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1. Introduction. Ergodic Limit Problems 

Let {x(t, co):t >__ 0} be a Markov process with stationary transition probabili- 
ties 

P(xlE, t)= pr {co; x(t, co)eE[x(0, co) = x} (1) 
and write 

oo 

p(xfE, s)= S e-stP(x] E, t) dt. (2) 
o 

Let ~b be any non-negative function for which the stochastic integrals 

co 

H(t, co)= S co))du (3) 
0 

are defined. The process {H(t, co): t => 0}, or H-process, is our principal object of 
study. We define the stochastic process { T(v, co): v => 0} inverse to the H-process by 

T(v, co) = sup {t: U(t, co) <= v}. (4) 

Typically, �9 will be the indicator function of a set A of states of the Markov 
process, in which case H(t, co) gives the occupation time for the set A over [0, t], 
and T(v, co) gives the time required to accumulate time v in A. 

The fundamental condition of Darling and Kac is the following 

Condition (A). There exists a positive function h(s)-~ ~ as s ~ 0 and a posi- 
tive constant C such that 

[h(s)] -1 ; q~(y)p(xldy, s)~ C (s~O) 
- c o  

uniformly for x such that ~b(x)>0. 
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Darling and Kac prove the following results: 

Theorem A. I f  
h (s) = s- ~ L(s- 1) 

where 0 <_< ~ < 1 and L varies slowly at infinity, then 

pr co: [Ch(t-~)] -~ ~ ~(x(u, co))du<x ~ W~(x) 
0 

where 

(5) 

(t --* ~ )  (6) 

oo 

e -sx W~(dx)= ~ (-s)"/F(1 +na) (7) 
0 n = O  

is the Mittag-Leffler function with parameter c{. 

Theorem B. I f  Condition (A) holds, and if there exists a positive norming func- 
tion u(t) such that 

pr [u(t)]-l~o~(x(u, co))du<x-~G(x) (t~oo) (8) 

at points of continuity of the non-degenerate distribution G, then h satisfies (5) and 
G(x)= W~(x/b) for some positive constant b, and bu(t)~ C h(t -1) (t ~ oo). 

We restrict attention henceforth to the case when Condition (A) is satisfied. 
Under this restriction, Theorems A and B give complete information on limits 
of one-dimensional distributions of the H-process (3). We proceed now to formu- 
late and solve more general limit problems. 

Let {S (t, co): t > 0} be a stochastic process and define the one-parameter family 
of stochastic processes {S~(t, co): t>0},  where 2>0 ,  by 

s~ (t, co) = s (,~ t, co)/s (;) (9) 

where s().) is a suitable positive norming function. Consider the possibility that 
as ). ~ oo the processes Sa may converge (in a sense to be defined) to a non- 
degenerate stochastic process S~o. By the ergodic limit problem for S we mean 
the determination of 

i) Necessary and sufficient conditions on S for the existence of such s().), So~ 

ii) The class of possible limit processes Soo 

iii) The class of possible norming functions s(2). 

When the convergence concept is convergence of one-dimensional distribu- 
tions of Sx to non-degenerate limit distributions at points of continuity of the 
latter, we call the ergodic limit problem one-dimensional. We define the finite- 
dimensional ergodic limit problem analogously. 

If the path-functions of the processes concerned lie in a function-space D 
carrying a topology T, let P be the probability measure defined on Borel sets A 
in D by the process S: 

P(A) = pr {co: [-t ~ S (t, co)] ~ A} (10) 

and define Pz, Poo similarly. If 

f(Sz)-*f(Soo) (Po~-a.e.) (11) 
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for every T-continuous functional f on D, the process Sz converges to So weakly 
under T. This convergence concept defines the weak ergodic limit problem. 

The process So is called the (one-dimensional, finite-dimensional or weak) 
ergodic limit of the process S. If we say simply that there exists an ergodic limit 
we shall mean that there exists a finite-dimensional (and so also a one-dimensional) 
ergodic limit, and also a weak ergodic limit under the topology in question. 
Theorems A and B of Darling and Kac solve the one-dimensional ergodic limit 
problem for the H-process (3), when Condition (A) holds. A finite-dimensional 
and a weak ergodic limit problem were solved by Lamperti [15] who obtained 
as limit process a Markov process whose one-dimensional distributions were 
arc-sine laws. 

If we let 2 ~ 0 instead of 2 ~ ~ ,  we obtain the initial limit problem (in its one- 
dimensional, finite-dimensional and weak forms). 

Before formulating our main results we make the following definition. Let 
{X(t, co): t > 0}, { Y(v, co): v__> 0} be two stochastic processes whose path-functions 
are non-decreasing and right-continuous. If 

X(t, ~o)=sup{v: Y(v, co)<t} ( t>0)  (12) 

or what is equivalent by the assumptions on the sample paths 

Y(v, co)= sup {t: X(t, ~o)< v} (v>0) (13) 

we say the processes X and Y are inverse, and call either the inverse of the other. 
If the finite-dimensional distributions of the Y-process coincide with those of 
the process inverse to the X-process we say that X and Y are distributionally 
inverse. 

If 0 < a <  1, let {Y,(v, co): v>0} be the stationary process with independent 
non-negative increments such that 

g exp ( - s Y~ (v, o~)) = exp ( - v s~). (14) 

The process Y, is the stable subordinator with parameter a. 

In Section 6 we prove the following result: 

Proposition 1 (a). i) I f  0 < a < 1, there exists a unique stochastic process {X, (t, co): 
t > 0} satisfying the product moment density relations 

a ( t ,  (t2, t, a a 
(15) 

= 1 / [ F ( ~ ) ]  k [ t x  ( t  2 - -  t x )  �9 �9 ( t  k - -  t k _  1 ) l  I - ~ ( 0  < t 1 < ~ " -  < t k ) .  

ii) The process X~ is distributionaIly inverse to the stable subordinator Y,. 

iii) The one-dimensional distributions of the process X~ are the Mittag-Leffler 
laws: 

g exp( -sX , ( t ,  co))= ~ [ -  sr +n~). (16) 
n = 0  

Subject to the restriction that the Darling-Kac Condition (A) holds, we prove 
the following theorems, which are our main results. 

Theorem la.  The process {H(t, co): t>_-0} has an ergodic limit if and only if 
condition (5) holds. I f  the parameter ~ in (5) lies in (0, 1), the limit process is the 
1" 
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process {X~(t,a)): t>0} of Proposition l inverse to the stable subordinator 
{ r~(v, co): v>0}. 

Theorem 2 a. The process { T(v, co): v > 0} inverse to the H-process has an ergodic 
limit if and only if condition (5) holds. The limit process is then the stable subordinator 
{Y~(v, co): v>0}. 

As in the Darling-Kac theorems, the parameter c~ must lie in the interval [0, 1] 
(the sequence {n !/F(1 + n c0}~= o in (7) is not a moment sequence for other values 
of c~). The limiting cases ~ = 0, 1 are less interesting than the general case 0 < a < 1, 
since they exhibit degeneracies. Since they also require special treatment we 
postpone consideration of them until Section 7. When we speak of a non-degen- 
erate limit process we shall thus be referring to the general case 0 < ~ < 1. 

