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Approximation Theorems for Markov Operators* 

CHOO-WHAN K I M  

1. Introduction and Preliminaries 

Let (X, ~,/~) be the unit interval, the Lebesgue measurable sets, and Lebesgue 
measure, respectively. All functions (maps) on X are ~-measurable real functions 
and will always be considered up to #-equivalence. All sets that are referred to 
are elements of ~.  We shall omit the phrase almost everywhere, it being under- 
stood where applicable. 

By a Markov operator P on E~ ~, I~) we shall mean a positive linear 
operator P from L ~ (X, ~,, #) into L | (X, ~ #) such that P1 = 1 and g, ~ 0 implies 
Pg,.~O. A positive linear operator T from/2(X, o ~, #) into /2(X, o~, #) such that 
S Tfd#= S fd#  for each f e /2  (X, ~,  #) is called a Markov operator on/2(X, o~, #). 

X X 
It is well known that each Markov operator P on L ~176 (X, o~, #) is the adjoint of a 
uniquely determined Markov operator T on/2 (X, o~, #), that is, P = T*. A Markov 
operator P on E ~ (X, ~,  #) satisfying the condition that ~ Pg d # =  ~ g d# for each 

X X 
geLs(X, ~,#) is called a doubly stochastic operator. Every doubly stochastic 
operator P is uniquely extended to a positive linear operator f rom/d(X,  ~ #) 
into itself with [[PIIp= 1, l < p <  oo. Doob [3, p. 293] showed that each Markov 
operator P on L ~176 (X, ~,  #) induces a doubly stochastic operator P' in the sense 
of [3, p. 288]. We will briefly outline Doob's argument. Let P and T be, respec- 
tively, a Markov operator on /2  ~ (X, ~; #) and a Markov operator on /2  (X, ~ #) 
such that P = T*. Let d#' = T 1 d# and let Y = (x: T l(x) > 0). Then ~ P g d# = ~ g d#' 

X X 
for each geE~ ~,,#). Note that P g = 0  if g = 0  on Y Define a positive linear 
operator P' from L~(X, o~, #') into L~ ~ #) by P ' g = P g .  Define T'f  = Tf/T1 
on Y and T'f=O elsewhere, fe/2(X, ~, #). Then T' is a positive linear operator 
from/2 (X, ~,  p) into/2(X, ~,, #') such that T 'I  = 1 and T' *= P'. Both P' and T' 
are doubly stochastic in the sense of Doob. As corollaries of Brown's approxima- 
tion theorems [1, Theorems 1 and 2] (see also [7, Theorem 2.2]) we have that 

(i) [Sf(P'--Te~.)gd#[=I~(T'-TozOf. gd#'[~O as n ~ o e  
X X 

where f e /2  (X, o ~, #) and g~L ~ (X, ~', #'). Here 4}, are bijective (invertible) measure 
preserving maps from (X, ~,  #) onto (X, ~ #'), and T0.g(x)=g(qS,(x)). 

(ii) ~[P'g-Q',gld#~O and ~[T'f-S'f[d#'-~,O as n ~ o o  
X X 

where ge/2(X, oE#') and fe/2(X,~,#). Q', and S', denote, respectively, convex 
combinations 2 c, Tot and ~ ct T4, ;, where q5 t are as in (i). 

t t 
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For brevity, we will denote (X, ~,,/Z) by X, and / f (X ,  Y,,/Z) by LP(X), 1 <=p<= oo. 
Let [L p (X)] be the vector space of all bounded linear operators from L p (X) into 
itself. Throughout this paper, by a Markov operator we shall always mean a 
Markov operator on L ~176 (X). Then the set J / / o f  all Markov operators is a convex 
subset of [L ~176 (X)]. Each non-singular map (#-nonsingular, measurable point map) 
~: X---*X defines a Markov operator T~ by the formula Tog(x)=g(~(x)). The 
set of such operators T+ is denoted by 7/. Let ~ be the set of those T 0s ~ such 
that ~b is an injection. A/z-continuous Markov operator P is a Markov operator 
for which there is 0<p(x,  y)e I2 (X x X) such that P g(x)= ~. p(x, y) g(y) d /x(y) (see 

x 
Moy [9]). We call p(., .) the kernel of P. A/x-continuous Markov operator P 
with kernel p(., .) is called a Hilbert-Schmidt type if p(., . )eL2(XxX).  The 
convex hull of a subset g of ~///is denoted by ch(g). Then ch(g)~  J//. By the 
weak* operator topology in J / w e  mean the topology inherited from the weak* 
operator topology in [L ~176 (X)]. Similarly the strong operator topology in [-L ~176 (X)] 
restricted to Jr called the strong operator topology in M/. The uniform topology 
in J / i s  the topology of J / / induced by the metric 

Ile-QIl~,~=sup{ll(P-Q)gll~: Ilgll~o < 1}. 

