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Markov Chains and Summability Methods 

JOHN G.  KEMENY a n d  J. LAURIE SNELL* 

1. Introduction 

The purpose of this paper is to discuss connections between certain classes 
of denumerable Markov chains and summability methods. 

Let A = {A~i }, i, j = 0, 1, 2, ..., be an infinite matrix; and let s = {so, st . . . .  } be 
a sequence, which we represent as a column vector. If the vector t=A s is well 
defined and converges to a, then A is said to sum s to a. If A sums all convergent 
sequences we say A defines a summability method. (The method is also denoted 
by A.) If A preserves limits for convergent sequences we say that A defines a 
regular summability method. The following theorem of Silverman and Toeplitz 
is basic to summability theory: 

Theorem 1.1. A matrix A defines a regular summability method if and only if 

(1.1) There is a B such that ~ ]A~jl<B for all i, 
j=0  

(1.2) l inaA~=0 for all j, 

(1.3) ~ A i j ~ l a s i ~ o o .  
j=0  

We shall call a matrix A triangular ifAij = 0 for j  > i and A u + O. If a summability 
method is defined by a triangular matrix we shall call it a triangular method. 
Most of the classical summability methods are defined by non-negative triangular 
matrices. 

Let P be the transition matrix of a discrete time denumerable state Markov 
chain with states the non-negative integers. Consider the following problem: For  
what vectors s does lira P"s exist ? In particular if s is the characteristic function 

n ~ o o  

of an infinite set E we are asking if !imPr a ~  [X,~E] exists for all starting states a. 

For  a given starting state a, let Rt"!=p(.") Then for each a we wish Rt")s to have 
~ ' n j  ~ a J  " 

a limit. 
Let P be either a transient or a null recurrent chain. Then lim Pa(] ) = 0 SO R ~) 

has columns which tend to 0. That is, (1.2) is satisfied. Since R (~) has row sums 
one and is non-negative, (1.1) and (1.3) are also satisfied. Hence for each a, R ~) 
defines a regular summability method. Our original problem is thus transformed 
into the problem of determining if a sequence s is summed by each of a family 
R (a) of summability methods. 

* The preparation of this paper was aided by the National Science Foundation. 
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It is easy to give examples of Markov chains where there is very little relation 
between the summability methods R (~) for different starting states a. However, 
the situation is quite different if we restrict the class of Markov chains to a class 
studied by Kemeny [8] which he has called slowly spreading chains. These are 
chains which have as state space the non-negative integers and which can move 
one step to the right but not more. We shall prove that for these chains the 
methods R (~) are equivalent in the following sense: for any two states a and b, 
R (~) sums s to l if and only if R (b) sums s to I. This enables us to reduce our original 
problem to one summability method, say R (~ which is triangular. Furthermore, 
if a summability method is triangular and can be associated with a Markov chain 
in the above manner, it must be R (~ for a slowly spreading chain. Since triangular 
methods play a special role in summability theory this gives added reason to 
give special attention to the case of slowly spreading chains. 

The possibility of applying probability theory to the study of summability 
methods has already been demonstrated by R6nyi [12] and Schmetterer [13]. 
Our purpose is to show how generally summability theory may be associated 
with Markov chains. We will take our terminology and notation for Markov 
chains from [10]. 

2. Some Summability Concepts 
In this section we shall summarize some results from summability theory 

which we shall need later. Basic references for this subject are the books of 
Hardy [53, Cooke [3] and Zeller [15]. 

If A and B are two summability methods we say that B includes A if, when- 
ever A sums a sequence s to a limit l, B also sums s to l. Methods A and B are 
equivalent if each includes the other. If B includes A but is not equivalent to A 
we say that B is stronger than A. 

A regular summability method which sums only convergent sequences is 
called a trivial method. For example, the identity matrix I defines a trivial method. 
There is no summability method which sums all bounded sequences. 

We mention now some special facts about triangular methods. Any triangular 
matrix A has a unique two sided inverse A-1 which is again triangular. The most 
useful result for comparing triangular methods is the following: 

Theorem 2.1. Let A and B be two regular triangular methods. Then B includes 
A if and only if BA-1 is a regular summability method and they are equivalent if 
BA - 1 is trivial. 

In particular, by this theorem a regular triangular method is trivial if and 
only if A -1 is a regular method. If A has the property that Aii ~ 0, then the dia- 
gonal entries of A -I, which are 1/Aii, approach 0% so that A -1 cannot have 
bounded absolute row sums and A is not trivial. The converse is not true. It is 
possible to have a non-trivial method with diagonal entries not tending to zero. 