The implication (ii) implies (iii) in Proposition 1 was noted by Stone [20] 
(see also Feller [6], p. 428). 

By (14), Y~(2 v, co)/21/~ has the same distribution as Y~(v, co). Also, both X~(t, o) 
and X~(2 t, co)/2 ~ satisfy (15). Thus the processes 

{x~(~t, co)/~:t>__o}, {x~(t, co):t>__o} 

are identically distributed for each 2 > 0, as are the processes 

{Y~(2v, co)/21/~: v=>0}, { Y~(v, co): v>__0}. 

In particular, each of the processes X~, Y~ is its own initial and ergodic limit. 

The next result completes Proposition 1 (a) by specifying the finite-dimensional 
distributions of X~ without reference to Y~. 

Proposition l(b). iv) The finite-dimensional distributions of the process X~ are 
given by 

Sl. . .Sk'pl. . .Pk" . . .~exp -- siti-- PiXi 
0 0 

�9 pr {X~(t~, co) <= x~, 1 <= i~  k} dh. . .  dtk. dxl . . ,  dXk 
k 

= E ( -  1)~" E E �9149 E �9 ~ P'/~(il) ~ P~(ir) 
r = 0  l<-_il<'"<ir<-k 

�9 [p~(~,) + . . .  + p,~(i~) + (s~(~) + . - .  + s,~(~)y] - 

�9 [ P ~ ( i 2 )  @ ' "  -[- P~(ir) -[- (sn (i2) -1- ' " " -[- sn ( i . )  ) e l  - 1 . . .  [ P n ( i r )  -[- (Sn( i . ) )  a ]  - 1 

where r~ runs over the r! permutations of the set { il , �9 it}. 

For k = 1, it may be verified that (iv) reduces to (iii). The complicated functional 
form in (iv) is obtained from (ii) by use of the formula of inclusion and exclusion 
and a straightforward calculation using the independent increments property of 
the stable subordinator Y~. 

We have stated our main results, Theorems l a and 2a, in terms of weak 
convergence under a topology implicit in the definition of ergodic limit�9 In 
Section 2 we define this topology, and prove an invariance principle which reduces 
the problem to convergence of finite-dimensional distributions�9 In Section 3 we 
define two new processes, the U- and V-processes, which together with our basic 
H- and T-processes form a tetrad {H, T, U, V}. The study of this tetrad is motivated 
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by applications to Markov chains which will be developed elsewhere; a closely 
analogous tetrad features prominently in related work on regenerative phenomena 
(see Section 8). We also formulate Theorems lb  and 2b, the analogues of Theo- 
rems 1 a and 2 a for the U- and V-processes. The proof of Theorem 1 a follows in 
Section4. The close connection between the results of Theorems la  and 2a is 
explained by the work of Section 5, which provides proofs of Theorems 2a, l b  
and 2b. In Section 6 we identify the limit process X~ as the inverse of the stable 
subordinator Y~, thus proving Propositions 1 a, 1 b. In fact (i) of Proposition 1 a 
is proved earlier as a corollary to the work of Section 4, while two of the lemmas 
of Section 4 have their proofs postponed till Section 6. The degenerate limiting 
cases e = 0, 1 are dealt with in Section 7, where we also consider the important case 
c~ = �89 and its connection with Brownian motion. Finally we mention some con- 
nections with related work in Section 8. 

2. Topological Preliminaries 

In this section we define the topology under which our limit theorems hold, 
and use it to reduce the solution of our weak ergodic limit problems to the solution 
of the corresponding finite-dimensional ergodic limit problems. 

The path-functions of the H-process are non-decreasing and continuous. By 
(1.3), the path-functions of the T-process are non-decreasing and right-continuous 
(T(v, co) having a jump of size m at the point v whenever H(t, co) is constant over 
an interval [q ,  t~ + m] with H(h ,  co) = v). By (1.3), (1.4), 

H(T(v, co), co)=v (v_> 0), (1) 

T(H(t, co), co)>t (t>__O). (2) 

Equality holds in (2) whenever t is a point of increase of H(t, co). 

For 0 < T < co, we write C [0, T] for the space of all continuous real-valued 
functions defined on [0, T], and D [0, T] for the space of all functions right- 
continuous on [0, T) with left-hand limits on (0, T]. Define C[0, co), D[0, co) 
similarly. Then the path-functions of the H-process lie in C [0, co), and those of 
the T-process lie in D [0, co). 

The natural topology for C [0, T] is the uniform or sup-norm topology Ur 
under which x, ~ x whenever 

sup{rx,(t)-x(t)l: t~[0, r ] } ~ 0  (n -~co). 

For C [0, oo) one defines the topology Uo~ (the topology of uniform convergence 
on compacta or the compact-open topology) under which xn ~ x whenever 

sup{rxn(t)-x(t)t: te l0 ,  r ]}  ~ 0  (n ~co)  for all 0 <  T<  co. 

From our point of view the natural topology for D [0, T] is the J~-topology 
defined by Skorokhod ([19]), under which x, ~ x whenever there exists a sequence 
of continuous bijections 2, from [0, T] onto itself such that 

sup{fR,(t)- t l :  t~[0, r]}---,0 (n~co) ,  (3) 

sup{lx,(t)-x(2n(t))]: te l0 ,  r ]}  ~ 0  (n--,co). (4) 

For a full discussion of this topology see Billingsley ([1]). 
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For D [0, o~), Stone ([21]) defines the topology J1 under which x, -o x whenever 
there exists a sequence of continuous bijections 2, from [0, oo) onto itself such 
that (3), (4) hold for each T > 0. The following theorem ([21]) extends Skorokhod's 
criterion for weak convergence under J1 of stochastic processes with path- 
functions in O [0, T] to O [0, oo). 

Theorem (Stone). 
If {X,: n=0 ,  1 . . . .  } are stochastic processes on D[0, oo), X,, converges to the 

limit process Xoo as n --* oo weakly under the Jl-topology on D [0, co) if and only if 

i) The finite-dimensional distributions of X converge to those of X~ as n ~ oo 

ii) lira lira sup pr {A(c, X, ,  T)>e} - 0  (5) 
C--e0 n ~ O 0  

for each e > 0 and each 0 < T <  ~ ,  where 

A (c, X, T) = sup {rain (IX(t0 - X(t)l, IX(t2)- X(t)l): 
(6) 

O<=t-c <tl <t<=tz <t +c<= T }. 

