Z. Wahrscheinlichkeitstheorie verw. Geb. 18, 9–16 (1971) © by Springer-Verlag 1971

On Semi-Groups such that $T_t - I$ is Compact for Some t > 0

J. R. CUTHBERT

This paper develops some aspects of the theory of semi-groups $(T_t; t \ge 0)$ of bounded linear operators on a Banach space which have the property of being near the identity, in the sense that, for some positive values of t, $T_t - I$ is compact. In Section 1, the theory is developed for general semi-groups, the only restriction being the assumption of strong continuity at the origin: in Section 2, a particular case is considered, that in which (T_t) is a Markov semi-group of operators on l_1 , and it is shown that a particularly simple theory results.

1.

Let B be a complex Banach space, and let $(T_t; t \ge 0)$ be a semi-group of class C_0 of bounded linear operators on B; i.e. T_t is strongly continuous in t for $t \ge 0$, and $T_0 = I$. The infinitesimal generator of the semi-group is denoted by A; A is defined by

$$Ax = \lim_{t \to 0+} t^{-1}(T_t - I)x$$

for all x in B for which the limit exists. The operator A is in general closed and unbounded, with domain $\mathfrak{D}(A)$ dense in B. The resolvent operator of A is denoted by R_{λ} , where $R_{\lambda} = (\lambda I - A)^{-1}$ for all scalar λ such that $(\lambda I - A)^{-1}$ exists and is bounded. It is assumed that $||T_t|| \leq M e^{\omega t}$ for all $t \geq 0$, for constants M, ω . Throughout this paper, C will denote the set defined in the following way:

$$C = \{t > 0; T_t - I \text{ compact}\}.$$

We are concerned with the theory of semi-groups for which $C \neq \emptyset$. As mentioned in the summary, such semi-groups can be regarded as being near the identity for some positive t. In fact, as the following theorem shows, it can be said more explicitly that such semi-groups are invertible.

Theorem 1. If $C \neq \emptyset$, then T_t is invertible for all t.

Proof. Let $\sigma(T_t)$ denote the spectrum of T_t , $P\sigma(T_t)$ its point spectrum, and $N(T_t)$ its nullspace.

Suppose the semi-group is not invertible, that is, that $0 \in \sigma(T_t)$ for some, and then for all, t > 0. Then, by the Riesz-Schauder theory on compact operators, and by the spectral mapping theorem, it follows that, for all $t \in C$, $0 \in P \sigma(T_t)$, and $N(T_t)$ is finite dimensional.

Let t_1 be any element of C, and let x be any non-zero member of $N(T_{t_1})$; define $t_2 = \frac{1}{2}t_1$.

Then, since

$$T_{t_2}(T_{t_2}x) = T_{t_1}x = 0,$$

it follows that $0 \in P\sigma(T_{t_2})$.

Proceeding in this way with $t_n = \frac{1}{2}t_{n-1}$, it follows that there exists a sequence $t_n \downarrow 0$ such that $0 \in P\sigma(T_{t_n})$ for all $n \ge 1$.

Let $A_n = N(T_{t_n}) \cap \{x : ||x|| = 1\}$: then, since $N(T_s) \subseteq N(T_t)$ for $s \leq t$, and since the T_t are bounded, it follows that (A_n) is a decreasing sequence of non-void closed sets, and further, since $N(T_{t_1})$ is finite dimensional, A_1 is compact.

Therefore, there exists x such that $x \in A_n$ for all $n \ge 1$, and so $||T_{i_n} x - Ix|| = ||x|| = 1$ for all $n \ge 1$.

This contradicts the strong continuity of the semi-group; hence the semigroup is invertible, the desired result.

From the identity

$$(T_t - I)(T_s - I) = (T_{t+s} - I) - (T_s - I) - (T_t - I),$$

it follows readily that

$$s \in C, \quad t \in C \Rightarrow s + t \in C,$$

$$s \in C, \quad t \notin C \Rightarrow s + t \notin C;$$

these relations imply that C is the intersection of an additive subgroup of the reals with the positive real line.

We distinguish three mutually exclusive and exhaustive forms which C may take.

- (i) $C =]0, \infty[.$
- (ii) $C = \{nx; \text{ for some } x > 0, \text{ and } n = 1, 2...\}.$
- (iii) C is a dense subset of $]0, \infty[$ with empty interior.

Examples will be given to show that all three types of set may occur. Further, some relationships between the type of C-set and the structure of the semigroup will be derived. In particular, it will be shown that C takes the first of the above forms if, and only if, A, the infinitesimal generator, is compact; if C takes the third form, A is necessarily unbounded; but if C takes the second form, A may be bounded or unbounded.

