
a partial differential equation analoguous to the partial differential equation
mentioned above, but this fact is not used in the proof of [2].

It is natural to expect that branching processes with » types of particles will
behave in a similar way and that the logarithms ,(t, s) of the Laplace trans-
forms of the transformed basic transition probabilities will converge to functions
¥, (t, s) satisfying analoguous differential equations (see (5) and (6) of this paper).
It seems that there is no explicit solution of these equations if » > 1 and the method
of [2] is therefore not applicable. An attempt to prove directly (using estimates
similar to those of [2]) that the sequences ¥, (¢, 5) are convergent, failed too. For
these reasons the method of the present paper is different from that used in [2].
It follows the ideas of the proof of the continuity theorem for characteristic
functions, i.e. it consists of the following three steps: (a) the existence of a con-
vergent subsequence of (¢, s) is established, (b) it is proved that the limits
W;(t, s) satisfy the system (5) of differential equations and (c) the uniqueness of the
solution of (5)is then used in proving that the whole sequence i/, (¢, s}is convergent.

In the paper we shall deal with r-dimensional vectors and r x r matrices. For
a vector a=(qy, ..., a,), la| will denote the vector (|a,l,...,|q,]) and fal=
max {|ayl, ..., |a,|}; similarly, for a matrix A=(4;)), ;, |A| will denote the matrix
(14;;0);, ;- If a, b are vectors then ab will denote their inner product. We shall not
distinguish explicitly between row and column vectors. Thus, in the product Aa
of a matrix 4 and a vector a, a will be automatically considered a column vector.
Inequalities between vectors or matrices will mean that the indicated inequalities
hold between all corresponding components of the vectors or matrices. The i**
unit vector (0, ..., 1,...,0) will be denoted by ¢” and, consequently, &{’=0 if
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i+j, é?=1; e will denote the vector (1, 1, ..., 1), 0 the zero vector or zero matrix,
E the diagonal unit matrix and I the matrix all elements of which are equal to 1.
If A(r) is a matrix (4,(t)), ; of functions of a variable ¢, then | A(z) dt will denote
the matrix ([ A;;(r) dt), ;.

Let 2 be a sequence of homogeneous Markov branching processes with
discrete time parameter te T ={0, 1, ...} and with r types of particles, i.e. with
state space N”, where N={0, 1, ...}. The probability of transition from the state
a=(a,, ..., a,)eN" to the state be N" in &, will be denoted by (¢, a, b). The prob-
ability distribution induced on N" by P(t, a, b) will be denoted by P (¢, a,-). To
each & we shall assign a new Markov process 2, with discrete time parameter
teT ={0,1/n,2/n,...} and with state space N;, where N,={0, 1/n,2/n,...}. The
transition probabilities Q,(t, a, b) of 2, will be defined by

Q,t ab)=B(nt,na,ndb), teT,, a, beN]. 1)
Let R’, be the non-negative cone of the r-space. For s=(s;, ..., 5,)€R"., put

®,(t,a,5)= ) e **P(t,a,b)

beNT
P,(t,a,5)=—log®,(t,a,s)

(i.e. ¢, is the negative logarithm of the Laplace transform of B(t, a, ). Similarly,

put Yt a,s)=~log Y e *°Q,(t, a,b)
(teT,, acN)). beNg

It is well known that the process 2, is uniquely determined by the basic
transition probabilities P(z, e, b). For simplicity reasons we shall write P, ;(t, b)
instead of P(t, ¢, b) and the same rule will apply to all other functions; thus,
b,:(t,5)=d,(t, €2, 5) e.g. ¢,(t,s) will denote the vector (¢,;(t, ), ..., P, (¢, ),
W, (t, s) the vector (Y, (5, s), .., Yy, (s s)) etc. In 2, processes, the value r=1 will
be also ommitted, i.e. we shall write P,(b) instead of P,;(1,b), ¢,(s) instead of
¢,(1, 5) etc. To simplify symbols for derivatives, we shall write ¢, (¢, s) instead of
2