In order to unify the treatment, we shall embed C[0, co) in D[0, co) and 
regard the H-process as having path-functions in D [0, oo). In D [0, oo), one sees 
by taking )~,(t) = t that for continuous functions x, ,  x, x, ~ x under J1 is equivalent 
to x,---, x under U~o (see [1]). The restriction of the Jl-topology from D [0, oo) to 
C[0, oo) thus coincides with the U~-topology. Since the limit process Xoo in 
Theorem la  lies in C [0, oo), we may thus replace the Ja-topology in Theorem 1 a 
by the U~-topology. Since Uoo is the natural topology for C [0, oo), our results 
for the H-process are not at all weakened by the embedding procedure. 

We call condition (5) the Skorokhod A-condition. In general, its verification 
is formidable. However, our next result shows that in the cases we shall consider, 
it follows quite simply from convergence of finite-dimensional distributions. 

Theorem3. Let {X,: n=0,  1 . . . .  } be a sequence of stochastic processes whose 
path-fimctions lie in D [0, co). I f  

i) The finite-dimensional distributions of X,  converge as n ~ oo to those of X| 
ii) The process X~ is continuous in probability. 

iii) The processes X,, have monotone path-functions- then X,  ~ X weakly under 
the Jl-topology on D [0, oo). 

Under hypotheses (ii) and (iii), weak convergence under J1 is thus equivalent 
to convergence of finite-dimensional distributions. 

Proof. By a result of L6vy, (ii) implies that the process X~ is uniformly con- 
tinuous in probability on compact sets. Hence 

pr {A(k -1, X, T)>e} --*0 (k ~ co) (7) 

for each ~ >0,  0 < T<  ~ .  Since X, has monotone sample-paths, the variation of 
X,(t, oo) over any interval is the difference in modulus of the values at the end- 
points. For any process {X(t, co): t>0}  with monotone path-functions, define 

D(k,X, T)-=max{]X(rT/k)-X((r-1)T/k)]:  r =  1,2, ... k}. (8) 

Then D(k, X, T)< A(k -1, X, T), and if D(k, X)<8,  A(2k -~, X, T)<2e .  So 

�89 A(2k -~, X, T)<=O(k, X, r)<=A(k -~, X, T). (9) 
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By (7) and (9) for X = X~, 

pr{D(k ,X , ,  T)>e}--.  0 (k ---, oo). (10) 

Since D(k, X, T) involves only finitely many function values of X(t, co), and since 
by hypothesis (i) we have convergence of finite-dimensional distributions, 

lim pr {D(k, Xn, T)>e} = pr {D(k, Xo~, T)>e}.  ( l l)  
n ~ o o  

By (11) and (10), lim lira pr{Dik, X~, T)>~} =0 .  (12) 
k ---* o9 n-*co 

By (12) and (9), lira lira pr {A(2k -I,  X,, T)>2e}  = 0  (13) 
k ---~ oo n ~ o o  

for every e > 0  and 0 <  T <  0% which shows that the Skorokhod A-condition is 
satisfied. By Stone's theorem, X~ converges to X~ weakly under the J~-topology 
on D [0, oo), which proves the theorem. 

By Theorem 3, we may reduce the solution of the weak ergodic limit problems 
in Theorems 1 a and 2 a to proving convergence of finite-dimensional distributions. 
For the stable subordinator Y~ is continuous in probability, since 

pr { Y~(u + v ) -  Y~(u) > e} = pr { Y~(v) > e} 

< [1 - g exp( - s Y~ (v))]/[1 - exp( - s ~)] 

= [ 1 - e x p ( - v s ~ ) ] / [ 1 - e x p ( - s e ) ] - - , O  (v~O). 

Also, since the sample paths of Y~ almost surely contain no intervals of constancy, 
the inverse process X~ has continuous sample-paths. Thus the hypothesis (ii) of 
Theorem 3 is satisfied in both cases. 

Theorem 3 thus plays the role of an invariance principle in what follows (see [1]). 

3. The U- and V-Processes 

When 0 <  ~_< 1, we have from (1.3) 

O<=H(t, co)<=t (t>O) (1) 
or by (1.4), 

v <= T(v, co) (v > 0). (2) 

In this case we define the U-process {U(v, co): v>0}  by 

U(v, co) = r(v, co) - v (v > 0). (3) 

Then U(v, co)>0. Also, by (2.1), 
T (v2, re) 

/ )2  - - / ) 1  = ~ qD(x(u, co))du 
T ( v t ,  re) 

and since 
cI) <= 1, v2 - vl <_ T(v2, co)- T(vl, co). 

Thus U(v, co) is non-decreasing. Since T(v, co) is right-continuous, so is U(v, co), 
and we may define the V-process {V(t, co): t>0}  inverse to the U-process by 

V(t, co) = sup {v: U(v, co)<= t}. (4) 
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Lemma 1. 
o~ 

i) V(t, co) = ~ 4) (x (u, co)) I {u: u -  H(u, co) < t} du, (5) 
0 

oo 

ii) U(t, co)--- ~ [1-4)(x(u,  co))] I{u:  H(u, co)< t} du. (6) 
0 

Proof. To prove (i), write s (t, co) for the right-hand side of (5). Since 0_< 4)_< 1, 
u 

u -  H(u, co)-- ~ [1 -4 ) (x  (v, co))] dv is non-decreasing and continuous in u. We may 
0 

thus define a random variable a(t, co) by 

a(t, co)= sup {u: u - H ( u ,  co)< t}. (7) 

We assume a(t, co)< oo; the case a(t, co)= oo is easily treated. Then 
a(t,  (o) 

z ( t ,  co)= S 4)(x(u, co))du 
0 

= H(a( t ,  co), co) 

and {u: u - H ( u ,  co)< t} = [0, a (t, co)]. (8) 
We next prove 

{u: u - U ( u ,  co)<t} = [0, t + Z ( t ,  co)]. (9) 

For if v - H(v, co) <_ t, v <= a(t, co), whence 

X (t, co)=H(a(t ,  co), co)>=H(v, co)>_>_v-t, 

or v N t + N (t, co). Similarly if v - H(v, co) > t, v > t + Z (t, co), proving (9). 

Since the H- and T-processes are inverse, u , H ( u ,  co)Nt is equivalent to 
T ( u - t ,  co)<=u, or to U(u-- t ,  co)Nt. By the definition of the V-process, this is 
equivalent to u - t < V(t, co). Thus 

{u: u -  H(u, co)< t} = [0, t+  V(t, co)]. (10) 

Combining (8), (9) and (10), 
a (t, co) - t = V(t, co) = X (t, co), 

proving (5). 
To prove (ii): write X* (t, co) for the right-hand side of (6) (~* is obtained from 

Z by replacing 4) by 1-4)). Since {u: H(u, co)<t} =[0,  T(t, co)], 
T (t, ~9) 

E*(t, co)= ~ [1 -4 ) (u ,  co)]du 
0 

= T(t, co) - H(T( t ,  co), co) 

= T(t, co) -  t 

= u( t ,  co). 

This completes the proof of the lemma. 

When 4) is the indicator function of a set A of states, 1 -  4) is the indicator 
function of the complement of A. By Lemma 1, replacing A by its complement 
corresponds to the operation of inversion. 
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The ergodic limit problem for the U- and V-processes has the following 
solution, exactly analogous to the solution for the H- and T-processes. 