We shall have occasion to deal with special triangular matrices of the form 
A~j=a~_~ for i>j,  where ao, al, ... is a given sequence with ao+0.  Then B = A  -~ 
is again a matrix of the same form with B~j=b~_j for a sequence bo, bl . . . . .  The 

generating functions A(x)= a,x" and B(x)= ~ b,x" for these sequences are 
related by A(x )B(x )=  1. .=o .=o 
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3. Renewal Sequences 
From here on we let R stand for the R ~~ for a Markov chain. Then R~j=Po("f 

and, in particular, R.o=Po("o ). For  any Markov chain the sequence {u.} defined 
by u. = Po(~ ) is an example of a renewal sequence. That is the sequence {u.} is such 

n--1 

that Uo = 1, u. = ~ f . _ j  uj where {f.} is a sequence withfo = 0, f . >  0 and ~ f . <  1. 
j = 0  

If ~,-*oo" -pc . )  for a Markov chain, then f .  is the probability, starting in state 0, that 
the first return to 0 is at time n. 

A sufficient condition due to Kaluza [6] for a bounded sequence {u.} with 
Uo = 1 to be a renewal sequence is that it satisfy 

(3.1) u2.<u, lu.+ 1. 
1 

In particular if {u.} is a moment  sequence u. = ~ x" dF(x) it satisfies this condition. 
o 

For  slowly spreading chains we let P.=P.-a,. and we assume that p . > 0  for 
n = 1, 2, 3 . . . .  so that all states may be reached from state 0. Let flo = 1 and fi.+l = 
fl.p.+~. Then f t .= ~'~")-V-o. - 1 - , . .  Thus R. .  must be monotone decreasing. We let 
fl~ =l i rn  ft., the probability that the chain "marches straight out". For  a recur- 

rent chain this limit is always zero, hence R..--+ 0, and thus no recurrent chain 
yields a trivial method. 

4. Slowly Spreading Chains 
We now prove that the methods R <a) which arise from slowly spreading 

chains are equivalent. Before proving this theorem, we shall need to discuss 
some properties of slowly spreading chains. 

Let P be the transition matrix of a slowly spreading chain. Define R by 
R _D~,) and S the "shift matr ix" by Si, i + l = l  and Sik=O otherwise. Then n j - - l O j  
RP=SR,  which determines the rows of R recursively. R is triangular and has 
strictly positive diagonal entries. It has a unique two sided inverse Q which is 
again triangular and 

(4.1) P = QSR 

and 

(4.2) W = QS" R. 

If P has row-sums 1, which we assume, so do R and O. 

Theorem 4.1. A slowly spreading chain is determined by its summability method. 

Proof. We have shown above that the summabi!ity method of a slowly spread- 
ing chain is R. Then Q is the unique triangular inverse of R, and P is determined 
by (4.1). 

Theorem 4.2. A triangular sumlnability method A comes from a Markov chain 
if and on ly / fA>0,  A has row-sums 1, and A-1SA >O. 
2* 
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Proof A comes from a Markov chain if A,j = P2]) for some state a. Triangular- 
ity means that P must be slowly spreading and a = 0. Then A = R. Hence, it is 
non-negative and has row-sums 1. By (4.1), P = A  -1SA, and hence, this must be 
non-negative. But if all these conditions are satisfies, P = A - 1 S A  is a Markov 
transition matrix and A is its summability method. 

For  slowly spreading chains the problem of finding non-negative, normalized 
eigenvectors 

(4.3) P h ~x) = x h(X); h~o ~) = 1, 

was solved in [-8-1. For  each x there is a unique normalized eigenvector h C~) 
associated with x and it is given by 

i 

(4.4) h!~)= ~, Qijx j. 
j = 0  

There is an Xo, 0 <  Xo < 1, such that h(~)>0 for all x >  x o, and only for such x. 
The vectors h (x) are strictly positive if x > Xo; for x = Xo there may be 0 compo- 
nents, but only if the states do not communicate. Also, h m =  1. 

We now give a probabilistic interpretation for h (~) for x > 1. The eigenvector 
h {x) is a regular function of the substochastic matrix P * =  (l /x)P.  That is P* h(~)= 
h (x). Thus we can apply a systems theorem. Start  P* in state 0, and stop it if it 
reaches state i. Then 

l -- /~(x) _ 1 4 .  /~(x) 
- - t t O  - - ' ~ a O i r ~ i  

where H*i is the probability starting in 0 that i is reached. Thus 

(4.5) hl ~) = 1/H~) i. 

That is hl x) is the reciprocal of the probability that the P* process reaches state i. 
(Note that this argument makes use of the fact that a slowly spreading chain 
cannot jump over a state.) If the original process was stochastic, as we have 
tacitly assumed, then (4.5) is still correct for x =  1, both sides being equal to 1. 