0s; 0s,

J

and

nij(
0 .
gd)ni(t’ s) and @,,;, (¢, s) instead of
5
to (¢, s) and other functions.
We shall assume that the first and second moments of £, are finite and we
shall denote the first moments of P,(z, ) by

M, (6= 555, 0).
M, (t) will denote the matrix (Mm.j(t))i, ;- It is well known that
M, (=M, (with M,=M,(1)).
The covariances of P,(+) will be denoted by
Dyiji= = Pniji 0)-

For each t =0 let [t], denote the largest te T, less or equal to ¢, i.e. [t],=[t,]/n,
where [y]=[v], denotes the integral part of y. Similarly, for a vector a=(qa,, ..., a,),
we shall write [a],=a],, -.-» [a,.1,)-

3*

¢,:(t,s). The same rule will apply
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Theorem. Let us assume that finite limits

limn(M,~E)=A=(a;); ; @
and e
Lim @y(8)= — 2B @)
s—0

exist. Then there exist, for each t=0 and a€R’,_, probability measures Q(t, a,*)

on R such that o ({11, [l Ve Q(tr0,7)  (weakly) @)

¥i(t, )= —log [ e Q(z, €, db)

satisfy the following system of ordinary differential equations

and the functions

0
TS ¥yt 5) =Z oW, 8) — Z Binr;(t, ) (2, 5) )

with initial conditions y;(0, s)=s; (i=1, ..., ). Each (¢, s) satisfies also the partial
differential equation

i, 0
SV EI=E G0N ©
where '
Ci(s)zzaijsj_Zﬁiijjsk‘ (N
j ik
Remarks. (a) It follows from (3) that
%Dnijk"ﬂijk )

but the stronger condition (3) is needed in the proof. It can be proved that (3)
follows from (8), if the third cummulants ¢,,;;,,(0) are uniformly bounded with
respect to n.

(b) The notation introduced in the theorem might be confusing, because
¥, (t, s) denotes by the previous agreement the vector of functions (¥, ..., ¥,,),
while ,(t, s) defined in the theorem means another (single) function. All possible
confusion will be avoided, if we make an agreement that the letter n will be always
used as the first index only and its presence will express the fact that the
corresponding function (or vector etc.) belongs to the n'® process 2, or 2, while n
missing will mean that the function belongs to the limit process.

Proof of the Theorem. In order to prove (4) it is sufficient to show that for
each t >0 and aeR", the functions ¥ ([£],, [«],,, s) converge to a function Y/(¢, a, s)
and that ¥ (t, a, s) is the negative logarithm of the Laplace transform of a prob-
ability measure Q(t, 4, ). By (1)

1
Uit a 9=, (nnas) (e, aeN) o)
and from the basic identity for branching processes

.t a, S)=Z a; ¢,;(t, s) (teT, aeN") (10)
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we have

lpm.([t]n,s)=n¢m.([tn],%s) forall t=0 (11)

and

Vulltd,, [al,. )=2[a s ¥ui([t]s 9)

for all t=z0and all aeR’, . Since [a,], — g;, it is sufficient to prove the convergence
of ¥,,([t],.s). We have defined the functions ¥ ,,(t, s) for teT, only, but it will
simplify the notation and the proof, if we define them for all >0, i.e., if we write

Wi (2 S)=n¢ni([fn],%8) for all t=0.

Put 4,=n(M,—E) and let a,;;
for all , j. The well known formula

¢n(t1+[27s):¢n(t1’ ¢n(t2> S)) (12)

and also the obvious relations

¢n(07 S):S7 lpn(oa S):S

be the elements of A4,. By (2), a,;; —55%~ %,

will be used frequently. The proof of the theorem will consist of several lemmas.

(i) To each t,=0 there exists k>0 such that
M;<kl  forall n and all t=0,1, ..., [t,n].

Proof. a,;; are convergent (with n — c0) and therefore bounded by a constant
¢>0. Then

1 t c t c [ton]
¥ n

(ii) To each t,=0 there exists k>0 such that
0=¢,,(t, s)=kls]

foralln, all t=0,1,...,[t,n], all i and all seR",.