Theorem lb. When 0 <_ cb <_ i, Theorem 1 a applies with H(t, co) replaced by V(t, co). 

Theorem 2 b. When 0 <_ 4) <_ 1, Theorem 2 a applies with T( v, co) replaced by U ( v, co). 

The term v in (3) is called the deterministic drift; thus the T- and U-processes 
differ only through the drift. We also say that the H- and V-processes differ only 
through the drift since the same is true of their inverses T and U. 

One may then interpret Theorems l b, 2b by saying that the deterministic 
drift is annihilated on passing to ergodic limits. 

When 4~ is the indicator function of a set A of states, V(t, co) is the time spent 
in A when the time spent outside A reaches t. Heuristically, Theorem lb  indicates 
that for large t the system spends much more time outside A than inside A - a s  
one would expect from (1.5) and the Darling-Kac theorem, since 

H(t, co)~ Ch(t-1)/F(1 +~)~  Ct"L(t)/F(1 + ~) (t ~ oo) 
where c~ < 1. 

One observes throughout the proofs to follow a close connection between 
the one-dimensional and finite-dimensional ergodic limit problems (which 
explains why the Darling-Kac theorems possess these generalisations). This is 
essentially because the ergodic limit Y~ of the T- and U-processes has independent 
increments, and the one-dimensional distributions of such a process determine 
the finite-dimensional distributions. 

We proceed to prove convergence of finite-dimensional distributions of the 
H-process in Section 4. In Section 5 we reduce the finite-dimensional ergodic 
limit problems for the processes T, U and V to the corresponding problem for the 
H-process. In Section 6 we prove Proposition 1 on the limit process, and in 
Section 7 we deal with the limiting cases c~ = 0, 1. Finally we indicate some related 
results in Section 8. 

We shall have many occasions in what follows to use the theory of regular 
variation. This was developed by Karamata ([8, 9]; see also Feller [6]) for con- 
tinuous functions. The theory has been generalised to measurable functions by 
de Bruijn and others ([14]; see also [2]). We shall make use of Karamata's 
Tauberian theorem [9] to estimate moments and product moments, of various 
criteria for regular variation [6], and of asymptotic relations between pairs of 
regularly varying functions [2]. 

We shall refer repeatedly to the completely monotone functions e x p ( - s  ~ and 

~ ( - s ) " / F ( l + n ~ )  (see [4]). For their inverse Laplace transforms see Pollard 
n=0 
([16, 17]). 

4. The H-Process 

Proof of  Theorem 1 a. Assume first that the weak ergodic limit problem for 
the H-process has a solution. Then the finite-dimensional, and hence also the 
one-dimensional, ergodie limit problems have solutions, and hence by the 
Darling-Kac Theorem B, (1.5) holds. 
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Conversely, assume (1.5). The Darling-Kac Theorem A shows that the one- 
dimensional ergodic limit problem has a solution. We show that the finite- 
dimensional ergodic limit problem also has a solution; by Section 2, this solves 
the weak ergodic limit problem also. 

The Darling-Kac method is based on asymptotic estimates for moments. If 

pk(t)= r [H(t, co)I* (1) 
and oo 

~k(S) = ~ e - ~  dPk(t ) (2) 
o 

is its Laplace-Stieltjes transform (LST), Darling and Kac proved 

fZk(S)~k! Ck[h(s)]k~k!  Ck s-k~[L(s-1)] k (s ~O)  (3) 

or equivalently by the Tauberian theorem for LSTs ([9]) 

pk(t),,.k] t ~k C*[L(t)jk/F(1 +kcO ( t~oo) .  (4) 

We use multi-dimensional LST arguments to estimate product moments. 

Lemma 2. When Condition (A) and (1.5) hold for 0 <  ~ < 1, 

lira ~ ... ~ exp - sjtj  dr, ... t~ 8H(2tl)H()~t2) '"H(;~tk)  
a-,oo o o 1 ' " Ck[h(A-1)]k (5) 

= Y~ [(s~(~)+... + s~(~))(s~(2)+... + s~(~))... (s~(~))]-~ 
7r 

where ~ runs through the permutations of the set {1, ..., k}. 

Proof If 

F2(S 1 . . . . .  Sk)= ~ " ' ~  e x p  ( - - ~ s j t j )  dtl,...,t k ~H(~l . t i ) . . .H(~tk) /Ck[h( ,~- l )]  k (6) 
O<tl <.,,<tk 1 \ /  

and if Gz (sl, . . . ,  Sk) denotes the left-hand side in (5), then by symmetry, 

G z (s I . . . .  , S k ) :  Z F,~ (s~:(1) . . . . .  Sn(k) ). (7) 
We show that as 2-~oo, 

Fz (sl, ..., Sk) --* [(S 1 +- ' -  + Sk) (S2 + " "  + Sk)... (Sk)] - ~. (8) 

The lemma follows from (7) and (8) by symmetry. 

Write Oj = sj + . . .  + Sk. By the change of variable u~/2 = t~-t~_ ~ (to = 0), we may 
write C ~ [h(2-1)] k Fz(sD.. . ,  st) as 

o0 oo 

. ~,o [ ~ ( X ( U l )  ) I~(X(U 1 n t- U2) ) . . .  {~(X(U 1 @ " " - [ - U k ) ) ]  d U l . . ,  du k. 

In terms of the transition probabilities, 

~'~ [~  (x (Ul)) �9 (x (Ul -[- u2))... ~ (x (Ul + ' "  -~- Uk))] 
(10) T 

= j ... J r (xx)... r (Xk) P(O[dx~, Ul) P(x~ I dx2, u2)... P(x k_~ I dx k, uk). 
-oo --oo 
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By (9) and (10), we may write Ck[h(2)] k F~(sl,.. . ,  Sk) as 

oo 

~ (x0 1 e x p ( -  01 uj2)  P(Otdxl, uO dul . . .  
- -  o o  0 

oo  

; cb (Xk) ~ exp ( -- Ok U,/2) P(x k_ 1 [dxk, Uk) duk. 
- -  oo  0 

By (1.2), 

(11) 

co 

~ exp(--OkUk/2)P(Xk_lldXk, Uk) dUk=p(Xk_2]dxk, OkUk/2). (12) 
0 

By Condition (A), 

aim [Ch(0k/2)]- l .  ~ Cb(Xk) P(Xk_IIdXk, Ok Uk/2)= 1 (13) 
- o o  

uniformly in Xk_ 2. Combining (12) and (13), we obtain an asymptotic estimate 
for the result of the last two integrations in (11). Because of the uniformity in 
Xk_ 1, we may use this estimate and a further application of the same method to 
obtain the asymptotic estimate Cah(Ok/2)h(Ok_j2) for the result of the last four 
integrations in (11), uniformly in Xk_2. Iterating this procedure k times, we 
obtain finally 

Ct[h(2-a)jkFx(Sl . . . . .  Sk)~Ckh(O1/2)...h(Ok/2) (2--+oo). 