By introducing the first-hitting probabilities F~} "), we can rewrite (4.5) as 

oo oo 

(4.6) 1/hl~)= ~, F *(") = ~, Fo~7 ). (l/x)". 
n = i  n = i  

Theorem 4.3. For a slowly spreading chain the summability methods R ta) for 
different starting states are equivalent. 

Proof Let R ta) be the method obtained by starting in state a. Then by (4.2) 

(4.7) R~,])--P~ )= i QatR,+t,J = ~', ~ ,,,+l, t , ~ , a l a O j  . 
/ = 0  / = 0  

Define u, = Q . . . . .  for n < a and u, = 0 otherwise. Let U be the triangular matrix 
(a) with U,j--u,_~. Finally le t /~= UR. Then R~+~,j= R,j  and we have simply added 

a rows to R r to make it into a triangular method. Adding a finite number of 
rows to a sum_inability matrix has no effect on the matrix as to the sequences it 
sums. Thus R is equivalent to R r To prove tha t /~  and R are equivalent, by 
Theorem 2.1, it will be sufficient to prove tha t /~R -~ = U is a trivial summability 
method. 
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U is a triangular matrix which has, from row a on, Q . . . . . . .  P~ao starting from 
the diagonal entry, and zeros to the left. Thus U is clearly regular. 

Let V= U -1. Then V,j=v,_j  for a sequence Vo, va, .... If U(s)= ~ u,s ~ and 

V(S) = 1) n s", U(s) V(s) = 1. We use this to find K 
n = 0  

N o w  V ( s )  = ~ Q . . . .  n Sn= ~ Q~.,s"-"=s~h(~ lm by (4.4). 
n=O n=O 

GO 
1 1 1 _ 1 yVo :,s  

v(s)= b3 - =  s o 

by (4.6). That is 
V(s)= ~ "O,~(m+")~176 

rn=O 

,, _F(m+a) Hence vine>O, o r  ~m-- 'Oa �9 

U is trivial, and this completes the proof. 

~ v,~ = 1 and lim v,~= 0. Thus V= U- ~ is regular, 
m.--r oo m=O 

5. Euler Methods 

Consider the one-parameter family of slowly spreading chains defined by 
P~,i+l=p for some p, 0 < p < l ,  and P~i=q=l-p. This process represents the 
number of successes in independent trials with probability p for success. The 
corresponding summability method R (p) is given by 

(5.1) R(V)-(~),j- pJq"-J. 

These are precisely the Euler summability methods. 

The methods satisfy the simple algebraic identity 

(5.2) R(w) R(p2) = R(m p2) 

for all real values of the parameter p, and 

(5.3) R(1)=I. 

Thus Q(p)= R (l/p), and all computations are particularly simple. 

We note that (1.2) requires that p > 0  and (1.1) that p=< 1. And these condi- 
tions suffice for regularity. Thus the regular Euler methods are precisely those 
obtained from Markov chains. 

To compare R (p) with R (~), Theorem2.1 tells us to study R(P)Q(P)=R(P/P~. 
This is regular as long as p < p ;  its inverse is regular iffi__<p. Thus the first method 
is stronger than the second if and only if p < p, and they are equivalent only if 
p = ~. We obtain a continuum of methods that grow weaker as p increases, and 
they terminate in the trivial method p = 1. 

We will now show that from any slowly spreading chain P we may obtain 
a continuum of methods of varying strength. Let 

(5.4) f i=pP+qI,  p + q = l .  
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fi will be slowly spreading as long as p > 0 and f i>  0. If ~ = inf P,,  this requires that 
i 

1 
(5.5) 0 < p <  1 - e  

Then a simple computation shows that 

(5.6) R=R(P)R, 

where R (p) is given by (5.1). We thus obtain a continuum of methods (5.6) for the 
parameter range (5.5).. The original method is given by p = 1. 

To Compare two such methods, let R correspond to parameter value p. Then 

0 = R(V) R.  Q Q(~) = R ~"/~). 

This is regular and non-trivial as long as p<~.  Thus the methods are strictly 
monotone decreasing in strength as p increases. For  example, any one p yielding 
an Euler method gives rise to all the Euler methods by means of (5.4). 

6. Balanced Methods 

Let bo, bl, ... be a sequence of non-negative numbers with bo = 1. Let a, = 

bo+'"+bn. Let R.j= ~ for j<=n and 0 otherwise. Then R defines a regular 
O" n 

summability method if ~ b j= ~ .  We shall call them balanced methods. We let 
1 1 

fln=Rn,=bn/a,; then Q=R -I has Q u = ~  and Qi_ i , i= l -~ . ,  and all other 

entries 0. If we form QSR we obtain 

Pij = (QSR)ij =' _ _  

~i (fii-fii+O if j< i  

fii+l if j =  i+  1 

0 if j> i+  1. 