Proof.
Pnilt, S)=ZMnij(t) Sj+%z¢nijk(t: 0) S; S (13)

where 0< ¢ <s. Since (— ¢, (t, 6)); , is the covariance matrix of the probability
distribution e °*P,.(t, b)/¢,;(t, o) (on N,

;anijk(ta 0)s;5,=0.
j

Hence ¢,,(t, a)§ZMm- (1) s; and the assertion follows from (i).

J
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(iii) To each t,=0 there exists x>0 such that

0§¢nij(t’ S)§2Mnij(t)
foralln, all t=0,1, ..., [ton]; all i,j and all se[0x]".
Proof. b (65 ®,;i(t, )
nij\l, S)= .1 5)

and 0< — @,,.(t, )< M,,;;(t) for all 5. Hence,

Dt )=14) D,,,(t,0) ;2 1—Y. M,;,(1) s;.
j J

By (i), M,;;(¢) are uniformly bounded for all n and all t=0,1,...,[r,n] and,

consequently, @,,(t, s)>1 for sufficiently small s.
(iv) To each x>0 there exists k>0 such that

1 .k

0=¢,; (—S) ée}”+—

n n

Jor all n, all i, j and all se[0x]".

Proof. For i%j, the assertion follows from (iii) and the fact that €{>=0

H

1 :
M,, 5= i (at least for sufficiently large n; but then it must hold for all n). For

i=j we have

1 1
¢nii<%‘s)—1=— P ( S)Jrld)"”(n )
@ni(_s_s)

B (5) + e )—1 Myt S o05) + @, 0,(5)

and
7J
[anu+2( nl] S) +¢nu]( n(s))) ]

b,;:i(0,(5) and |®,,(

1
where 0< g, (s)<—s. The sequences o i (Tn ()| =
n

nij*
uniformly bounded with respect to all n and se[0x]" because of (2) and (3). From
the proof of (iii) it follows that @, (i s) > 1 for sufficiently large n and all se[0x]"

and, consequently, the functions 1/(bni(—n—s) are bounded uniformly with

1 .
respect to all n and all se[0x]". Hence n[qb,,ii(—n~ s) — 1] is bounded uniformly

with respect to all n and all se[0x]". This proves the assertion of (iv) for i=j.
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(v) To each t,=0 and x>0 there exists k>0 such that

1
Griji (t,;s)

forall n,all t=0,1, ..., [ton], all i, j, k and all se[0x]".
Proof. D1fferent1at1ng the relation ¢,(t+1, 5)=,(4,(t ) (see (12)) we obtain

d)n -jk(t+ 1’ S): ank(tﬂ S) + mn(tﬁ S) d)n -jk(t’ S) (14)

where ¢, (t,s) denotes the vector (@t $))ioy ., Wapl(tss) the vector

Zd)n 1 (Bn (2, 9) @15t ) D (t, 5) and m, (¢, s) the matrix (¢, (P, (¢, 5))); ;-
From (14) we have

¢, (L, 8)= Z nm (t=v) Wy (t—7). (15)

=1 v=

<kt

It follows from (3) that there exists x,>0 such that the functions ¢, (s) are
bonunded uniformly with respect to all # and all se[0x,]".

By (ii), ¢, (t,%s) e[0 xl]’lfor all sufficiently large n, all t<[t,n] and all
se[0x]". Hence ¢, (q&n (t, ~n—s)) are bounded uniformly with respect to
all n, all t<[t,n] and all se[0x]".