First, examples are given showing that the above classification of C-sets is non-void, and also that sets of type (ii) can arise from semi-groups having bounded or unbounded infinitesimal generators.

Examples. Take $B = l_1$, the space of absolutely convergent sequences.

- (i) $T_t = I$ for all t.
- (ii) (a) A bounded: $T_t = \text{diag} \{ e^{it}, e^{-it}, e^{it}, e^{-it} \dots \} (x = 2\pi).$
 - (b) A unbounded: $T_t = \text{diag} \{e^{it}, e^{2it}, e^{3it}, ...\} (x = 2\pi).$
- (iii) $T_t = \text{diag} \{ e^{it}, e^{2it}, e^{3!it}, e^{4!it}, \ldots \}.$

The following two theorems contain the stated assertions about the type of set C and the structure of the semi-group. In fact, when C is of the first type, something more can be said.

Theorem 2. The following conditions are equivalent for a strongly continuous semi-group $(T_t; t \ge 0)$.

- (i) $C =]0, \infty[.$
- (ii) A is compact.
- (iii) $\lambda R_{\lambda} I$ is compact for some (and then for all) $\lambda > \omega$.

Proof. (a) (i) \Rightarrow *A* is bounded.

By the spectral theory of compact operators, it follows that, for all t > 0, $\mu \in \sigma(T_t)$, $\mu \neq 1 \Rightarrow \mu \in P \sigma(T_t)$: using this fact, together with the spectral theory for semi-groups developed in [3], Chapter 16, Section 7, it follows that, apart possibly from the point 1,

$$\sigma(T_t) = \{ e^{xt}; x \in P \sigma(A), x \neq 0 \}, \quad \text{for all } t > 0.$$

$$(1)$$

Again by the spectral theory of compact operators, it is true that, for any $\varepsilon > 0$, the set

$$\{\lambda \in \sigma(T_t); |\lambda - 1| > \varepsilon\} \quad \text{is finite, for all } t > 0.$$
(2)

Suppose that the set $\{\text{Im}(x): x \in P\sigma(A)\}\$ is not bounded: then, on combining (1) and (2), it follows that there must be a subset $\{a_n; n \ge 1\}$ (considered without loss of generality to be of positive elements) of $\{\text{Im}(x): x \in P\sigma(A)\}\$ with the following properties:

(I) $a_n \uparrow \infty$ as $n \to \infty$;

(II) for any $\varepsilon > 0$, t > 0, only a finite number of elements of $\{ta_n\}$ differ from integer multiples of 2π by more than ε . It is now proved that no such sequence $\{a_n\}$ can exist: (I am indebted to Professor J.F.C.Kingman for the following argument.)

Taking some ε with $0 < \varepsilon < \frac{1}{2}$, and writing

$$G_{\varepsilon} = \bigcup_{n=1}^{\infty} [2\pi n - \varepsilon, 2\pi n + \varepsilon],$$

property (II) implies that $]0, \infty [\subseteq \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} a_n^{-1} G_{\varepsilon}.$

Therefore, by Baire's Category Theorem, there exists N such that $\bigcap_{n=N}^{\infty} a_n^{-1} G_{\varepsilon}$ has an interior point: therefore $\bigcap_{n=N}^{\infty} a_n^{-1} G_{\varepsilon}$ must contain an interval [a, b], say: but this is impossible, since, for all large enough n, $2\varepsilon a_n^{-1} < (b-a)$.

Therefore, no sequence $\{a_n\}$ with the above properties exists, and so $\{\text{Im}(x): x \in P\sigma(A)\}$ is bounded, by K > 0, say.

It follows from (1) that, for all $t \in \left[0, \frac{\pi}{2K}\right]$, $\sigma(T_t)$ is contained in the right half plane.

