On Semi-Groups such that $T_{t}-I$ is Compact for Some $t>0$

J. R.Cuthbert

This paper develops some aspects of the theory of semi-groups ($T_{t} ; t \geqq 0$) of bounded linear operators on a Banach space which have the property of being near the identity, in the sense that, for some positive values of $t, T_{t}-I$ is compact. In Section 1, the theory is developed for general semi-groups, the only restriction being the assumption of strong continuity at the origin: in Section 2, a particular case is considered, that in which $\left(T_{t}\right)$ is a Markov semigroup of operators on l_{1}, and it is shown that a particularly simple theory results.

1.

Let B be a complex Banach space, and let $\left(T_{t} ; t \geqq 0\right)$ be a semi-group of class C_{0} of bounded linear operators on B; i.e. T_{t} is strongly continuous in t for $t \geqq 0$, and $T_{0}=I$. The infinitesimal generator of the semi-group is denoted by $A ; A$ is defined by

$$
A x=\lim _{t \rightarrow 0+} t^{-1}\left(T_{t}-I\right) x
$$

for all x in B for which the limit exists. The operator A is in general closed and unbounded, with domain $\mathfrak{D}(A)$ dense in B. The resolvent operator of A is denoted by R_{λ}, where $R_{\lambda}=(\lambda I-A)^{-1}$ for all scalar λ such that $(\lambda I-A)^{-1}$ exists and is bounded. It is assumed that $\left\|T_{t}\right\| \leqq M e^{\omega t}$ for all $t \geqq 0$, for constants M, ω. Throughout this paper, C will denote the set defined in the following way:

$$
C=\left\{t>0 ; T_{t}-I \text { compact }\right\} .
$$

We are concerned with the theory of semi-groups for which $C \neq \emptyset$. As mentioned in the summary, such semi-groups can be regarded as being near the identity for some positive t. In fact, as the following theorem shows, it can be said more explicitly that such semi-groups are invertible.

Theorem 1. If $C \neq \emptyset$, then T_{t} is invertible for all t.
Proof. Let $\sigma\left(T_{t}\right)$ denote the spectrum of $T_{t}, P \sigma\left(T_{t}\right)$ its point spectrum, and $N\left(T_{t}\right)$ its nullspace.

Suppose the semi-group is not invertible, that is, that $0 \in \sigma\left(T_{t}\right)$ for some, and then for all, $t>0$. Then, by the Riesz-Schauder theory on compact operators, and by the spectral mapping theorem, it follows that, for all $t \in C, 0 \in P \sigma\left(T_{t}\right)$, and $N\left(T_{\mathrm{t}}\right)$ is finite dimensional.

Let t_{1} be any element of C, and let x be any non-zero member of $N\left(T_{t_{1}}\right)$; define $t_{2}=\frac{1}{2} t_{1}$.

Then, since

$$
T_{t_{2}}\left(T_{t_{2}} x\right)=T_{t_{1}} x=0
$$

it follows that $0 \in P \sigma\left(T_{t_{2}}\right)$.
Proceeding in this way with $t_{n}=\frac{1}{2} t_{n-1}$, it follows that there exists a sequence $t_{n} \downarrow 0$ such that $0 \in P \sigma\left(T_{t_{n}}\right)$ for all $n \geqq 1$.

Let $A_{n}=N\left(T_{t_{n}}\right) \cap\{x:\|x\|=1\}:$ then, since $N\left(T_{s}\right) \subseteq N\left(T_{t}\right)$ for $s \leqq t$, and since the T_{t} are bounded, it follows that $\left(A_{n}\right)$ is a decreasing sequence of non-void closed sets, and further, since $N\left(T_{t_{1}}\right)$ is finite dimensional, A_{1} is compact.

Therefore, there exists x such that $x \in A_{n}$ for all $n \geqq 1$, and so $\left\|T_{t_{n}} x-I x\right\|=$ $\|x\|=1$ for all $n \geqq 1$.

This contradicts the strong continuity of the semi-group; hence the semigroup is invertible, the desired result.

