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On Semi-Groups such that T, — I is Compact for Some t >0

J.R.CUTHBERT

This paper develops some aspects of the theory of semi-groups (T;; t=0)
of bounded linear operators on a Banach space which have the property of
being near the identity, in the sense that, for some positive values of ¢, T,— I
is compact. In Section 1, the theory is developed for general semi-groups,
the only restriction being the assumption of strong continuity at the origin:
in Section 2, a particular case is considered, that in which (7;) is a Markov semi- .
group of operators on [, and it is shown that a particularly simple theory results.

1.

Let B be a complex Banach space, and let (T;; t=0) be a semi-group of class
C, of bounded linear operators on B;i.e. T, is strongly continuous in ¢ for t =0,
and Ty=1. The infinitesimal generator of the semi-group is denoted by A; 4 is
defined by )
Ax=lim t Y(T,~ D) x

>0+

for all x in B for which the limit exists. The operator A4 is in general closed and
unbounded, with domain D(4) dense in B. The resolvent operator of 4 is denoted
by R;, where R, =(AI—A)~! for all scalar A such that (1] —A)~! exists and is
bounded. It is assumed that || T;|| £ M e** for all t =0, for constants M, w. Through-
out this paper, C will denote the set defined in the following way:

C={t>0; T,— I compact}.

We are concerned with the theory of semi-groups for which C+0. As mentioned
in the summary, such semi-groups can be regarded as being near the identity
for some positive t. In fact, as the following theorem shows, it can be said more
explicitly that such semi-groups are invertible.

Theorem 1. If C£90, then T, is invertible for all t.

Proof. Let o(T)) denote the spectrum of T;, Pg(T,) its point spectrum, and
N(T,) its nullspace.

Suppose the semi-group is not invertible, that is, that Oe (T for some, and
then for all, £>0. Then, by the Riesz-Schauder theory on compact operators,
and by the spectral mapping theorem, it follows that, for all te C, 0 Po(T,), and
N(T,) is finite dimensional.

Let ¢, be any element of C, and let x be any non-zero member of N(T;,);
define t,=11,.
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Then, since
T;;(ﬂzx): 7;1 x=0,

it follows that OePo(T,).

Proceeding in this way with t,=%t,_,, it follows that there exists a sequence
t,l0 such that OePo(T, ) for all n=1.

Let 4,=N(T; )N {x:[[x| =1}: then, since N(T;)< N(T)) for s<t, and since the
T, are bounded, it follows that (4,) is a decreasing sequence of non-void closed
sets, and further, since N(T;,) is finite dimensional, 4, is compact.

Therefore, there exists x such that xeA, for all n=1, and so || T, x—1Ix|=
|x[|=1 for all n=1.

This contradicts the strong continuity of the semi-group; hence the semi-
group is invertible, the desired result.

From the identity
(T—-D(L,—-D=(T,y,—)—(T,-D—(T,-1),

it foll dily that
it follows readily tha seC, teC=s+teC,

seC, t¢C=>s+t¢C;

these relations imply that C is the intersection of an additive subgroup of the
reals with the positive real line.

We distinguish three mutually exclusive and exhaustive forms which C may
take.

(i) C=10, co[.

(i) C={nx; for some x>0, and n=1,2...}.

(iii) C is a dense subset of 10, o[ with empty interior.

Examples will be given to show that all three types of set may occur. Fur-
ther, some relationships between the type of C-set and the structure of the semi-
group will be derived. In particular, it will be shown that C takes the first of the
above forms if, and only if, 4, the infinitesimal generator, is compact; if C takes
the third form, A is necessarily unbounded; but if C takes the second form, 4
may be bounded or unbounded.

First, examples are given showing that the above classification of C-sets is
non-void, and also that sets of type (ii) can arise from semi-groups having bounded
or unbounded infinitesimal generators.

Examples. Take B=I;, the space of absolutely convergent sequences.
(i) T,=1 for all ¢.
(i) (a) 4 bounded: T,=diag{e", e~", e, e "...} (x=2m).
(b) A unbounded: T,=diag{e", e*", &*", ...} (x=2n).
(iii) T,=diag{e",*", ", e*'?, ..}
The following two theorems contain the stated assertions about the type of

set C and the structure of the semi-group. In fact, when C is of the first type,
something more can be said.
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Theorem 2. The following conditions are equivalent for a strongly continuous
semi-group (T;; t=0).
(i) C=10, co[.
(i) A is compact.
(i) AR,—1I is compact for some (and then for all) > w.
Proof. (a) (i) =>4 is bounded.

By the spectral theory of compact operators, it follows that, for all >0,
peo(T), u+1=pePo(T): using this fact, together with the spectral theory for
semi-groups developed in [3], Chapter 16, Section 7, it follows that, apart possibly
from the point 1,

o(T)={e""; xePo(A),x+0}, forall :>0. 1))

Again by the spectral theory of compact operators, it is true that, for any £>0,

the set
{lea(T);|A—1|>¢&} is finite, for all t>0. (2)

Suppose that the set {Im(x): xe Pa(A)} is not bounded: then, on combining
(1) and (2), it follows that there must be a subset {a,;n=1} (considered without
loss of generality to be of positive elements) of {Im(x): xe Po(4)} with the fol-
lowing properties:
(D) a,toc as n—o0;
(I} for any £>0, t>0, only a finite number of elements of {tq,} differ from
integer multiples of 27 by more than ¢. It is now proved that no such sequence

{a,} can exist: (I am indebted to Professor J.F.C.Kingman for the following
argument.)