If P is to be a Markov chain, ft, must be monotone decreasing. Then QSR 
is non-negative; that is, the necessary condition {ft,} decreasing, is also sufficient 
for balanced methods to come from Markov chains. 

Let us look also at the sequence {un} with - , , -  ~ o o "  -p (n )=  R,,o = l/an. The sufficient 
2 condition of Kaluza for {un} to be a renewal sequence was Un_lUn+I--u,>O. 

That is a 2 - an_ 1 (Tn + 1 = 0"n 0"n + 1 ( f i n  - -  f i n  + 1) ~-~ 0 .  Thus we see that Kaluza's sufficient 
condition is necessary for balanced methods to come from chains. 

In [9] Kemeny called these processes balanced chains and studied them in 
detail. He showed that the process is transient if and only if 

1 
2 - - ~ O O .  
n O'n 
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If this sum is infinite, it is recurrent and the stationary measure is proportional 
to b = {bn}. Then it is ergodic if ~ bn < oo and null if ~ bn = oo. The method is 
regular if ~ bn = o% i.e. an--* oo. We note that 

l _ f l -  O-n 1 
O-n 

so that 
1 

O'n - -  n 

H (1 
k = l  

for n => 1. Thus in terms of the fl's, a balanced chain yields a regular summability 
method if and only if 

k = 0  

We ask next when R is trivial. That is, when is Q a regular method? Clearly 
from the form of Q this is simply a question of whether 1~ft, is bounded. We know 
that this sequence is monotone increasing, thus R is regular if and only i f ~  flk = 

k 

and trivial if and only if fl,+-~0. The latter condition has an interpretation, fl, is 
the probability of taking n consecutive steps to the right. Thus a trivial balanced 
method is obtained from a chain only if there is a positive probability of march- 
ing deterministically to infinity (i. e. every step is a step to the right). Such a chain 
would, of course, be transient. Thus for this class of processes only some rather 
special transient chains can be trivial. 

As a simple example of a balanced method we can choose all the bn'S equal 
to 1. This leads to the ordinary Ceshro summability method. The transition 
matrix for the associated chain has the form 

1 
P~J- (i+ 1) (i+2) ifj<=i 

- - ( i + l ) / ( i + 2 )  if j = i + l .  

In this case the higher order probabilities also have a quite simple form 

f,) if j < i + n  
P~J - ( i + n ) ( i + n +  l) 

= ( i +  l ) / ( i + n +  l) if j = i + n .  

The problem of comparing two balanced methods was considered by Hardy 
[5] and also by Garabedian and Randels [4]. Hardy [5] gave the following two 
sufficient conditions for R to include/~. 

Either 

(6.1) 

or 

(6.2a) 

b, > b,+ 1 

b, - b,+ 1 

bn bn+I 
bn - bn+l 
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and 

(6.2b) fl" < N  for all n. 

b, 
Recall that f t , -  

O" n 

Since, by(6.1), (6.2a) implies that/~ includes R, conditions (6.2) actually imply 
that R and R are equivalent. 

Let r = i f "  Then Garabedian and Randels [4] proved the following theorem" 

Theorem 6.1. A necessary and sufficient condition for R to include R is that 
Jbr some N 

(6.3) 1 ,-1 - -  ~ I~r~5-aj+lrj+ll+r. < N  
O'n j=O 

for all n. 

Note that, by (6.1), if b, is monotone decreasing it includes Ces~tro summability. 
1 

For example, if b , -  n + 1 we obtain the so-called logarithmic means. 

t .=  S o + ~ - + . . . +  n + i -  
O- n 

$1 

"~ log n 

These means are in fact stronger than Cesflro means. 

Since from the point of view of balanced chains the fl,'s are the natural 
objects, it is useful to have sufficient conditions in terms of the ratios r,. To this 
end we note the following result which follows immediately from Theorem 6.1. 

Theorem6.2. I f  r. is bounded and ~ Ir~-rj+ll< oo then R includes R. I f  in 
j=O 

addition 1 is unbounded, R is stronger than R. 
r, 

It follows from Theorem 6.2 that if r, is a decreasing sequence, R includes 
/~, and is stronger if r, ~ 0. 

1 
Examples. Let f t , -  an~+l , a>0 ,  0<e=<l.  Then f i , ~ 0  and ~ f l , = o o ,  so 

that we have non-trivial regular methods. Let us call this the (a, 5) method. 