By (1.5), h varies regularly, and so 

F~(s2, ..., sk)~ 1/[0~ 02... Ok] ~ (2 ~oo).  

This proves (8) and completes the proof of the lemma. 

The next result relates the expression on the right of (5) to the process X, of 
Proposition 1. We postpone its proof  to Section 6. 

Lemma 3. 

..... , . o   ...os xp . . . . .  . .  (14) 
= ~ 1/[(s.m + ' "  + s~k)) (s~2~ + . . .  + s~k~)... (s~k~)] ~. 

By the continuity theorem for LSTs, Lemmas 2 and 3 show 

lira gHOo tl, r H(2 tk, CO) = g X ,  (q, co)... X ,  (tk, CO). (15) 
a-. ~ C k [h (2 - 2)] k 

Write m~(2; q, ..., tk), m~(t2, ..., tk) for the left- and right-hand sides of (15). 

Lemma 4. I f  D (~z) = O (re, ~; h, ..., tk) iS the domain 

{(ul . . . .  ,Uk);O<=ui<=tl, i = l ,  2 . . . .  ,k,O<u~(1)<U~(2)<...<U~(k)}, (16) 
then 

m~(t, . . . .  ,tk)= j'j'...j" d u , . . . d u k . [ r ( ~ ) ]  -k  

D(~, ~,;t ...... tk) (17) 
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We defer the proof of Lemma 4 to Section 6. If t = m a x  {t~: i=  1, 2 . . . . .  k}, 
Lemma 4 shows that if we replace the restriction 0 <  u~ < ti in (16), (17) by 0 < u~ < t, 
we obtain an upper bound for m~(tl, ..., tk), namely m~(t . . . .  , t). But m~(t . . . . .  t) 
has the form of a convolution integral, and by a change of variable in (17) we 
obtain 

m~(t,, t )=k![F(e)3 -~. ~...~ dua...dUk 
"' o ~ , ,  ~ . . . . .  ~ ~ ,  [ u l  (u2  - u 0 . . .  ( u k -  u ~ _  1)] 1 -  

dr1.., dvk 
=k~[r(~)] -k. ~. . .~  (~V22~.~7_ ~ (18) 

v t + . . . + v k < t  
p i~O 

=k!  tk~/F(1 +k~)  

by Dirichlet's integral ([23] p. 258) or by direct evaluation. 

Take positive parameters ti, si ( l < i < k ) ,  and write t = m a x { t l , . . . , t k } .  If 
m~(2; t . . . . .  t) has n arguments t, it is the n-th moment of H(2t,  e))/Ch(1/2). By 
(4) and (1.5), 

n! 
m~ (2; t, ..., t )~  �9 t" [L()o t)/L(2)]". 

F(1 +no0 

Since L varies slowly, given t > 0, e > 0 we can choose N so large that for 2 > N, 

Then for 2 > N*, 

L~-L(2t) 1 <e/2. 

m~(2; t . . . . . . .  tr,,)<n! t"~(1 + e)"/F(1 + ncO. 

Thus for all sufficiently large 2, 

oo 1 k k 

. . . .  

co 1 k k 

<.~o~-.v "~ ~"~ Z~ s~'s""'n!t"'(l+O"/r(l+ncO 

= ~ [t ~ (1 + e) (sl +"" + Sk)] "IF (1 + n cO < oo 
n = 0  

(19) 

since the upper bound in (19) has the form of a Mittag-Leffler function, which is 
entire [4]. By definition of m~(2; tr, . . . . .  tr.) (see (15)) we may use (19) and Fubini's 
theorem to justify writing 

g exp ( - Z  si H(2h,  o~)/Ch(1/2 
\ 1 / 

( -1)"  k k 
~ -  . . .  ,=o ,T " Z "'" E s,~...s~ rn~(2;t . . . .  t,.) 

�9 r l = l  r n = l  

(20) 

for all sufficiently large 2. 
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Again by (19), we may use dominated convergence to let 2 ~ oo in (20); by 
(15) we obtain 

lim g exp ( -  ~ si H (2 tl, co)/C h(1/2)) 
~ (21) 

( -1)"  k k 
2../ n=o n' " Z "'" Z Srl""sr.m~(trl' ' ' ' , f t .)" 

�9 r i = l  rn=l  

By (19), the right-hand side in (21) is jointly continuous in sl . . . . .  sk at Sx . . . . .  Sk = 0, 
and so is a k-dimensional Laplace-Stieltjes transform (LST), by the continuity 
theorem for LSTs. Also, if we put sk = 0 on the right-hand side of (21), we recover 
the same functional form with k replaced by k - 1 .  This is the LST version of 
the Daniell-Kohnogorov consistency conditions, and so there exists a unique 
stochastic process {X,(t, co): t>0} whose finite-dimensional distributions are 
given by 

g exp - ~ s i X~ (ti, co) 
\ i 

( -  1)" k k (22) 

. = o  ' 2 .-- Z r l = l  rn=l  

By construction, X~ is determined by the product moments m,(tr, . . . .  , t~,). Since 
the boundary of the domain D(rc, ~; t~,, ..., t~.) in Lemma4 forms a set of n- 
dimensional Lebesgue measure zero, m~(t~,, ..., t~.) is itself determined by the 
integrand in (17) (although this is unbounded and is infinite on the boundary 
of each D (~)). We conclude that X~ is uniquely determined by the product moment 
density relations 

a k [g [x~(q, co).., x,(t~, co)]]/aq.., ark 
(23) 

= l/[F(cO]kEtx(t2--q)...(tk--tk_O] 1-~ ( 0 < t l < ' " < t k ) .  

This proves (i) of Proposition 1. Also, the finite-dimensional distributions of the 
process {H(2t, co)/Ch(1/2): t>0} converge as 2 ~  ~ to those of {X~(t, co): t>0}. 
By the remarks of Section 2, this suffices to prove Theorem 1 a. 

5. Inverse Processes and Ergodic Limits 

We now have a complete solution of the ergodic limit problem for the H- 
process. We use it to solve the ergodic limit problems for the T-, U- and V-pro- 
cesses. 

The path-functions of all our processes are monotone non-decreasing; we 
may thus assume that all our norming functions are non-decreasing (they will 
in any case be asymptotic to non-decreasing functions). 

We write g(2)= Ch(2 -1) for the norming function of the H-process�9 Since g 
is monotone, we may define an inverse function f by 

f (2)  = sup {#: g (/~) < 2}. (1) 
When (1.5) holds, we have 

pr{H(2ti ,co)/g(2)<vi,  l< i<k} - - , p r {X~( t i ,  co)<v~, l < i < k } .  (2) 
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But H(2 t, co) < v g (2) is equivalent to 2 t < T(v g (2), co) or by (1) to f (p) t ~ T(v i ~, co) 
if g (2) =/t. 