Since, by Theorem 1, the semi-group is invertible, it can be extended to a strongly continuous group, $\{T_t; -\infty < t < \infty\}$. Consider the function $||T_{-t}x||$ for arbitrary $x \in B$: this is a continuous function on $\left[0, \frac{\pi}{2K}\right]$, and so is bounded

above: hence, by the Banach-Steinhaus theorem,

$$\sup_{t \in \left[0, \frac{\pi}{2K}\right]} \|T_{-t}\| = H < \infty.$$

$$\Rightarrow \|T_{-t} x\| \leq H \|x\|, \quad t \in \left[0, \frac{\pi}{2K}\right]$$

$$\Rightarrow \|T_t x\| \geq H^{-1} \|x\|, \quad t \in \left[0, \frac{\pi}{2K}\right].$$

It follows easily from this that, for $t \in \left[0, \frac{\pi}{2K}\right]$,

$$\sigma(T_t) \cap \{z \colon |z| < H^{-1}\} = \emptyset.$$

Therefore, since the spectrum of T_t is also contained in the right half plane for t in this range, it follows that there exists an open, connected, unbounded set containing 0, and which does not intersect with $\sigma(T_t)$ for $t \in \left[0, \frac{\pi}{2K}\right]$.

Hence, by [3], Theorem 16.5.2, $T_t = \exp(At)$ for some bounded A; this completes the first part of the proof.

(b) (i) \Rightarrow (ii).

By (a), T_t is uniformly continuous for $t \ge 0$: therefore there exists d > 0 such that $||T_t - I|| \le \frac{1}{2}$ for $t \le d$.

Take $t \leq d$; then

$$\left\| t^{-1} \int_{0}^{t} T_{s} \, ds - I \right\| = \left\| t^{-1} \int_{0}^{t} (T_{s} - I) \, ds \right\|$$
$$\leq t^{-1} \int_{0}^{t} \| T_{s} - I \| \, ds \leq \frac{1}{2}.$$

Hence $\int_{0}^{t} T_{s} ds$ is invertible for all $t \leq d$.

Therefore, since

$$T_{t} - I = A \int_{0}^{t} T_{s} ds = \int_{0}^{t} T_{s} ds A,$$
$$A = \left[\int_{0}^{t} T_{s} ds\right]^{-1} (T_{t} - I),$$

it follows that

and is therefore compact.

(c) (ii) \Rightarrow (i).

Since all the operators involved are bounded, it follows that

$$T_t - I = A \int_0^t T_s \, ds \quad \text{for all } t > 0$$

$$\Rightarrow T_t - I \text{ is compact for all } t > 0.$$

(d) (ii)⇔(iii).

The \Rightarrow statement is contained in [3], Lemma 5.7.1.

Conversely, suppose $\lambda R_{\lambda} - I$ is compact for some $\lambda > \omega$. Then, for $x \in B$, and t > 0, by the strong continuity of the semi-group at the origin, it is true that

$$T_t x - x = A \int_0^t T_s x \, ds$$

$$\Rightarrow R_{\lambda} (T_t - I) x = (\lambda R_{\lambda} - I) \int_0^t T_s x \, ds$$

$$R_{\lambda} (T_t - I) = (\lambda R_{\lambda} - I) \int_0^t T_s \, ds,$$

i.e.,

on dropping the term x, and making the obvious convention for the meaning of the integral;

$$\Rightarrow \lambda R_{\lambda}(T_{t}-I) - (T_{t}-I) + (T_{t}-I) = \lambda(\lambda R_{\lambda}-I) \int_{0}^{t} T_{s} ds$$

$$\Rightarrow T_{t}-I = -(\lambda R_{\lambda}-I) (T_{t}-I) + \lambda(\lambda R_{\lambda}-I) \int_{0}^{t} T_{s} ds$$

$$\Rightarrow T_{t}-I \text{ is compact for all } t > 0; \text{ i.e., } C =]0, \infty[,$$

$$\Rightarrow A \text{ compact}$$

$$\Rightarrow \lambda R_{\lambda}-I \text{ is compact for all } \lambda > \omega, \text{ as above.}$$

The following theorem proves the last of the stated assertions about the relationships between the form of the set C and the structure of the semi-group.

Theorem 3. If C is a dense subset of $]0, \infty[$ with no interior points, then A is unbounded.

Proof. If A is bounded, then, by using the argument of part (b) of the proof of Theorem 2, but choosing $t \leq d$ such that $t \in C$ (as is clearly possible) it follows that A is compact, which implies $C =]0, \infty[$, by Theorem 2.

The above theorems leave certain questions about the sets C unresolved: in particular, it is not known whether every additive subgroup of the real line is the C-set of some semi-group.

Theorem 1, which states that semi-groups (T_t) for which $C \neq \emptyset$ are in fact invertible, enables us to apply the following general result on invertible semi-groups.