~n ~ + 1 
r , -  a n ' + 1 ' bounded if and only if e > g 

(e-g)  aYtn~+~ + san ~-gytn ~ 
r n - - r . + l  "~ a 2 n1+2~ 

Hence if 5>g, r , - r , + l ~ k / n  t+(~-~), 1/r, is unbounded and, by Theorem 6.2, (a, 5) 
is stronger than (fi, g). If 5=g, r , - r , + l ~ k / n  ~+~, 1/r, is bounded, and hence, the 
two methods are equivalent. 
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7. NSrlund Methods 

These methods are defined in a manner quite similar to the definition of 
balanced methods. For a given sequence of non-negative numbers co, cl, ... with 
c o • 1, let 7n = Co + " "  + c. and define R by 

R.]- c._j j<=n 
7, 

= 0 otherwise. 

To ensure that R gives a regular method we need only require that c ,  0 as 
7, 

n--, oo. We denote a NSrlund method determined by c=  {c,} by (N, c). Unlike 
the case of balanced chains the matrix Q = R-1 is quite complicated and it is 
difficult in practice to determine if a NSrlund method may be associated with 
a slowly spreading chain. 

The most interesting class of N6rlund methods which can be shown to come 
from Markov chains is the class (C, ~), of Ces/tro means, for c~>0. These are 
N6rlund means with c = {c,} given by 

In this case 

(n+c~-  1) 

n 

n - j +  c~- 1) 

n - j  R;j- 

The transition matrix for the slowly spreading chain which yields R ~ is given by 
W with 

( c~ + j -  1 t 
j / 

~ -  j < i  
P~J- c~+l c~+i+ 1 

( i )  
i+1  

c~+i+ l  
for j = i + l .  

That this matrix W would yield R ~ was conjectured by our student Jacob 
Bergmann. The proof that this is the case requires that one verify that 

R ~ p~ = S R  ~. 

The computation is straightforward using the following binomial identity: 

(7.1) 
i 

s 
k ~ j  

' - k  c~+l \ i - j  / 

\j: 
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The methods (C, ~) become stronger as c~ increases. 
The methods (C, e) are known to be equivalent to the H/Alder methods (H, c~). 

The methods (C, 1) and (H, 1) are the same but (H, 2) differs from (C, 2) and provides 
a simple example of a classical method where A -1 SA is not non-negative and so 
is not associated with a Markov chain. 

A rather special but interesting sequence which yields a N/Arlund method 
associated with a Markov chain is the sequence {c,}={1, 1,2,3, 5,8, . . .} of 
Fibonacci numbers. Using special facts about Fibonacci numbers our student 
Frank Hanna verified that QSR is non-negative and found the transition matrix 
to be 

p/j= ?i 7i-1 7i-2 for j<i  
~ i + 1  Ci--j+l----Ci--j----Ci--j--1])i ]]i-1 

_ 7i for j = i + l .  
] ) i+1  

8. Renewal Methods 

We next consider a class of slowly spreading chains called " the basic example" 
in [10], and also known as renewal chains. They are characterized by the fact 
that they either take a step to the right or move all the way back to 0. 

Let Pi be P/-1,i and P/_l,o =qi.  
i 

As usual rio = 1 and fli= l-[ Pk. Let floo=lim fii. The process is transient if 
k = l  

fioo > 0, null if fioo = 0 and ~ fli = 0% and ergodic if ~ fii < oo. The matrix Q has 
the form 

9_.= 1/[3i, 
Qij = - - f l i - j -1  qi-j/fli if j <  i. 

To express R we introduce u. recursively by 

and 

u o = 1 and Un+l= i fl,-k qn+X-k Uk 
k = 0  

R.j=u._j flj. 

The sequence {u,} defined by un = R,o is a renewal sequence and the sequence {f,} 
associated with {u,} is given by f ,  = ft, _ 1 - ft,. The condition that f ,  >___ 0 corresponds 
to the condition that the fi,'s are decreasing. The condition ~ f ,  < 1 corresponds 
to fi~o > 0. It is this class of examples that shows that any renewal sequence {u,} 
can be {~)}  for a Markov chain. If U(s)--y" u, s" is the generating function for 

n 

the sequence {u,} and B(s) = ~ ft, s" is the generating function for the sequence {ft,} 
the fact that 

n 

2R~ 
j=O j 

yields the relation 

(8.1) (1 - s )B(s )  U(s)= 1 
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between the generating functions B (s) and U(s). We can choose the sequence {fi,} 
to be any positive monotone decreasing sequence with flo = 1 and the relation (8.1) 
will determine the sequence {u,}. Choosing {un} and then determining {fi,} is 
much more difficult. However, we still have the sufficient condition of Kazula 
/~/2~Un_ 1 Un+ 1. 