Taking k = 1 in (2), we see that 

pr{T(v#,co)/f(#)<t}---,pr{X=(t, co)>v} ( # +  oo). (3) 

Now consider the ergodic'limit problem for the T-process. If the norming func- 
tion q5 is so chosen that the one-dimensional distributions pr {T(v#, co)/O (1~)< t} 
are convergent, we may deduce (as in deriving (3)) that pr {H(2t, co)/q5-1(2)< v} 
converges as 2 ~ m. Since (by the Darling-Kac theorem) the norming function 
of the H-process is determined uniquely up to asymptotic equivalence, we must 
have 

~b-* (2),~ g (2) (2 -~ oo). (4) 

From section (4) we know that the norming function g of the H-process varies 
regularly with exponent c~e(0, 1): there exists a slowly varying function L such 
that 

g = 2 L(2).  (5) 

It was shown by de Bruijn [2] that this implies that the function f inverse to g 
varies regularly with exponent 1/c~: there exists a slowly varying function M 
such that 

f(2) = 2 '/~. M(2). (6) 

The functions L, M satisfy the symmetric relations 

or  

L(21/~. M(2)) �9 [M(2)] ~ ~ 1 (2 ~ oo) 
(7) 

M(2" �9 L(a))- [C(2)] 1/'--, 1 (2--, oo) 

L(T(2)). [/(2)]" ~ 2  (2 ~ oo) 
(8) 

M(g(2)) �9 [g(2)]t/=,-- 2 (2 ~ m). 

Assume now that the finite-dimensional distributions of the process 
{T(2v, co)/f(2): v>0} converge as 2--, oo to those of a non-degenerate limit pro- 
cess {Y(v, co): v>0}. In particular, the one-dimensional distributions are con- 
vergent, and so f satisfies (4). We may thus assume that f is defined by (1), since 
two asymptotic norming functions are equivalent. Then 

pr { T(2 vi, co)/f ( 2 ) <= ti, 1 <= i <= k} ~ pr { Y (vi, co) <= t~, 1 <= i <= k } . 

But since the H- and T-processes are inverse, 

pr { T(2 vi, co)/f(2) < h, 1 =< i__< k} 

= pr {2 v~____ H(f(2)  ti, co), 1 __< i<  k} (9) 

=Pr{~_,[H(#ti ,  co)<v,g(#)] c} 

(where A c denotes the complement of a), writing f ( 2 ) = # .  By the formula of 
inclusion and exclusion, the right-hand side of (9) is 

1 - -  S 1 + $ 2  . . . .  ( 1 0 )  
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where 
St= ~ . . . ~  pr{H(pt~i, co)/g(#)<vji, l < i < r } .  (11) 

l<j l<. . .<jr<k 

By Section 4, pr {H(p tj,, co)/g (#) <__ vi,, 1 <= i <= r} is convergent as/z --, ~ if and only 
if (1.5) holds, and its limit is then 

pr {X(tji , co)<=vj,, l < i<=r} 

where X = X~ and c~ denotes the parameter in (1.5). 
The process {T(2v, co)/f(2)} thus has convergent finite-dimensional distribu- 

tions if and only if (1.5) holds. The limit process Y then satisfies 

pr { Y(vi, co) < ti, 1 < i< k} = 1 - S~ + S~ . . . .  (12) 
where 

S*~= ~ , . . ~  pr{X(tj , ,co)<=vj,, l<i<r}. 
l<=ji<...<jr<_k 

By the formula of inclusion and exclusion, (12) implies 

pr{Y(vi, co)<=ti, l__<i__<k}--pr [X(ti ,co)<viY . (13) 

But if Y* denotes the process inverse to X, the right-hand side of (13) is 
pr { Y* (vi, co) < ti, 1 < i < k}, and thus Y and Y* are identically distributed. Since 
Y is an ergodic limit of the T-process, Y* is also an ergodic limit of 7:. We may 
thus assume that the ergodic limits X, Y of the H- and T-processes are inverse. 
We may say that the inverse relationship between the processes H and T is preserved 
on taking ergodic limits. The necessary and sufficient condition for the existence 
of non-degenerate ergodic limits is (1.5) in both cases. 

Since T(v, co)= v + U(v, co), the processes { T(2 v, co)/f(2)}, { U(2 v, co)/f(2)} have 
identical ergodic limits whenever 

2/f(2) -~ 0 (2 --, oe). (14) 

But by the de Bruijn relations (or (6)), fvaries regularly with exponent 1/a. Thus 
(14) holds for c~< 1 (the exceptional case e =  1 is treated later). In the general 
case, the solutions of the ergodic limit problems for the T- and U-processes 
coincide. 

We may now adapt the analysis above to conclude that the V-process has 
an ergodic limit if and only if its inverse process, the U-process, has an ergodic 
limit, and that the limits are inverse. Combining the results just obtained, we 
see that the solutions of the ergodic limit problems for the H- and V-processes 
coincide. We have proved 

Proposition 2. (i) I f  two stochastic processes are inverse, each has an ergodic 
limit if and only if the other does, the limit processes are inverse, and the norming 
functions are asymptotically inverse. 

(ii) Conditions (1.5) with 0 < ~ < 1 is necessary and sufficient for the existence 
of non-degenerate ergodic limits for each of the processes H, T, U and V. When 
(1.5) holds, the H- and V-processes have identical ergodic limits X~, and the T- and 
U-processes have identical ergodic limits Y~ inverse to X~. 
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We obtain Theorems 1 b, 2 a and 2 b immediately from Theorem 1 a and Pro- 
position 2. 

6. Identification of  the Limit  Process 

We know from Section 4 that if 0 < ~ < 1 there exists a unique stochastic pro- 
cess {X~(t, co): t>0} satisfying 

Ok k 
c~tl...Otk "~[i~=aX~(ti'~ =l /[ t l ( t2- tD' ' ' ( tk - tk-D]l -~[F(~)]k  (1) 

(0< t l < ' - '  < tD. 

We wish to prove that if Y~ is the stable subordinator of parameter at(0,  1), 
and Z~ is its inverse, then Z~ satisfies (1). We shall obtain this result as a special 
case of a more general result applicable to any subordinator. 