The purpose of this paper is to prove that ~ is dense in Jr in the weak* 
operator topology (Theorem 1), and ch(~) is dense in d / / in  the strong operator 
topology (Theorem 2). We will also prove the uniform approximation theorem 
(Theorem 3): for each/x-continuous Markov operator P, there is a sequence in 
ch(~) converging to P in the uniform topology. If P is a Markov operator of 
Hilbert-Schmidt type, there is a sequence in ch(kU) converging to P in the L 2 (X)- 
operator norm topology (Theorem 4). The results in this paper generalize approxi- 
mation theorems of Brown [-1, Theorems 1 and 2] and the author [-7, Theorems 2.3 
and 2.4]. 

We refer to Neveu [10] for the elementary concepts of probability theory and 
others related to Markov operators used in the text. 

The author wishes to thank the referee for valuable suggestions which have 
led to the improved versions of Theorems 1 and 2 presented in this paper. 

2. Basic Lemmas 

A finite collection n = (A, ..., An) of pairwise disjoint subsets of X such that 
X =  [,_) A i and/Z(Ai)>0 for all i is called a finite partition of X. In what follows, 

by a partition ~z we shall mean a finite partition of X in the above sense of the 
term. If we denote by H the family of all partitions re, then H is a directed set, 
when ordered by the relation rc < re' iff ~' refines re. The conditional expectation 
operator U~ relative to a partition re--(A1, . . . ,  An) is defined by 

1 

Here 1A, denotes the indicator function of the set Ai. It is easily seen that U~ is a 
doubly stochastic operator such that U~ U~ = U~, L~ = U~ and U~ U~, = U~, U~ = U~ 
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for n<-_n'. We shall denote the net (U~: n e l l )  briefly by (U~). It is well known 
[4, p. 500] that the net (U~) converges to the identity operator I in the strong 
operator topology for [L ~ (X)]. By the mean differentiation theorem of Helms 
[6, p. 446], the net (U~) converges also to I in the strong operator topology for 
[Lv(X)], 1 _-< p < oo. We define also the following sequence of conditional expecta- 
tion operators. Let A be the subfamily of H consisting of all dyadic partitions 

A, = {[-(k- 1) 2-", k2-");  k = 1 . . . .  ,2"}, n = 1, 2, .... 

Then A with relation __< is a linearly ordered set and hence a directed set. Define 
the sequence (U,) by U,= Ua., n =  1, 2, . . . .  Note that the sequence (U,) is not a 
subnet of the net (Us). It follows essentially from the martingale convergence 
theorem of Doob [2, p. 319] that the sequence (U,) converges to I in the strong 
operator topology for [L p (X)], 1 __< p < oo. Let ( f ,  g)  = S f "  g d# where f e / 2  (X) 
and g e L ~ (X). x 

We shall state and prove two lemmas which generalize Lemmas 2.1 and 2.2 
of [7], respectively. 

Lemma 1. For each PE~//Z and neI I ,  there is Toe T~ such that 

U,~PU,~=U~ToU~. 

Proof Let n = ( A 1 , . . . , A , )  and let aij=(1A, , P I&) (i, j =  l, ... , n). Let 
(Bil, . . . ,  Bi,) be a partition of Ai into disjoint sets such that p(Bi j) = ai ; (i,j = 1, .. . ,  n). 
Let (C U . . . .  , C,j) be a partition of Aj into disjoint sets such that 

, (co>o (i,j=l, ...,n). 

Using the isomorphism theorems of Halmos and von Neumann [5, Theorems 1 
and 2] we can show that there is a point map q5 on X such that r B~j ~ C~j is 
a non-singular bijection whenever g(Bij)>O (i , j= 1 . . . . .  n). Clearly ~,be T i. Note 
that r is not necessarily a bijection on X. We now have 

(1Ai' TO 1A j )  = Z I ~ (Ai ~ (9 - l (Ck j )  ) = 2 t ~ (Ai n Bkj  ) = #  (Bij) = (1A, , P 1Aj ) 
k k 

for i , j=  1, . . . ,  n and hence U~ T 0 U~= U~PU~. 

In particular, if P is doubly stochastic, we choose Cij such that #(Cij )=ai j  
( i , j= 1, . . . ,  n). In this case we can choose a bijective (invertible) measure pre- 
serving map q5 satisfying U~PU~= U~ T o U~. This completes the proof. 

Lemma 2. For each P e d g  and neI I ,  there is Sech(T)  such that 

GPG=GSG=SG. 