A summability method derived from a Markov chain is regular if the chain 
is null or transient. Thus a renewal method is regular if ~ ft, = oo. It will be trivial 
if Q is regular. We know that this can only happen if the chain is transient, hence, 
ft,+-*0. And in this case, we easily verify that Q is regular. Thus the non-trivial 
regular renewal methods are precisely those given by null chains. 

We can obtain a one parameter family of examples by choosing 

B(s)=(1 -s) -p 
and 

U(s)=(1-s) q, with p + q = l .  

Then, by the binomial theorem, 

fij= (p+j-1) 
J 

uj=(q+j- l ) .  
\ j 

The resulting summabitity method has 

n- j  j 
It is interesting to compare renewal methods with balanced methods. Recall 

that ft, ---, 0 and ~ ft, = oo was the necessary and sufficient condition for a balanced 
method to give a non-trivial regular method. But the same is true for renewal 
chains. 

This suggests comparing the two methods. Consider a null renewal chain 
determined by {fin}. Let R be its summability method. Let R be the method of 
the balanced chain having the same fi,'s. Then, by Theorem 2.1, R includes 

- 1 - 1 
ifR (~ is regular. For a balanced chain Qii = ~ a n d  Qi, ~-1 = 1 - ~ .  Also R , j =  u,_jfij, 
and u, ---, 0 since the chain is null. Thus, 

(RO~),j=u,-j-u,-j-1( 1 -flj+O. 

Condition (1.1) is the only condition for regularity that is not evident. For this 
we need 

~, lUn--j--Un--j l(1--flj+l)[<N 
j = o  

for all n. It is sufficient for this to have 

(8.2) ~ ]uj-uj_l[ <N for all n. 
j=l 
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This will, of course, be the case if the u,'s are monotone decreasing as if often 
true, for example for moment sequences. Thus renewal methods very often 
include the corresponding balanced method. We do not know if (8.2) is true for 
all renewal sequences. The result that (8.2) is a sufficient condition for R to 
include R, is due to our student M. Berg. 

9. Generalized NiMund Methods 

These methods introduced by Borwein [1] are defined as follows: Let 
b=  {bo, bl . . . .  } and c= {Co, q ,  ...} be two sequences of non-negative numbers 
with bo = Co = 1 and ~ b, = ~ c, = ~ .  Let % = bo c, + bl c,_ 1 + " "  + b~ c o . Define R 

by R,~= c,_jbj for j__<n, and 0 otherwise. If R is to be associated with a Markov 
Tn 

chain we must have ft, decreasing. That is 

(9.1) b~ > b,+l 
Tn "[n+l 

If c, = 1 for all n, then we have the balanced methods, and we have seen that 
(9.1) is necessary and sufficient. If b, = 1 for all n, we have the N/Srlund methods, 
and here this condition is not sufficient; but we do get an interesting class (C, c~) 
which are associated with Markov chains. If z, = 1 then (9.1) is again both necessary 
and sufficient and we get the renewal method with ft, = b, and u, = %. 

Borwein introduced the generalized N6rlund methods with 

Vs.= (J+c~- 11 
j I '  

cj= j l ,  

He calls these generalized Cesaro means and denotes them by (C, e, fl). If ~ > 0  
and f i > - i  these methods are regular and Borwein proved that (C,e, fl) is 
equivalent to (C, e). The renewal examples we considered were (C, e, - e )  with 

= p, hence 0 < e < 1. Thus these methods are equivalent to the corresponding 
(C, ~) methods. 

10. Boundary Theory 

The Martin boundary points of a transient Markov chain correspond to the 
minimal, non-negative regular functions. Since a slowly spreading chain has only 
one such function, its boundary is trivial. However, the space-time process of 
such a chain is quite interesting. This is obtained by taking as states time-position 
pairs (n,j). Such a chain is transient even if the original chain was recurrent. Its 
boundary gives information about the asymptotic behavior of the original chain. 
The space-time boundary was solved for slowly spreading chains in [8] under 
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the assumption 

(10.1) P/i__>e>0 for all i. 

Then the boundary  is a continuum Xo - x_< + oe with 0 < x o < 1. Some condition 
is necessary to assure a boundary which is a continuum. For  example, one can 
show that the boundary  of balanced chains can be identified with the non-negative 
integers. Assume now that (10.1) is satisfied. The minimal space-time function 

h(.~) 
corresponding to x is the function h ( n , j ) = ~  where h (~) is given by (4.4). The 

function corresponding to + oo is the limit of these functions which is ,~,/fij. 
We shall find it more  convenient to use as boundary  parameter.  