By (i) and (iii), ¢,; j(t,%s) are bounded uniformly with respect to all n, all

t=[t,n] and all se[0 x]". Consequently, there exists k;>0 such that

1
Weik (t, ”;S)

for all n, all t=[t,n] and all se[0 x]".
By (ii), there exists x, >0 such that

ognqs,,i(z,i)gxz
n

<k e (16)

for all n, all t=[t,n] and ali se[0 x]". Hence, by (iv), there exists k, > 0 such that

1 .
0§¢nij( ¢ (t —S)>§e§l)+£n2_,

1 k
Ogmn(t,—«s)§E+—21 (17)
n n

or

for all n, all t=[t,n] and all se[0x]".
By (15), (16) and (17) we have

borli 1

for all n, all t<{t,n] and all se[0x]".

t—1 T
<k ¥ (E+5n2—1) e (18)
=0
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. . ky, \ .
For the same reasons as in the proof of (i), the sequence (E —I——ZI) is
v n

bounded with respect to all n and all t=[t,n] and the assertion of (v) follows
then from (18).

(vi) To each t,=0 there exist ny and k>0 such that
|MEM=E _ Bl <k(t—1)1
Jorallnzn, and all 0=t St<t,.

Proof. [t5]—[¢'n}~1
M-t _E=(M,~E) Y M.
=0

By (i), 1
M=~ B — |4, - ([ n] ~ [ n] ey I
for some k; >0, and the assertion of (vi) follows from the fact that the sequence
|4, is bounded and that %([’L’ n]—-[t'n]) s t—7.
(vii) To each t,=0 and x>0, there exist n, and k>0 such that
Wi (8, )=, (£, ) k|t — 1]
forallnzng, all i, all t=<t,, ' <ty and all se[0, x]".

Proof. Assume t' <t. By (12)
1
lpni(t5 S) - lpni(tla S): n d)ni ([t n] - [t, n]a ¢n ([t’ n]a 75)>

~ny; ([t’ nl, —i—s) =n Z(M'llti';]— ['nl_ e}i)) o ([t’ n], %s)
5 [~ 10,02, by (1, -5) s (L)

where 1
0=0,(t, .95 6, (1) —-s) 19)
By (i) N
b L0715 5= 20

for some k,;>0, all t<¢, and all se[0 x]".
By (v), (19) and (20)
Guipe([tn]—[t'n], 0,(t, ¢, s)) ([t n]—[t'n]) - k, (21)
for all n, all 1, ¢ < t,, all se[0 x]" and some k,>0. Using (vi), (20) and (21) we have

finally [en]—(¢ n]
———
n

Wi (8, )=, (7, ) Sky (1= 1) + K

for some positive constants k;, k,, for all sufficiently large n, all ¢, ¢'<t, and
all se[0x]".
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(viii) Let Q, ,, be a double sequence of probability measures on R”,. Then there
exist an infinite sequence & of natural numbers and finite measures Q, on R',

such that ‘
Qum—os Qn  Jor each m (weakly).

ne¥

This assertion is well known for simple sequences. Its proof applies verbally
to double sequences

(ix) There exist an infinite sequence & of natural numbers and probability
measures Q,(t,*) on R, such that

Qui(ltdss ) =z Quilt,7)  (weakly) (22)

nes

for each t=0.

Proof. Consider first rational =0 only. In this case, the probability measures
Q,;(t,*) can be arranged into a double sequence Q,, and by (viii), there exist
finite measures Q,(t,*) and an infinite sequence & such that (22) holds for all
rational t=0. Put, for each rational t=0,

Vilt, s)=—~log [e *Q;(t,db)  (seR%). (23)
R%

It follows from (21) that
¥, (t, )= Hmy,,(t, 5) (24)
ne¥

for all rational t=0 and all seR" , s>0.

Consider now an irrational ¢'>0 and take any ¢>0 and seR’,. There exists
a rational 1= 0 such that |t —t| <& and, by (vii),

|lpni(t,7 S) - lpmi(t,’ S| é |I/Jni(tl> S)_ Wni(ta S)' + Ilpmi(tla S) - lpmi(t: S)'
F Wit )= (&, S <k e+ |, (2, $) =, 5 (2, )|

for some k>0 and sufficiently large m, n. Using (24) we see that the limit
limy,,(t, s) exists also for each irrational ¢>0, i.e. for all 120 (and all seR’,,

ne¥
s>0). By a well known theorem, there exist then finite measures Q,(, ) such

that (22) holds for all =0, and if we define (¢, s) by (23) for all £=0 this time,
the relation (24) holds (for all 1=0 and all seR”,, s>0). It remains to show that
Q,(t, ) are probability measures. '

Take a fixed 1=0. By (ii)
1
Dot =n (L) 5) =Kl

for some k>0, all n and all s from a finite interval [0 x]". Hence, by (24),
W (¢, s)S k| s| for all se[0 xT", s> 0, and since (¢, s) is continuous in s, ¥, (t, 0)=0.