From the identity

$$
\left(T_{t}-I\right)\left(T_{\mathrm{s}}-I\right)=\left(T_{t+\mathrm{s}}-I\right)-\left(T_{\mathrm{s}}-I\right)-\left(T_{t}-I\right),
$$

it follows readily that

$$
\begin{array}{ll}
s \in C, & t \in C \Rightarrow s+t \in C, \\
s \in C, & t \notin C \Rightarrow s+t \notin C,
\end{array}
$$

these relations imply that C is the intersection of an additive subgroup of the reals with the positive real line.

We distinguish three mutually exclusive and exhaustive forms which C may take.
(i) $C=] 0, \infty[$.
(ii) $C=\{n x$; for some $x>0$, and $n=1,2 \ldots\}$.
(iii) C is a dense subset of $] 0, \infty[$ with empty interior.

Examples will be given to show that all three types of set may occur. Further, some relationships between the type of C-set and the structure of the semigroup will be derived. In particular, it will be shown that C takes the first of the above forms if, and only if, A, the infinitesimal generator, is compact; if C takes the third form, A is necessarily unbounded; but if C takes the second form, A may be bounded or unbounded.

First, examples are given showing that the above classification of C-sets is non-void, and also that sets of type (ii) can arise from semi-groups having bounded or unbounded infinitesimal generators.

Examples. Take $B=l_{1}$, the space of absolutely convergent sequences.
(i) $T_{t}=I$ for all t.
(ii) (a) A bounded: $T_{i}=\operatorname{diag}\left\{e^{i t}, e^{-i t}, e^{i t}, e^{-i t} \ldots\right\}(x=2 \pi)$.
(b) A unbounded: $T_{t}=\operatorname{diag}\left\{e^{i t}, e^{2 i t}, e^{3 i t}, \ldots\right\}(x=2 \pi)$.
(iii) $T_{t}=\operatorname{diag}\left\{e^{i t}, e^{2 i t}, e^{3!i t}, e^{4!i t}, \ldots\right\}$.

The following two theorems contain the stated assertions about the type of set C and the structure of the semi-group. In fact, when C is of the first type, something more can be said.

Theorem 2. The following conditions are equivalent for a strongly continuous semi-group ($T_{t} ; t \geqq 0$).
(i) $C=] 0, \infty[$.
(ii) A is compact.
(iii) $\lambda R_{\lambda}-I$ is compact for some (and then for all) $\lambda>\omega$.

Proof. (a) (i) $\Rightarrow A$ is bounded.
By the spectral theory of compact operators, it follows that, for all $t>0$, $\mu \in \sigma\left(T_{t}\right), \mu \neq 1 \Rightarrow \mu \in P \sigma\left(T_{t}\right)$: using this fact, together with the spectral theory for semi-groups developed in [3], Chapter 16, Section 7, it follows that, apart possibly from the point 1 ,

$$
\begin{equation*}
\sigma\left(T_{t}\right)=\left\{e^{x t} ; x \in P \sigma(A), x \neq 0\right\}, \quad \text { for all } t>0 . \tag{1}
\end{equation*}
$$

Again by the spectral theory of compact operators, it is true that, for any $\varepsilon>0$, the set

$$
\begin{equation*}
\left\{\lambda \in \sigma\left(T_{t}\right) ;|\lambda-1|>\varepsilon\right\} \quad \text { is finite, for all } t>0 \tag{2}
\end{equation*}
$$

Suppose that the set $\{\operatorname{Im}(x): x \in P \sigma(A)\}$ is not bounded: then, on combining (1) and (2), it follows that there must be a subset $\left\{a_{n} ; n \geqq 1\right\}$ (considered without loss of generality to be of positive elements) of $\{\operatorname{Im}(x): x \in P \sigma(A)\}$ with the following properties:
(I) $a_{n} \uparrow \infty$ as $n \rightarrow \infty$;
(II) for any $\varepsilon>0, t>0$, only a finite number of elements of $\left\{t a_{n}\right\}$ differ from integer multiples of 2π by more than ε. It is now proved that no such sequence $\left\{a_{n}\right\}$ can exist: (I am indebted to Professor J.F.C.Kingman for the following argument.)