X - -  X 0 X 0 
(10.2) p =  0 ~ p ~ l ;  x = - -  

x l - p "  

For  each p we can define a modified slowly spreading chain by 

(lO.3) pi}p)_ PijhT' .  R ( p ) = ~  1 R, jh}  ~) 
x hl x) ' "J x" 

where x and p are connected by (10.2). This is well defined and stochastic as 
long as h(~)>0 and P h X = x h  ~ holds. This will be the case if x o < x < o %  and if 
x = x o  if the states communicate.  Thus (10.3) gives us a new slowly spreading 
chain for 0 < p <  1 and possibly also for p = 0 .  

It is natural for several reasons to consider the class P(P) for 0 < p < 1 obtained 
from a given P. First it follows from general Mart in boundary theory that they 
all have the same space-time boundary. The parametrizat ion chosen is also 
natural  from the point of view of summabili ty theory since it is independent of 
the "original"  R. To see this, suppose, for example, we had chosen an R corre- 
sponding to x = x 1 > Xo. That  is 

P, 
,.(Xl), 

X 1 rl i 

1 R . h (x~) Rn j "= ~ l  - "n J "'j " 

P has as eigen-functions 

~(x) _ 
h txx~) Xo 
h(~i ) for x > Xo - xl 

Consider now/~P for 0 < p < 1. 

l~ j  = @~ R, j  h} ~) 

_ 1 [ 1 R .h}X~) ] h~ xx~) 
x" L x~ J h(71) 

1 
(X X1) n Rn] ,.(xrl)xD. 
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And p = ( x -  2o)/x = (x xl - Xo)/(x x0, thus it corresponds to the parameter value 
x xl for the original process. Therefore, R P = R  p, and we have shown that the 
parametrization chosen for p makes R p independent of the choice of R. 

Let us consider the simple sums-of-independent-random variables example 
with P~i=q, P~,i+l=p. We saw in Section 5 that these chains yield the Euler 

methods. Let us start with p = q = � 8 9  Then R , j = (  n] (�89 The eigen-functions are \ I j  
hlX)=(2x-1)  i for x>�89 Thus xo=�89 Introducing a parameter p by means of 

(10.2) yields hlX)=(p/q) i and R ~ j = ( n t  pJq"-;. Thus the parametrization of the 
\ ! j  

Euler continuum of methods is an example of a continuum obtained from boundary 
theory. In this case, the methods become progressively weaker as p increases, 
0 < p__< 1. In particular the class of chains has the desirable property that if any 
one of them assigns a limit to Pi(~ ), the probability after n steps of being in a set E, 
as n ~ oo, then any other chain for which this limit exists assigns the same limit. 

We would like to believe that it is generally true that in each boundary 
continuum of methods R (p), e (p~) is stronger than R (p2) if Pl <P2. Unfortunately 
we have only partial results in this direction. 

Theorem 10.1. I f  (10.1) holds, then R (p) is non-trivial for p< 1. 

Proof  Assume p < 1. Consider R~, ). This is the probability that R (p) takes n 
steps to the right. Its limit is the probability that the space-time process marches 
out along the diagonal (n, n), and hence that it goes to the boundary point x = oo. 
But a process conditioned to get to one boundary point cannot go to another. 
Hence R~, ) ~ 0. But this means that Q(d,) would have entries tending to infinity 
and could not be regular. Thus R (p) is not trivial. 

When the boundary is not a continuum the methods R (p) may all be trivial�9 
Consider, for example, the case of a balanced chain. As we mentioned earlier the 
space-time boundary here turns out to be a denumerable set. For  a balanced 
chain Q has all entries 0 except Qii = l i f t  i and Qi, i _ l = ( 1 - f i i ) / f l i .  F o r  Q to be 
regular it is then necessary and sufficient for 1/fii to be bounded or flcO>0. But 

fi(.~)=l 1 - f l ~ ,  
X 

p ~  = 1 - Xo /X .  

Thus/3~ ) = 0 if and only if x = Xo. Thus the method is trivial for all p > 0. 

For  our next result we need a key lemma. 
�9 X n 

Lemma 10.2. I f  fio~ = 0 and x > 1, then hm ~ h ,  = 0. 

cO 

Proof Let qk=l--Pk_l,k . Then f i~= I ]  ( 1 -  qk)= 0, hence ~q k  = + ~ .  Let 
P*=(1/x)  P, as in Section 4. k=l 

xn n-  1 

h~X ~ - x" H~,= k=0171 (x Hk,~+l). 
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Considering separately the probabil i ty of reaching k + 1 in one step or in more 
steps, we obtain 

1 1 
H~, k + l  -~X- Pk + l "+--~-  qk + l ,  

xH~,k+l <----Pk+l + ~  qk+~ = 1 --qk+l 

Hence, 

l l m ~ =  1-[ [xH~ k+l]--  1--qk+l 1 = 0 ,  
n h t x )  , - -  

~ n  k = O  k = O  

(1 -1 )  d verges  omp etes the proo  
While we cannot show that  R (pl) is stronger than R (p2) for Pl <P2,  we have 

seen that this is true for P2 = 1, and we will now show that R (p~) cannot include R (p~). 
Since the choice of R is arbitrary, we choose it as R (p') in the theorem. 