(x) The relation (24) holds for all seR", and the functions y,(t, s) are continuous
in (t, s).
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Proof. Since we have shown that Q,(z,-) are also probability measures, the
first part of the assertion follows from (22). By (vii),

(e, )=, (', sl <kle—r]

for some k>0, all ¢, ' ¢, and all s€[0x]" and each ¥,(t, s) is continuous in s.
This proves the second part of the assertion.

In the next lemmas, the following notation will be used:
Rz’j(t; §)= o —Z ﬁijk !//k (t.s), R(ts)= (Rij(ts S))i,ja
k

S (2, 5)= [ R, s)R(ty_y,5) ... R(ty, 8)dt, ... dt,,

O0<t11 < b=t

So(t, s)=E,
Y, )=, s) ..., ¥, (1, 5).

(xi) For each t,>0 and x>0, the series

S 8,0 9)

is convergent uniformly with respect to (t, s)e[0t,] x [0xT.
Proof. By (x), R;;(t, s) are bounded in [0¢,] x [0 x]". Hence,

n 4m

k¢
1S, (8, == 1 (25)
m!

for some k>0, all m and all (¢, s)e[01,1x [0 xT".
(xii) -
v, s)=( Y S, s)) s.
m=0
Proof. By {13) (with t=1) we have
$n()=[M,+Z,(s)] s (26)

where Z,(s) is the matrix (Z,;(s)),; and
Znij(s):%z d)nijk(an(s)) S, 0=0,(8)Ss.
k

Using ¢,(t+ 1, s)=¢,(¢,(z, s)) and (26), we obtain

t

&6, )= [[(M,+ Z,(,(t~7,5))) 5.

=1

For each t20, put

Rt 5)=A4,+nZ, (qb,, ([t n],%s)) :
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v, (L, s)=no, ([tn] %s) [ﬁ](E—I— R, ([tn]—r, ))S

= (;gosn, (A s)) s

Then

where

1 t
S, mlt, 8)=—o Y R, (—tl,s) ... R, (—l,s)
0

n SH<o <t Shn}—1
{integers)

= f R,(ty,5) ... R, (t;,8)dt, ..., dt

012 tmZltn

and S, ,(t,s)=E.

By (2), (3), (i) and (x),

R,(t,8)55= R(t,5)
ne¥

for each t=0 and seR’,. Further, for each t=0 and s, the functions R (z, s) are
uniformly bounded with respect to n and 1[0 ] because of (2), (3) and (ii). Hence

S,(t, ) === S, (1, 5) 27)

n— oo
ne&#

for each m, t, 5. Also, by (2), (3) and (ii), to each ¢ and s there exists k, > 0 such that
ke
m!

IS, m (L, 8)| = I (28)

for all n and m. Finally

Valts 5)— (ZS<ts) Z( )= 8,(6,5) 5
) [tn] o]
+( Y Sunmt,)— Y S, s)) .S

m=1+1 m=1+1
for any I, 0<!<[zn] and the assertion of (xii) follows from (25), (27) and (28).
(xiii) The functions y,(t, s) satisfy (5) with initial conditions y,(0, s)=s;.
Proof. Differentiating formally (xii) we obtain

d S
El[/(t, S):( Z E’Sm([, S)) S

m=1

=R(t, 5) ( i S,.(t s)) s=R({, s)Y(t,s).

m=0

Since by (xi) the series on the right-hand side is convergent uniformly with respect
to t in each finite interval, the term-by-term differentiation is justified and (5)
holds. The initial conditions follow from

Y0, 5)=s,.
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xiv) ¥, (t,8) ==V (¢, s) forall t and s.