Taking some ε with $0<\varepsilon<\frac{1}{2}$, and writing

$$
G_{\varepsilon}=\bigcup_{n=1}^{\infty}[2 \pi n-\varepsilon, 2 \pi n+\varepsilon],
$$

property (II) implies that

$$
] 0, \infty\left[\subseteq \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} a_{n}^{-1} G_{\varepsilon} .\right.
$$

Therefore, by Baire's Category Theorem, there exists N such that $\bigcap_{n=N}^{\infty} a_{n}^{-1} G_{\varepsilon}$ has an interior point: therefore $\bigcap_{n=N}^{\infty} a_{n}^{-1} G_{\varepsilon}$ must contain an interval $[a, b]$, say: but this is impossible, since, for all large enough $n, 2 \varepsilon a_{n}^{-1}<(b-a)$.

Therefore, no sequence $\left\{a_{n}\right\}$ with the above properties exists, and so $\{\operatorname{Im}(x)$: $x \in P \sigma(A)\}$ is bounded, by $K>0$, say.

It follows from (1) that, for all $t \in\left[0, \frac{\pi}{2 K}\right], \sigma\left(T_{t}\right)$ is contained in the right half plane.

Since, by Theorem 1, the semi-group is invertible, it can be extended to a strongly continuous group, $\left\{T_{t} ;-\infty<t<\infty\right\}$. Consider the function $\left\|T_{-t} x\right\|$ for arbitrary $x \in B$: this is a continuous function on $\left[0, \frac{\pi}{2 K}\right]$, and so is bounded
above: hence, by the Banach-Steinhaus theorem,

$$
\begin{gathered}
\sup _{t \in\left[0, \frac{\pi}{2 K}\right]}\left\|T_{-t}\right\|=H<\infty . \\
\Rightarrow\left\|T_{-t} x\right\| \leqq H\|x\|, \quad t \in\left[0, \frac{\pi}{2 K}\right] \\
\Rightarrow\left\|T_{t} x\right\| \geqq H^{-1}\|x\|, \quad t \in\left[0, \frac{\pi}{2 K}\right] .
\end{gathered}
$$

It follows easily from this that, for $t \in\left[0, \frac{\pi}{2 K}\right]$,

$$
\sigma\left(T_{t}\right) \cap\left\{z:|z|<H^{-1}\right\}=\emptyset .
$$

Therefore, since the spectrum of T_{t} is also contained in the right half plane for t in this range, it follows that there exists an open, connected, unbounded set containing 0 , and which does not intersect with $\sigma\left(T_{t}\right)$ for $t \in\left[0, \frac{\pi}{2 K}\right]$.

Hence, by [3], Theorem 16.5.2, $T_{t}=\exp (A t)$ for some bounded A; this completes the first part of the proof.
(b) (i) \Rightarrow (ii).

By (a), T_{t} is uniformly continuous for $t \geqq 0$: therefore there exists $d>0$ such that

$$
\left\|T_{t}-I\right\| \leqq \frac{1}{2} \quad \text { for } t \leqq d
$$

Take $t \leqq d$; then

$$
\begin{aligned}
\left\|t^{-1} \int_{0}^{t} T_{s} d s-I\right\| & =\left\|t^{-1} \int_{0}^{t}\left(T_{s}-I\right) d s\right\| \\
& \leqq t^{-1} \int_{0}^{t}\left\|T_{s}-I\right\| d s \leqq \frac{1}{2} .
\end{aligned}
$$

Hence $\int_{0}^{t} T_{s} d s$ is invertible for all $t \leqq d$.
Therefore, since

$$
T_{t}-I=A \int_{0}^{t} T_{s} d s=\int_{0}^{t} T_{s} d s A
$$

it follows that
and is therefore compact.

$$
A=\left[\int_{0}^{t} T_{s} d s\right]^{-1}\left(T_{t}-I\right)
$$

(c) (ii) \Rightarrow (i).

Since all the operators involved are bounded, it follows that

$$
\begin{aligned}
& T_{t}-I=A \int_{0}^{t} T_{s} d s \quad \text { for all } t>0 \\
& \Rightarrow T_{t}-I \text { is compact for all } t>0
\end{aligned}
$$

(d) (ii) \Leftrightarrow (iii).

The \Rightarrow statement is contained in [3], Lemma 5.7.1.