Theorem 10.3. I f  fl~ =0,  and x> 1, then R (x) does not include R. 

Proof. Suppose that R (x~ includes R. Then R(x~Q is regular and its diagonal 
entries must be bounded. But 

E R(x) Q].~ = R. .  hl, ~) Q . . -  x" ' 

which is unbounded as a consequence of the Lemma.  

11. Perfect Methods 

It would seem desirable for summabili ty methods to have the following 
property. If A is a fixed method, it should be the case that when a method B sums 
every sequence A does, then A and B should give the same limit to sequences 
they both sum. It is not the case that all regular summabili ty methods have this 
property. We shall say that a method is perfect if it does have this property. A 
fundamental theorem of Brudno [-2] states that if we restricted ourselves to 
bounded sequences all methods would be perfect. That  is, Brudno proved that if 
a regular method B sums all the bounded sequences a regular method A sums, 
then for bounded sequences which they both sum they give the same limit. 

For  triangular methods, it follows from results of Mazur  [-11] that a triangular 
method A is perfect if and only if it satisfies the following condition" 

Condition M" If ~ is a row vector such that ~ [~jl < ~ and ~A=O then ~=0 .  
We can give a more probabilistic version of condition M when dealing with 

an R from a Markov  chain. Let the chain be started in state 0 and stopped at a 
random time z independent of the process. Let ~ be the distribution of the stopping 
time. Then ~ is a probabili ty measure and the probabili ty that the process is 
stopped at state j is 

Z P0 7 : , i -  
n 
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Condition M is equivalent to saying that if for two stopping times z and z' the 
final distributions # and ff are the same than the distribution ~ and a' of z and z' 
must be the same. 

A sufficient condition for condition M is the following. Let U + be Q with the 
negative entries replaced by 0. Then condition M is satisfied when U + has bounded 
columns. This is the case for balanced methods, methods (C, ~), and renewal 
methods. It is the case for Euler methods only when p>�89 The general case for 
the Euler method was proven by Mazur [11] using analytic methods. We shall 
now show that it is possible to have a method which comes from a Markov chain 
which is not perfect. We shall show that this can occur for a class of chains called 
random walks by Karlin and McGregor [7]. These are slowly spreading chains 
which can move at most one step to the left. Let pi>0,  r i>0,  qi+l > 0  be such that 
qi+ri+Pi=l. Define Pi, i_t=qi for i>0,  Pii=ri and Pi, i+l=pi for i=>0. Define 
no = 1 and for n > 1, 

Po Pl.-- P , -  1 
7"/~ n = 

ql qa ... q, 

Karlin and McGregor proved the representation theorem 

1 

Pi} ")=rcJ [. x" Qi(x) Qj(x) dO(x). 
- 1  

Where the polynomials {Q,} are of degree n and are orthogonal with respect to 
the measure 0(x) on the interval [ - 1 ,  1], 0(x) is called the spectral measure. 

To find an example of an R that is not perfect we must find a chain such that 
there is an ~, not 0, with ~ 1~i1 < 0% and 

n 

for all j. That is 
1 

~c~, ~ x"Qj(x)dO(x)=O 
rl - -  i 

for all n. If we let F(x) = ~, ~, x" be the generating function for a we see that we 
must have 

1 

F(x) Qj(x)d0( )= 0 
- 1  

for all j. 

But this states that F(x) is a function with Fourier coefficients with respect 
to {Q,} equal to 0. From the theory of orthogonal polynomials this means that F 
must be 0 almost everywhere with respect to 0. Thus if 0 has an interval of positive 
measure F would have to be zero on an interval and this would imply F(x)-O, 
since it defines an analytic function in the unit circle. The usual examples of random 
walks have measures 0 which have absolutely continuous parts and hence the 
corresponding methods are perfect. 

It is possible, however, to use the Karlin-McGregor representation theorem 
to show that not all methods that come from random walks are perfect. To see 
this we first observe that according to Karlin and McGregor,  any symmetric 
measure 0 on [ -  1, 1] is the spectral measure of a random walk. Choose a function 
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F(z) such that F(z)=  ~ ~. z" with ~ [c~.] < ~ and F(z)= 0 on a sequence of points 
{ ___b.} with 1 and - l as limit points. For example 

1 - 1  
F(z)=s in  ~ exp 1 / ~ _  ~ 

for e sufficiently small has these properties. 1 Then if 0 is a measure with support 
the points { _+bn} the corresponding random walk will not be perfect. 
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