Theorem 4. Let $(T_t; t \ge 0)$ be an invertible semi-group of class C_0 with unbounded infinitesimal generator. Then there exists a real number ρ such that, for any α , β with $0 \le \alpha < \beta < \infty$, sup $[||T_1||| = 1 \text{ exp}(\alpha t)] \ge 0$

$$\sup_{t \in [\alpha, \beta]} [\|T_t - I\| - 1 - \exp(\rho t)] \ge 0.$$

Proof. Since the inverse semi-group $(T_{-t}; t \ge 0)$ is a semi-group of class C_0 , it follows that there exist constants K and ρ such that

$$||T_{-t}|| \leq K \exp(-\rho t) \quad \text{for all } t \geq 0.$$

Hence $||T_{-nt}|| \leq K \exp(-\rho nt)$ for positive integer *n*, and $t \geq 0$, and so the spectral radius of T_{-t} is not greater than $\exp(-\rho t)$ for all $t \geq 0$. Therefore, since

$$\lambda \in \sigma(T_t)$$
 if and only if $\lambda^{-1} \in \sigma(T_{-t})$,

it follows that

$$\sigma(T_t) \cap \{z : |z| < \exp(\rho t)\} = \emptyset \quad \text{for all } t \ge 0.$$
(3)

Suppose that the statement of the theorem is violated for this particular ρ : then there exist α , β with $0 \leq \alpha < \beta < \infty$, and k > 0, such that

$$||T_t - I|| \leq 1 + \exp(\rho t) - k \quad \text{for all } t \in [\alpha, \beta].$$

Combining this with (3), it follows that

$$\sigma(T_t) \cap \{z: \operatorname{Re}(z) \leq 0, -k < \operatorname{Im}(z) < k\} = \emptyset \quad \text{for all } t \in [\alpha, \beta].$$
(4)

Relations (3) and (4) together imply that there exists an open, unbounded, connected set containing zero, and which does not intersect with $\sigma(T_t)$ for $t \in [\alpha, \beta]$. Hence, by Theorem 16.5.2 of [3], (T_t) has bounded infinitesimal generator, which contradicts the assumption of the theorem.

Theorem 4 has the following corollary, a result which has recently been proved by Williams [4].

Corollary 1. If $(T_t; t \ge 0)$ is an invertible semi-group of class C_0 , and

$$\limsup_{t\to 0+} \|T_t - I\| < 2,$$

then the semi-group has bounded infinitesimal generator.

Proof. If this does not hold, then, putting $\alpha = 0$ and letting $\beta \rightarrow 0$ in the statement of the theorem, implies that

 $\limsup_{t \to 0^+} \|T_t - I\| \ge 2, \quad \text{which is a contradiction.}$

This corollary, together with Theorem 1, yields immediately the following result.

Corollary 2. If $(T_t; t \ge 0)$ is a semi-group of class C_0 with unbounded infinitesimal generator, and $C \neq \emptyset$, then

$$\limsup_{t\to 0+} \|T_t-I\| \ge 2.$$

2. The Markov Case

We now consider the particular case of the above theory in which (T_i) is replaced by the standard Markov semi-group (P_i) of operators on l_1 . In this case we shall show that the theory takes a particularly simple form, and that two of the possible forms that C may take can be excluded.

We use the same notation as before, but substituting P_i for T_i , where P_i is a matrix of transition probabilities $p_{ij}(t)$ (where *i* and *j* are positive integers) satisfying the following conditions:

- (i) $p_{ij}(t) \ge 0$, and $\sum_{j} p_{ij}(t) = 1$ for all $t \ge 0$. (ii) $p_{ij}(s+t) = \sum_{k} p_{ik}(s) p_{kj}(t)$, for all $s, t \ge 0$.
- (iii) $\lim_{t\to 0+} p_{ij}(t) = \delta_{ij}.$

 P_t operates on the space l_1 of absolutely convergent sequences by the formula

$$[P_i x]_j = \sum_i x_i p_{ij}(t).$$

Two lemmas are established first.

Lemma 1. If $C \neq \emptyset$, A is bounded.

Proof. The following three properties of Markov semi-groups are needed:

(a) If $0 < \varepsilon < \frac{1}{4}$, and $p_{ii}(t) \ge 1 - \varepsilon$, then $p_{ii}(s) \ge 1 - (\varepsilon)^{\frac{1}{2}}$ for 0 < s < t; ([1, 2]).

(b) From the criterion for the compactness of a matrix operator $Q = [q_{ij}]$ on l_1 , namely that ∞

$$\lim_{n\to\infty}\sup_i\sum_{j=n}^{\infty}|q_{ij}|=0,$$

and from the fact that the P_t 's are stochastic, it follows easily that

$$t \in C \Leftrightarrow \lim_{i \to \infty} p_{ii}(t) = 1.$$

(c) From the definition of the norm of an operator on l_1 , it follows that

 $||P_t - I|| = 2(1 - \inf_i p_{ii}(t))$ for all t > 0.