Conversely, suppose $\lambda R_{\lambda}-I$ is compact for some $\lambda>\omega$. Then, for $x \in B$, and $t>0$, by the strong continuity of the semi-group at the origin, it is true that
i.e.,

$$
\begin{gathered}
T_{t} x-x=A \int_{0}^{t} T_{s} x d s \\
\Rightarrow R_{\lambda}\left(T_{t}-I\right) x=\left(\lambda R_{\lambda}-I\right) \int_{0}^{t} T_{s} x d s \\
R_{\lambda}\left(T_{t}-I\right)=\left(\lambda R_{\lambda}-I\right) \int_{0}^{t} T_{s} d s
\end{gathered}
$$

on dropping the term x, and making the obvious convention for the meaning of the integral;

$$
\begin{aligned}
& \Rightarrow \lambda R_{\lambda}\left(T_{t}-I\right)-\left(T_{t}-I\right)+\left(T_{t}-I\right)=\lambda\left(\lambda R_{\lambda}-I\right) \int_{0}^{t} T_{s} d s \\
& \Rightarrow T_{t}-I=-\left(\lambda R_{\lambda}-I\right)\left(T_{t}-I\right)+\lambda\left(\lambda R_{\lambda}-I\right) \int_{0}^{t} T_{s} d s \\
& \left.\Rightarrow T_{t}-I \text { is compact for all } t>0 ; \text { i.e., } C=\right] 0, \infty[, \\
& \Rightarrow A \text { compact } \\
& \Rightarrow \lambda R_{\lambda}-I \text { is compact for all } \lambda>\omega, \text { as above. }
\end{aligned}
$$

The following theorem proves the last of the stated assertions about the relationships between the form of the set C and the structure of the semi-group.

Theorem 3. If C is a dense subset of $] 0, \infty[$ with no interior points, then A is unbounded.

Proof. If A is bounded, then, by using the argument of part (b) of the proof of Theorem 2, but choosing $t \leqq d$ such that $t \in C$ (as is clearly possible) it follows that A is compact, which implies $C=] 0, \infty[$, by Theorem 2 .

The above theorems leave certain questions about the sets C unresolved: in particular, it is not known whether every additive subgroup of the real line is the C-set of some semi-group.

Theorem 1, which states that semi-groups $\left(T_{t}\right)$ for which $C \neq \emptyset$ are in fact invertible, enables us to apply the following general result on invertible semigroups.

Theorem 4. Let $\left(T_{t} ; t \geqq 0\right)$ be an invertible semi-group of class C_{0} with unbounded infinitesimal generator. Then there exists a real number ρ such that, for any α, β with $0 \leqq \alpha<\beta<\infty$,

$$
\sup _{t \in[\alpha, \beta]}\left[\left\|T_{t}-I\right\|-1-\exp (\rho t)\right] \geqq 0
$$

Proof. Since the inverse semi-group ($T_{-t} ; t \geqq 0$) is a semi-group of class C_{0}, it follows that there exist constants K and ρ such that

$$
\left\|T_{-t}\right\| \leqq K \exp (-\rho t) \quad \text { for all } t \geqq 0
$$

Hence $\left\|T_{-n t}\right\| \leqq K \exp (-\rho n t)$ for positive integer n, and $t \geqq 0$, and so the spectral radius of T_{-t} is not greater than $\exp (-\rho t)$ for all $t \geqq 0$. Therefore, since

$$
\lambda \in \sigma\left(T_{t}\right) \quad \text { if and only if } \lambda^{-1} \in \sigma\left(T_{-i}\right)
$$

it follows that

$$
\begin{equation*}
\sigma\left(T_{t}\right) \cap\{z:|z|<\exp (\rho t)\}=\emptyset \quad \text { for all } t \geqq 0 \tag{3}
\end{equation*}
$$

Suppose that the statement of the theorem is violated for this particular ρ : then there exist α, β with $0 \leqq \alpha<\beta<\infty$, and $k>0$, such that

$$
\left\|T_{t}-I\right\| \leqq 1+\exp (\rho t)-k \quad \text { for all } t \in[\alpha, \beta]
$$

Combining this with (3), it follows that

$$
\begin{equation*}
\sigma\left(T_{t}\right) \cap\{z: \operatorname{Re}(z) \leqq 0,-k<\operatorname{Im}(z)<k\}=\emptyset \quad \text { for all } t \in[\alpha, \beta] \tag{4}
\end{equation*}
$$

Relations (3) and (4) together imply that there exists an open, unbounded, connected set containing zero, and which does not intersect with $\sigma\left(T_{t}\right)$ for $t \in[\alpha, \beta]$. Hence, by Theorem 16.5.2 of [3], $\left(T_{t}\right)$ has bounded infinitesimal generator, which contradicts the assumption of the theorem.