Taking some ¢ with 0<g<3%, and writing

G,=|J[2nn—¢2nn+e],

n=1

10, o[ & @ ﬁ a;'G,.

N=1 n=N

property (IT) implies that

o
Therefore, by Baire’s Category Theorem, there exists N such that () a;'G,
o] n=N
has an interior point: therefore () a;'G, must contain an interval [a, b], say:

n=N
but this is impossible, since, for all large enough n, 2ea, 1 <(b—a).

Therefore, no sequence {a,} with the above properties exists, and so {Im(x):
xePao(A)} is bounded, by K >0, say.

It follows from (1) that, for all te [0, —n—] , 6(T}) is contained in the right half
plane. 2K

Since, by Theorem 1, the semi-group is invertible, it can be extended to a
strongly continuous group, {T;; — oo <t<oo0}. Consider the function | T_, x| for

. .. . , T .
arbitrary xeB: this is a continuous function on [0, TIZ]’ and so is bounded
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above: hence, by the Banach-Steinhaus theorem,

sup || T_,|=H< 0.

te[O,zn—K
i
= | T, x| <H |x], te[o, ZK]
= I Tx|ZH " x| re[o i]
tx = E ] 2K .

It follows easily from this that, for te [0, %] ,

o(T)n{z:|z|<H 1} =0.

Therefore, since the spectrum of 7, is also contained in the right half plane
for ¢ in this range, it follows that there exists an open, connected, unbounded

set containing 0, and which does not intersect with ¢ (T;) for te [O, %] .

Hence, by [3], Theorem 16.5.2, T,=exp(A4t) for some bounded 4; this com-
pletes the first part of the proof.

(b) (i)=(ii).
By (a), T; is uniformly continuous for ¢t =0: therefore there exists d> 0 such

that
|IT—-I|<% for t<d.

Take t<d; then

t
t‘lesds—IH=
0

t
=1 [(T,— 1) ds
0

t
St T -1 ds<3.
t 0
Hence | T, ds is invertible for all t<d.
0

Therefore, since . .
T,—1=A|T,ds= | T,ds A,
0 0

it follows that

1
(’I;_I)a

e[

and is therefore compact.

(©) (@)= (@)

Since all the operators involved are bounded, it follows that
t
T,—1=A{Tds forall >0
0
= T,—1I is compact for all £>>0.
(d) (1)< (iii).
The = statement is contained _in [3], Lemma 5.7.1.
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Conversely, suppose AR, —I is compact for some A> . Then, for xeB, and
t>0, by the strong continuity of the semi-group at the origin, it is true that

t
Tx—x=A[T,xds
o

t
=R (T,-I)x=(AR,— 1) T, xds
. 0
1.€., t
Ry(T—D)=(iR,—1){ T,ds,
0

on dropping the term x, and making the obvious convention for the meaning

of the integral; t
= AR(T,~)~(L-D+(L,-D)=2(AR,~ 1D | T,ds
¢

= T,—I=—(AR,—I)(T,—D)+ (AR, ~1I) | T,ds
0

= T,—1 is compact for all t>0; i.e, C=]0, cof ,
= A compact

= AR, —1I is compact for all 1> w, as above.

The following theorem proves the last of the stated assertions about the
relationships between the form of the set C and the structure of the semi-group.

Theorem 3. If C is a dense subset of 10, oo with no interior points, then A is
unbounded.

Proof. If A is bounded, then, by using the argument of part (b) of the proof of
Theorem 2, but choosing ¢ <d such that t€ C (as is clearly possible) it follows that
A 18 compact, which implies C=10, co[, by Theorem 2.

The above theorems leave certain questions about the sets C unresolved: in
particular, it is not known whether every additive subgroup of the real line is
the C-set of some semi-group.

Theorem 1, which states that semi-groups (7;) for which C+0 are in fact
invertible, enables us to apply the following general result on invertible semi-
groups.

Theorem 4. Let (T;; t = 0) be an invertible semi-group of class C, with unbounded
infinitesimal generator. Then there exists a real number p such that, for any o, f

with 0<a<ff< o0,
tS[UI?ﬂ[HTz—III —1—exp(p0)]20.
Proof. Since the inverse semi-group (T_,; =0) is a semi-group of class C,, it
follows that there exist constants K and p such that
I T ]£Kexp(—pt) forall t20.