Let $t \in C$: then, by (b), there exists N > 0 such that

Hence, by (a), This implies that so that, by (c) $p_{ii}(t) \ge \frac{8}{9} \quad \text{for all } i \ge N.$ $p_{ii}(s) \ge \frac{2}{3} \quad \text{for all } i \ge N, \text{ and } 0 < s < t.$ $\lim_{s \to 0+} \lim_{i} \lim_{s \to 0+} \lim_{i} p_{ii}(s) \ge \frac{2}{3} > 0,$ $\lim_{s \to 0+} \sup_{i} \|P_{s} - I\| < 2.$

Hence A is bounded, by Corollary 2 to Theorem 4.

Lemma 2. If $C \neq \emptyset$, then $\{t: \sup_{j} p_{ji}(t) = p_{ii}(t) \text{ for all } i\} \subseteq C$. *Proof.* Suppose $C \neq \emptyset$, and there exists $t \notin C$ such that

 $\sup_{i} p_{ji}(t) = p_{ii}(t) \quad \text{for all } i.$

Then for any $s \ge t$, it follows that

$$p_{ii}(s) = \sum_{j} p_{ij}(s-t) p_{ji}(t) \leq p_{ii}(t), \quad \text{for all } i.$$

But $t \notin C$, and so $p_{ii}(t) \rightarrow 1$ as $i \rightarrow \infty$. Hence

$$p_{ii}(s) \mapsto 1$$
 as $i \to \infty$
 $\Rightarrow s \notin C$ for all $s \ge t$
 $\Rightarrow C = \emptyset$: a contradiction

Using these two lemmas, it is possible to prove the following result, essentially a strengthened version of Theorem 2, showing that if $C \neq \emptyset$, then $C = [0, \infty[$.

Theorem 5. The following conditions are equivalent for the Markov semigroup (P_i) :

- (i) $P_t I$ is compact for some (and then for all) t > 0;
- (ii) $\lim_{t \to 0} p_{ii}(t) = 1$ for some (and then for all) t > 0;
- (iii) $\lambda R_{\lambda} I$ is compact for some (and then for all) $\lambda > 0$;
- (iv) A compact;

16

(v) $\lim_{i\to\infty} a_{ii} = 0$ (where $A = [a_{ij}]$).

Proof. (a) It is first proved that $C \neq \emptyset$ implies $C =]0, \infty[$. By Lemma 1, $C \neq \emptyset$ implies that the semi-group is uniform : hence there exists d > 0 such that $||P_t - I|| \leq 1$ for all $t \in [0, d]$, that is, such that $\inf p_{ii}(t) \geq \frac{1}{2}$ for all $t \in [0, d]$.

Hence, since P_t is stochastic,

 $\sup_{i} p_{ji}(t) = p_{ii}(t) \quad \text{for all } i, \text{ and for all } t \in [0, d].$

Therefore $]0, d] \subseteq C$, by Lemma 2, and so

$$C =]0, \infty[.$$

(b) The equivalence of conditions (i), (iii) and (iv) now follows from Theorem 2.(i) is equivalent to (ii) by an earlier remark.

Finally, the matrix $A = [a_{ij}]$ is a matrix satisfying $a_{ij} \ge 0, i \ne j; a_{ii} \le 0; \sum_{i} a_{ij} \le 0, i \ne j$

with equality if A is bounded. But if (iv) or (v) hold, A is necessarily bounded, and hence the equivalence of conditions (iv) and (v) follows immediately from the criterion for compactness of operators on l_1 .

Acknowledgements. I would like to thank Professor J.F.C.Kingman for helpful discussions during the preparation of this paper; this work was done during the tenure of a Science Research Council Studentship.

References

- 1. Blackwell, D., Freedman, D.: On the local behaviour of Markov transition probabilities. Ann. math. Statistics **39**, 2123-2127 (1968).
- Davidson, R.: Arithmetic and other properties of certain Delphic semi-groups. Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 146-172 (1968).
- Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Amer. math. Soc. Colloq. Publ. 31 (1957).
- Williams, D.: On operator semi-groups and Markov groups. Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 280-285 (1969).

J. R. Cuthbert Mathematical Institute 24–29 St. Giles Oxford OX 1 3LB England

(Received November 7, 1969)

٢