Theorem 4 has the following corollary, a result which has recently been proved by Williams [4].

Corollary 1. If $\left(T_{t} ; t \geqq 0\right)$ is an invertible semi-group of class C_{0}, and

$$
\limsup _{t \rightarrow 0+}\left\|T_{t}-I\right\|<2
$$

then the semi-group has bounded infinitesimal generator.
Proof. If this does not hold, then, putting $\alpha=0$ and letting $\beta \rightarrow 0$ in the statement of the theorem, implies that

$$
\lim _{t \rightarrow 0+} \sup _{\|}\left\|T_{t}-I\right\| \geqq 2, \quad \text { which is a contradiction }
$$

This corollary, together with Theorem 1, yields immediately the following result.

Corollary 2. If $\left(T_{t} ; t \geqq 0\right)$ is a semi-group of class C_{0} with unbounded infinitesimal generator, and $C \neq \emptyset$, then

$$
\limsup _{t \rightarrow 0+}\left\|T_{t}-I\right\| \geqq 2
$$

2. The Markov Case

We now consider the particular case of the above theory in which $\left(T_{t}\right)$ is replaced by the standard Markov semi-group $\left(P_{t}\right)$ of operators on l_{1}. In this case we shall show that the theory takes a particularly simple form, and that two of the possible forms that C may take can be excluded.

We use the same notation as before, but substituting P_{t} for T_{t}, where P_{t} is a matrix of transition probabilities $p_{i j}(t)$ (where i and j are positive integers) satisfying the following conditions:
(i) $p_{i j}(t) \geqq 0$, and $\sum_{j} p_{i j}(t)=1$ for all $t \geqq 0$.
(ii) $p_{i j}(s+t)=\sum_{k} p_{i k}(s) p_{k j}(t)$, for all $s, t \geqq 0$.
(iii) $\lim _{t \rightarrow 0+} p_{i j}(t)=\delta_{i j}$.
P_{t} operates on the space l_{1} of absolutely convergent sequences by the formula

$$
\left[P_{t} x\right]_{j}=\sum_{i} x_{i} p_{i j}(t)
$$

Two lemmas are established first.
Lemma 1. If $C \neq \emptyset, A$ is bounded.
Proof. The following three properties of Markov semi-groups are needed:
(a) If $0<\varepsilon<\frac{1}{4}$, and $p_{i i}(t) \geqq 1-\varepsilon$, then $p_{i i}(s) \geqq 1-(\varepsilon)^{\frac{1}{2}}$ for $0<s<t$; ([1,2]).
(b) From the criterion for the compactness of a matrix operator $Q=\left[q_{i j}\right]$ on l_{1}, namely that

$$
\lim _{n \rightarrow \infty} \sup _{i} \sum_{j=n}^{\infty}\left|q_{i j}\right|=0
$$

and from the fact that the P_{t} 's are stochastic, it follows easily that

$$
t \in C \Leftrightarrow \lim _{i \rightarrow \infty} p_{i i}(t)=1
$$

(c) From the definition of the norm of an operator on l_{1}, it follows that

$$
\left\|P_{t}-I\right\|=2\left(1-\inf _{i} p_{i i}(t)\right) \quad \text { for all } t>0
$$