Let { Y(v, co): v_> 0} be any homogeneous stochastic process with independent 
non-negative increments and path-functions satisfying Y(0 +,  ~) = 0 (a. s.). Such a 
process is called a subordinator. Then there exists a constant c=> 0 (the determinis- 
tic drift) and a measure # on (0, ~ ]  with 

(1 - e  -x) #(dx) (2) 
(0, o0] 

(the Levy measure) such that 

g e x p ( - s  Y(v, c ~ ) ) = e x p { - c s -  ~ (1-e-XS)#(dx)}. (3) 
(o, o0] 

We shall consider separately the cases c = 0 and c > O; absorbing an uninteresting 
scale factor it suffices to consider c =  0 and c = 1. We write 

A(s)= ~ (1 -e -X9#(dx )  (4) 
(0, oo1 

and A* (s) = s + A(s). (5) 

We combine the two cases by writing 

exp( - s U(v, co)) = exp( - v A(s)), (6) 

r(v, co) = v + U (v, a)), (7) 

exp ( - s T(v, co)) = exp ( - v A* (s)). (8) 

Define the inverse processes K, L by 

K(t, co)=sup {v: U(v, co)__< t}, (9) 

L(t, c9)= sup {v: T(v, o)=< t}. (10) 

L e m m a  5. 

oo k k 

i) 0~~ exp (-- 1 ~ si ti) dr' "'" tk~ Li~I[H K(ti' (1})] 
= ~ 1/A(s.{1)+'" + s.(k)) A(s.(2)+'"  + s.(k}) ... A(s.{k)). Ir 

ii) Relation (i) holds with K, A replaced by L, A*. 
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Proof. We prove only (i). A proof will be contained in a forthcoming sequel 
to this paper on regenerative stochastic phenomena, but we include an outline 
proof here (by different methods) to make the present paper self-contained. 

Consider the following 2 k-dimensional Laplace transforms" 

oo oo 

~(S, D)= ~(S1 . . . . .  Sic; Pl, . . . ,  Ok)= Sl. . .  Sk " Pl "" Pg " ~ "" ~ d t l . . ,  dtk 
0 0 

k k exp( 
�9 pr {co: K(t i ,  co)<xi,  i=  1, 2, . . . ,  k} .  

Define 0 (s, p) similarly by replacing pr {K(ti) < xi} by pr { U(xi) < ti}. If 

oo ~ e x p \  i )siti ..... [ k  1 I~ (S )=S ' "~  ( - -  dtl lk ~ l~ g( t i ,  co) ,  
o o 1 L i = I  A 

c~ k 7 ' ( s l  . . . .  , sk  ; 0 , . . . ,  O ) / ~  p l  . . . O p k =  q~ (s~ . . . . .  s k ) .  

(12) 

Consider the 2 k possible expressions of the form 

pr {co: K ( h  ) ~  x l  . . . . .  K ( t k ) ~  Xk}. (13) 

If the choices of sign agree at each place except the i-th, and the two probabilities 
corresponding to the two choices of sign at the i-th place are summed, the result 
is independent of xi, and so its transform is independent of Pi. This observation 
provides the inductive step needed to establish the relation 

~k ~[U(S 1 . . . . .  Sk;  0 ,  . . . ,  0 ) / ~ p l . . .  ~pk = ~k 0 (S 1 . . . . .  Sk; 0 . . . . .  0)/c3pl... Opk. (14) 

Since the U-process is homogeneous and additive, a straightforward calculation 
shows that 

( i )  ( i  ) O ( s , p ) =  ...[, p l . . . p k ' e x p  -- p ix i  g e x p  -- s iU(x i , co  ) d x l . . . d X k  
0 0 1 1 ( 1 5 )  

= Z F(p~(1) . . . . .  P~k)), 

where 

Hence 

F(pl  . . . . .  p k ) = p l . . . p k / [ p 1 4 - ' " + p k + A ( s 1 + ' " + S k ) ] . . . [ p k + A ( S k ) ] .  (16) 

c~ g 7t(sl, . . . ,  Sk; 0 . . . .  , O)/3pl. . .  C3pk = ~ 1/A(s~(1) + ... + S,(k))... A(S,(k) ) 
7~ 

which proves the lemma. 

Since the process K(t ,  co) has non-decreasing sample-paths, the function 

(17) 

m ( t ) = g K ( t ,  co) ( t>O) 

is non-decreasing, and so determines a measure on [0, oo). Let p denote its 
density, when this exists. 
2 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17 
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Lemma 6. 
co co k 

= ~ 1/A(s,~(I) + ' "  + S~(k)... A(S~(k), 
where 

G (t I . . . .  , tk) = ~ ~ . . .  ~ dm(u~o)) dm(u~(2)- u~o)).., dm(U.(k)-- ft.(k-1)). 
0 < u ~ ( 1 )  < . . .  < U ~ ( k )  

O<ui<=ti 

Proof. We prove that for every n the summands coincide; it suffices to con- 
sider the identity permutation and use symmetry�9 By a change of variable, the 
summand on the left may be written 

00 t l  CO t2  - - W l  

[, sl e -sin dq  ~ dm(w O. [, s2 exp(-s2  t2)dt2 ~ din(w2)... 
0 0 0 0 

co t k - ( w t  + . ' . + w k -  1) 

�9 I Sk exp (-- s k tk) dtk ~ dm (Wk). 
0 0 

By Fubini's theorem, the last two integrations give 

or) 

d m (Wk) ; S k exp ( -- s k tk) d t k 
0 M)I'+'"-t-Wk--I@Wk 

CO 

= ~ exp ( - s k (w 1 +. . .  + Wk)) dm (Wk) = exp (-- Sk (Wl +"" + Wk_ O)/A (Sk). 
0 

Similarly the next two integrations give 

exp ( - Su_ t (wl +"" + Wk_ 2))/A(Sk_I + Sk) A(Sk). 

After k iterations, we obtain the result of the lemma. 

Comparing the two previous results and using the uniqueness theorem for 
LSTs: /] g I ~ K ( t i ' ~  =G(t l  . . . .  ,tk). 

L i = I  

When the measure m is absolutely continuous with density p, 

8 k [ L g K(ti,co ) tl...t~tk=p(tl) p(t2--tl)...p(tk--tk_O (O<tl<'"<tk). 

All this holds for an arbitrary subordinator. For the particular stable sub- 
ordinator U~ with inverse K~: 

co 

d~(s) = s - ~ =  S e-~t dt / t l -~F(~) 
0 

and so the measure m~ is absolutely continuous with density p~(t)= 1/tl-~F(a). 
Thus 

. . t  
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Since by (i) of Proposition 1 (proved in Section 4) the product moment densities 
(1.15) determine a unique stochastic process X~, we conclude that the processes 

{K,(t, co): t_>0}, {X~(t, co): t_>0} 

have identical finite-dimensional distributions. Thus in view of the definition of 
K~ (put U =  U~ in (9)), the process X,(t, co) is distributionally inverse to the stable 
subordinator U,. This proves part (ii) of Proposition 1. Note that we obtain 
Lemmas 3 and 4 of Section 4 by putting U =  U~ in Lemmas 5 and 6. 

Pm:t (iii) of Proposition 1 may be proved easily by taking the double Laplace 
transform of the relation 

pr {K~(t, co)<x}+pr{U,(x, ~)__< t} = 1 

(compare Feller [-5], p. 428, Stone [-20]). Since U~ is the stable subordinator, 
GO 

; ~ sp.  dt dx. e x p ( - s t - p x ) ,  pr {U~(x, co)< t} 
0 0 

o0 

= ~ pdx.  e x p ( - p x )  exp(-xs~)=p/(p+s~). 
Also, o 

co 

S s e-S' dr. ~ ( -  p t~)"/r(1 + n ~)= s~/(p + s~). 
0 n=O 

Thus by the uniqueness theorem for LSTs, 

~pe PXdx.pr{K~(t, co)<__x}= (-pt~)"/F(l+ncO, 
0 n = 0  

the Mittag-Lefller function obtained by Darling and Kac. 