n— 00

Proof. By (x), the limit relation holds if n runs through the sequence % Let us
assume that (xiv) does not hold. Then there exists a sequence ; of natural numbers
such that

Wailtos So) 7 1+ Wilto, So) (29)

ne¥;

for some i, t,, s,. Using the same method as before we can select a subsequence
% =S such that B
W, (t,8) == ¥(t,s) foralltands, (30)

n— o0
nes,

and prove that the limit function ¥ (t, 5) satisfies (5) with the same initial conditions
¥ (0, s)=s. Hence, ¥/(t, s)= (t, s) which contradicts (29) and (30).
In the last three lemmas, the functions C,(s) defined by (7) and the functions

Cutr=r (0n (5) 1)

will be used.

(xv) For eachiand s

Cni(s) n— o0 Ci(s)'
Proof.
1 s; 1 S; S
i (7 5) —;Mnij7+ 3 jyzk(bnijk(o-n) 2

s 1 1
=71‘+? [jZ Ol 5;‘*’7 }Zk: Priji(04) S Sk] ’
where 050, < i s. The assertion follows from (2) and (3).
n

(xvi) To each t, and x>0 there exists ny and k>0 such that
W55t 8) = Y5, )| = klt—t

foralln=n,, alli,j,all t<ty, t' <ty and all se[0 x]".

Proof. Assume t'<t. By (11) and (12)
, , , 1 , o1
9= b0.9= b (01— 4, (1 rlos)) s (109
. . 1
_¢nij ([t' nj, % 5) =% (Mr[zti'llc]_[t n]__eg‘l)) ¢nkj ([t, nj, " 5)

1 1
3 L1 0,067, 9) b (1 1 5) sy (1070 5)

where

050,001,956, (0} s)
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The assertion of (xvi) can be now proved in a similar way as that of (vii), if, in
addition, the inequality

1
B ([tn],—s)§c (31)
n
is used. (31) holds for some ¢>0, all t <t and all se[0 x]" and follows easily from
(i) and (iii).
(xvii) (6) holds for each i.

Proof. We shall prove the assertion for s>0 only, but it would possible to
show that it holds for all se R’, (with the convention that ,;(s) means the right-
hand side derivative if 5,=0).

By (12),
¢, (t+1,5)= ¢ni(t= ¢ (5))
= ¢ni(t’ S) + Z ¢nij(t5 S) (¢nj (S) - Sj)
+ % Z ¢nijk(t’ o-n(t’ S))((,b,”(s) )(d)nk(s) - Sk)
where K
lo,,(t, ) —s|=|@,(s)—sl. (32)
Hence

Vst 5) =1 b, ([t n],%s)
:Sﬁ—%zc [I% ll/jnu( ) )
TeE ¥ Coi9) ["% D ( o\ ( %5))

T=

Slnce Qm([t]n: ) n— o Qi(t’ .) Weakly>
Ui (6, )= (8, 5) (33)
for each t=0 and seR",, s>0. Further, by (31)

1
Vit 8)=0,;; ([tn],;s) <c¢ forsome ¢>0, all n and all ¢
from any given finite interval. Hence

[t]n

1[tn] 1
_ Z Ebm (Mﬁ )_ j‘lpnu(‘[ S)dT n—s 0 §lpij(r’ S)dS. (34)

1
By (ii) and (32), n g, (t, — s) < x for some x, all t and all » and consequently, by (v),
n

[tn]—1 1 [tn]—1
Y buin (T,Un (L;S))‘ék Y tski*n? (35)
=0

=0

for some k>0 and all n.



46 M. Jifina: Diffusion Branching Processes with Several Types of Particles

Using (xiv), (xv), (34) and (35) we see that

U6 9)=5+ 5 C) [y 9 de. (36)

By (33) and (xvi),
W32, )= 3t )| k(e —1)

for all¢, ¢ from a finite interval. Hence, ;;(¢, s) is continuous in t and we can there-

0
fore differentiate (36) with respect to t. This proves the existence of El//i(t, s)
and (6).
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