Let $t \in C$: then, by (b), there exists $N>0$ such that

Hence, by (a),

$$
p_{i i}(t) \geqq \frac{8}{9} \quad \text { for all } i \geqq N .
$$

This implies that

$$
p_{i i}(s) \geqq \frac{2}{3} \quad \text { for all } i \geqq \mathrm{~N}, \text { and } 0<s<t
$$

$$
\liminf _{s \rightarrow 0+}\left[\inf _{i} p_{i i}(s)\right] \geqq \frac{2}{3}>0
$$

so that, by (c)

$$
\limsup _{\mathrm{s} \rightarrow 0+}\left\|P_{s}-I\right\|<2
$$

Hence A is bounded, by Corollary 2 to Theorem 4.
Lemma 2. If $C \neq \emptyset$, then $\left\{t: \sup _{j} p_{j i}(t)=p_{i i}(t)\right.$ for all $\left.i\right\} \subseteq C$.
Proof. Suppose $C \neq \emptyset$, and there exists $t \notin C$ such that

$$
\sup _{j} p_{j i}(t)=p_{i i}(t) \quad \text { for all } i
$$

Then for any $s \geqq t$, it follows that

$$
p_{i i}(s)=\sum_{j} p_{i j}(s-t) p_{j i}(t) \leqq p_{i i}(t), \quad \text { for all } i
$$

But $t \notin C$, and so $p_{i i}(t) \rightarrow 1$ as $i \rightarrow \infty$. Hence

$$
\begin{aligned}
& p_{i i}(s) \rightarrow 1 \quad \text { as } i \rightarrow \infty \\
& \Rightarrow s \notin C \quad \text { for all } s \geqq t \\
& \Rightarrow C=\emptyset: \text { a contradiction. }
\end{aligned}
$$

Using these two lemmas, it is possible to prove the following result, essentially a strengthened version of Theorem 2, showing that if $C \neq \emptyset$, then $C=] 0, \infty[$.

Theorem 5. The following conditions are equivalent for the Markov semigroup $\left(P_{t}\right)$:
(i) $P_{t}-I$ is compact for some (and then for all) $t>0$;
(ii) $\lim _{i \rightarrow \infty} \cdot p_{i i}(t)=1$ for some (and then for all) $t>0$;
(iii) $\lambda R_{\lambda}-I$ is compact for some (and then for all) $\lambda>0$;
(iv) A compact;
(v) $\lim _{i \rightarrow \infty} a_{i i}=0$ (where $A=\left[a_{i j}\right]$).

Proof. (a) It is first proved that $C \neq \emptyset$ implies $C=] 0, \infty[$. By Lemma 1, $C \neq \emptyset$ implies that the semi-group is uniform: hence there exists $d>0$ such that $\left\|P_{t}-I\right\| \leqq 1$ for all $t \in[0, d]$, that is, such that $\inf _{i} p_{i i}(t) \geqq \frac{1}{2}$ for all $t \in[0, d]$.

Hence, since P_{t} is stochastic,

$$
\sup _{j} p_{j i}(t)=p_{i i}(t) \quad \text { for all } i, \text { and for all } t \in[0, d]
$$

Therefore $] 0, d] \subseteq C$, by Lemma 2, and so

$$
C=] 0, \infty[
$$

(b) The equivalence of conditions (i), (iii) and (iv) now follows from Theorem 2. (i) is equivalent to (ii) by an earlier remark.

Finally, the matrix $A=\left[a_{i j}\right]$ is a matrix satisfying $a_{i j} \geqq 0, i \neq j ; a_{i i} \leqq 0 ; \sum_{j} a_{i j} \leqq 0$, with equality if A is bounded. But if (iv) or (v) hold, A is necessarily bounded, and hence the equivalence of conditions (iv) and (v) follows immediately from the criterion for compactness of operators on l_{1}.

Acknowledgements. I would like to thank Professor J.F.C.Kingman for helpful discussions during the preparation of this paper; this work was done during the tenure of a Science Research Council Studentship.

References

1. Blackwell, D., Freedman, D.: On the local behaviour of Markov transition probabilities. Ann. math. Statistics 39, 2123-2127 (1968).
2. Davidson, R.: Arithmetic and other properties of certain Delphic semi-groups. Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 146-172 (1968).
3. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Amer. math. Soc. Colloq. Publ. 31 (1957).
4. Williams, D.: On operator semi-groups and Markov groups. Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 280-285 (1969).
J. R. Cuthbert Mathematical Institute
$24-29 \mathrm{St}$. Giles
Oxford OX 1 3LB
England