Hence | T_,,| <K exp(— pnt) for positive integer n, and t =0, and so the spectral
radius of T_, is not greater than exp(—p t) for all = 0. Therefore, since

Aieo(T) ifand onlyif A~ lea(T_,),
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it follows that
a(T)n{z:|z|<exp(pt)}=0 forall t=0. (3)

Suppose that the statement of the theorem is violated for this particular p:
then there exist o, § with 0<a< ff< oo, and k>0, such that

IT.—I| S1+exp(pt)—k forall te[w, 7.
Combining this with (3), it follows that
o(T)n{z:Re(2)<0, —k<Im(z)<k}=0 forall tela, f]. 4)

Relations (3) and (4) together imply that there exists an open, unbounded, con-
nected set containing zero, and which does not intersect with a(T;) for te[o, 1.
Hence, by Theorem 16.5.2 of [3], (T;) has bounded infinitesimal generator, which
contradicts the assumption of the theorem.

Theorem 4 has the following corollary, a result which has recently been
proved by Williams [4].

Corollary 1. If (T;; t=0) is an invertible semi-group of class C,, and

limsup | T;-1I]| <2,
t-04

then the semi-group has bounded infinitesimal generator.

Proof. If this does not hold, then, putting «=0 and letting § — 0 in the state-
ment of the theorem, implies that

limsup |T,—I||=2, which is a contradiction.
t 04

This corollary, together with Theorem 1, yields immediately the following
result.

Corollary 2. If (T,; t 20} is a semi-group of class C, with unbounded infinitesimal

generator, and C+0, then ‘
limsup | ;-1 =2.
-0+

2. The Markov Case

We now consider the particular case of the above theory in which (7)) is
replaced by the standard Markov semi-group (P) of operators on /;. In this case
we shall show that the theory takes a particularly simple form, and that two of
the possible forms that C may take can be excluded.

We use the same notation as before, but substituting P, for T;, where F, is a
matrix of transition probabilities p;;(t) (where i and j are positive integers) satis-
fying the following conditions:

(i) p;;(=0, and Y p;;(1)=1 for all t20.
j
(i) p;;(s+ =Y. Pir(s) py;(t), for all 5, t 2 0.
X

(ii1) tEIgl+pij(t) =0;j.
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P, operates on the space I; of absolutely convergent sequences by the formula
[Bx]jzz x; pi;(t).

Two lemmas are established first.

Lemma 1. If C+0, A is bounded.

Proof. The following three properties of Markov semi-groups are needed:
(a) If 0<e<%, and p;;()=1—¢, then p;;(s)=1—(e)* for 0<s<t; ([1, 2]).

(b) From the criterion for the compactness of a matrix operator Q=[g;;] on
I;, namely that

hm Sup Z ,qijl :07
n— 00 i j= n
and from the fact that the E’s are stochastic, it follows easily that
(c) From the definition of the norm of an operator on 1, it follows that
|B—1I|=2(1—infp;(t)) forall ¢>0.
Let te C: then, by (b), there exists N >0 such that
p;()=% forall iZN.
Hence, by (a),
pi(s)=% forall i=N, and O<s<t.
This implies that
limoinf [inf p;;(s)]=%>0,
s=-0+ 1
so that, by (c) ]
lim sup |B—1I|| <2.
5504
Hence A is bounded, by Corollary 2 to Theorem 4.
Lemma 2. If C+, then {t: sup p;;(t)=p,;(z) for all i} = C.
J
Proof. Suppose C=+0, and there exists t¢ C such that
sup p;;i(1)=p;;(¢) forall i.
J
Then for any s>t, it follows that
Pii(5)=z pij(s—8) p;()Sp;; (), forall i.
J
But t¢ C, and so p;;{t)+>1 as i » 0. Hence
pii(s)+1  as i—owo
= s¢C forall s>t
= (C={: a contradiction.

Using these two lemmas, it is possible to prove the following result, essentially
a strengthened version of Theorem 2, showing that if C=0, then C=1]0, cof.
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Theorem 5. The following conditions are equivalent for the Markov semi-
group (B):
(iy B—1I is compact for some (and then for all) t >0;
(i1) ilin;lo-pi,.(t)z 1 for some (and then for all) t>0;
(iii) AR, —1I is compact for some (and then for all) 1 >0;
(iv) A compact;
) lhn; a;=0 (where A=[a;;]).

Proof. (a) It is first proved that C=@ implies C=7]0, co[. By Lemma 1, C=+0
implies that the semi-group is uniform: hence there exists d >0such that |[E—T| =1
for all te[0, d], that is, such that inf p;;(£) =4 for all te[0, 4].

Hence, since P, is stochastic,
sgp p;i(t)=p;;(t) for all i, and for all te[0, d].
Therefore 10, d] < C, by Lemma 2, and so
C=10, cof.

(b) The equivalence of conditions (i), (iii) and (iv) now follows from Theorem 2.
(i) is equivalent to (ii) by an earlier remark.

Finally, the matrix A=[a;;] is a matrix satisfying a;,20, i+; a;;<0; ) a;;<0,
j
with equality if A4 is bounded. But if (iv) or (v) hold, 4 is necessarily bounded,
and hence the equivalence of conditions (iv) and (v) follows immediately from the
criterion for compactness of operators on ;.
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