The proof of (iv) of Proposition 1 is a k-dimensional analogue of that of (iii). 
We use the formula of inclusion and exclusion to pass from the 2 k-dimensional 
Laplace transforms of the k-dimensional distributions of the stable subordinator Y~ 
(k= 1, 2 . . . .  ) given by (15), (16) with U =  Y~, A(s)=s ~, to the transforms of the 
finite-dimensional distributions of the inverse process X, (compare Section 5). 
Details are omitted. 

7. The Cases e=0 ,  1,�89 

The limiting cases c~ = 0, 1 are of less interest since the limit processes which 
arise are (in different senses) degenerate. Since it was convenient earlier to postpone 
treatment of these cases, however, we now indicate briefly what changes they 
require. The case c~ = �89 is very interesting probabilistically because of its connection 
with Brownian motion. 

When e = 1, the Mittag-Leffler and the stable subordinator distributions both 
reduce to unit masses. The H- and V-processes and the T- and U-processes all 
converge to the trivial ergodic limit process {t: t>0}:  thus 

H(2 t, co)/2 L(2) --* t (2 ~ oo) in probability, 

T(2 v, co)/f(fi) ~ v (fl ~ 0o) in probability, 

and similarly for V, U. 
2* 
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When e = 0, the norming function for the H-process varies slowly. One easily 
sees that in this case the ergodic limit formulation we have adopted gives no 
more information than the Darling-Kac theorems with ~ = 0. The ergodic limit 
process Xo of the H- and V-processes thus satisfies 

Xo (t, co) = Xo (co) (t___ 0) 

where Xo(co) has negative exponential distribution with unit parameter (this is 
also the Mittag-Leffler law with ~ = 0). 

The methods used earlier for convergence of finite-dimensional distributions 
give easily 

gexp(-~H(2t i ,co) /L(2) )  ~l/(Sl+.. .+Sk) (2--.oo) 
1 

for all t i > 0. Using our knowledge of the limit process X o we obtain 

�9 .. exp - s, xi d x l . . . , x ~ [ 1 - e x p ( - m i n ( x l  . . . . .  Xk))]=I/(sI+'"+Sk). 
0 

This interesting functional relation may be readily verified by induction. 

The ergodic limit of the T- and U-processes is the stable subordinator of 
index 0, which has non-decreasing sample-paths and is determined by 

p 

pr{Yo(v, co)=O}=e -v, pr{Yo(v, co)=ov}=l-e  -~. 

Then pr { I1o (vi, co)= o% i=  1, ..., k} = 1 - e x p ( - m i n  (vl,..., Vk)), the functional form 
obtained above. Note that in this case the ergodic limits Xo, Yo are not inverse. 

The process Xo also appears as the ergodic limit of the occupation-time 
process H *  ~(t, co) for two-dimensional Brownian motion over the bounded Borel 
set B. The norming function here is a multiple of IB[" log t, where I'l denotes 
Lebesgue measure. In a similar notation, Yo is the ergodic limit of T~(v ,  co), the 
process inverse to H*, �89 (Darling and Kac [3], Section 2). 

When e = �89 the Mittag-Leffler law with parameter ~ reduces to the truncated 
normal law. The stable subordinator U~ is (Ito-McKean [7]) the first-passage 
process for Brownian motion, and so its inverse V~ is the supremum process for 
Brownian motion. As a corollary to Proposition 1, we see that if {Xo(t, o)): t>0}  
is standard Brownian motion started at the origin, and if mo (t, co)= sup {Xo (u, co): 
0 < u < t}, the process mo is characterised by the relations 

c 3k g mo(tl,co) C3tl...C3tk=l/[tl(t2--tO...(tk--tk 1)]~n k/2 (O<tl<'"<tk).  

We thus see that if B is any bounded linear Borel set, and if HB,4(t, co) is the 
occupation-time for the process x o in B over the time-interval [0, t], the process 
HB, ~ has ergodic limit V_~, the supremum process for x o . The process TB, ~ inverse 
to H~, ~ has ergodic limit U+, the first-passage process for x o . 

8. Complements 
The methods and results given above are very similar to those used by the 

author in obtaining analogous limit theorems in the context of regenerative 
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s tochas t ic  p h e n o m e n a  (Kingman ,  [-13]). W e  shall  dea l  wi th  these regenera t ive  
l imit  t heo rems  in a fo r thcoming  sequel to this  paper .  The  two classes of  l imit  
t heo rems  coinc ide  when bo th  are  res t r ic ted to  the i m p o r t a n t  special  case when 
the under ly ing  process  is a M a r k o v  chain.  

In  a s imi lar  spir i t  one m a y  ob t a in  a n a l o g o u s  theorems  on  renewal  theory  
and  on  Fel le r ' s  r ecur ren t  events. These  last  t heo rems  general ise  those  of  Fe l le r ' s  
p ioneer ing  w o r k  on  f luc tua t ion  theory  for recur ren t  events [5],  in which the 
Mit tag-Leff le r  laws first a rose  in p r o b a b i l i t y  theory.  

The  D a r l i n g - K a c  theo rems  have been used by  Kes ten  [11] to ob t a in  an 
in teres t ing  T a u b e r i a n  t h e o r e m  for symmet r ic  r a n d o m  walk  on the line. Kes ten ' s  
t heo rem m a y  be fo rmula t ed  and  genera l i sed  as an  e rgodic  l imit  t h e o r e m  in our  
sense. A n a l o g o u s  l imit  theorems  for r a n d o m  walks  with spher ica l  s y m m e t r y  
( K i n g m a n  [12])  m a y  also be ob ta ined ,  con ta in ing  these results  on symmet r i c  
walks  on  the l ine as a l imi t ing case. These  ques t ions  will be cons ide red  in a forth- 
coming  publ ica t ion .  

The  l imit  t heo rems  of  K a r l i n  and  M c G r e g o r  [10] on the one -d imens iona l  
e rgodic  l imit  p r o b l e m  for b i r t h - a n d - d e a t h  processes  m a y  be ex tended  by our  
me thods  to f in i te -d imens ional  and  weak  e rgodic  limits.  

W e a k  convergence  theorems  for occupa t i on - t ime  p r o b l e m s  in the  theo ry  of  
queues  under  heavy  traffic have  been  cons idered  by  W h i t t  ([22], Sect ions 9.4, 
10.7). The  m e t h o d s  used here  yield extensions  to these results.  

The work presented here forms part of the author's Ph.D. thesis, prepared at the University of 
Cambridge under the supervision of Professor D.G. Kendall. The author would like to take this 
opportunity to express his gratitude to Professor Kendall. He is also indebted to the Science Research 
Council for financial support. 
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