Proof Given a partition n = (A1, ... , A,), let aij = (1Ai, P 1Aj ) and Pij = aij/tz(Ai) 
(i,j = 1 , . . . ,  n). Set U = U~. Then we have 

U P U I & =  UPI& = ~ Plj 1A~ ( j=  1, ..., n). 
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Note  that  the n x n  matrix p=(p~)  is a row-stochastic matrix, that  is, p~j>0 
(i , j= 1, . . . ,  n) and ~ p ~ =  1 for each i. Hence the matr ix  p is a convex combina t ion  

J 
p = ~ c, v t where v t are n x n row-stochastic matrices having exactly one entry 1 

t 

in each row (see [8, p. 133]). Given such a matr ix  vt, there is a unique map 4~ t 
from the set (1 . . . .  , n) into itself such that  

(v,)ij= 6.,(i). ~ (i,j = 1 . . . . .  n) 

where (vt)~j are entries of v t and 6k,j is the Kroneke r  delta. Then we have 

Pij = ~ ct 3o,(i),j (i,j = 1 . . . .  , n). 
t 

Let ~b~ be a point  map  on X such that  4)t: A i ~ A , , ( o  is a non-singular  bijection 
for each i ( i=  1 , . . . ,  n). Such a map  exists by an argument  given in the p roof  of 
L e m m a  1. Clearly q~t is a non-singular  map  on X. Since ~, is not  necessarily an 
injection, the same is true for q5 t. Define the opera tor  S by 

S=Zc, T0 . 
t 

Then Sech(70 .  Thus  it remains to show that  S satisfies U P U = S U =  USU. Note  
that  for  each t and j, 

TO, 1Aj = s (~q~t(i),j 1Ai" 
i 

It follows that  for each j (j = 1, . . . ,  n), 

SIA~= 2 Ct 2 (~q)t(i),J ]Ai = 2 Pij 1a, = UPU IAj" 
t i i 

We have at once the assertion. 

The following version of L e m m a  2 will be needed later. Let  ~ be the set of 
those Toe 7 j such that  4) is a measure preserving map. Let  4~ b denote  the set of 
those T0~b  such that  4) is a bijective (invertible) measure preserving map. 

L e m m a  3. Let n be a fixed positive integer and let n = ( A 1 , . . . ,  A,) be such 
that la(Ai)=l/n, i= 1,..., n. Then for each P~J/g, there is SEch(70  with the follow- 
ing properties: 

(i) UPU= U S U = S U  where U= U~. 

(ii) S extends uniquely to a positive element of [LP(X)] with 

0 <  IISIIp_-< IISIIl/P<n 1/~ (1 < p <  ~ ) .  

In particular, if P is doubly stochastic, SEch(~b). 

Proof Nota t ion  is as in the p roof  of L e m m a  2. Assert ion (i) is obvious. To  
prove Assert ion (ii), the following maps  q5 t will be used in the definition of S. 
Fo r  a fixed t, we choose a map q~t such that  ~bt: Ai ~A,tcl)  is a measure preserving 
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bijection for each i (i = 1, ..., n). Then we have for each set E and j, 

IIT,, l~najil 1 = l ie  3*,(O,J 14)Cl(~nA,)na, lll= Z ba,,(i),j #(E n Aj), 
i i 

II S I t  ~ Aj II1 ~ Z C, 2 (~*t (i>,j [,L (E c~ Aj) = ~ Plj # (E c~ aj) 
t i i 

and thus IISI~II1 =<fl~(E) where f l=max(~p, j ) .  
j i 

It is straightforward to show that S is uniquely extended to a positive linear 
operator on/2(X),  denoted also by S, with 

0 <  IISIIl=fl<n. 

For example, if P is defined by Pg=n(1al ,g )  for geLS(X), then fl=n. By the 
Riesz convexity theorem [-4, p. 525] and llSIIoo = 1, we have for 1 < p <  0% 

0 <  IIS[l~_-< IISIIl/p IISll~ - l /p< IISIIl/~<n 1/~. 

Suppose P is doubly stochastic. Then the matrix p is doubly stochastic so 
that it is a convex combination of permutation matrices yr. In this case the 
maps qS~ defined above are measure preserving bijections and hence S6ch(~b). 

The following is a reformulation of [7, Lemma 2.5]. 

Lemma 4. Let U~ be the conditional expectation operator relative to a dyadic 
partition A~=(A1 . . . .  ,A2.). Then there exist measure preserving maps 01 and 02 
on X such that for each j=  1, 2, Oj(Ai)cA i for all A i in A, and if V=�89 + T0~), 

IlvNk-g,  llz<2 -k, k = l ,  2 . . . . .  

3. Approximations 
We begin by proving 

Theorem 1. For each Markov operator P, there is a net (P~: xElI) in ~ con- 
verging to P in the weak* operator topology. 

Proof. It suffices to prove that for each Markov operator P, there is a net 
(P~: rc~II) in ~ii such that 

lim ( f ,  P~ g) = ( f ,  Pg)  

where fEP,(X) and geLs(X). We may assume without loss of generality that 
II 2" Ih ~ 1 and IIgll | _-< 1. Since the net (U~) converges to I in the strong operator 
topology for [/s 1 ~ p ~  ~ ,  there is ~ o 6 / / s u c h  that 

Hf -U~f[ l l  <e/4 and IIg-U~gllo~ <e/4 

for all re____ rc o. Here e > 0 is arbitrary. Let q5 = ~b~ and U = U s be as in Lemma 1 
where re__> rc o. It follows that 

[(f, (P - To) g)l =< [(f, (P-- UPU) g)l + [(f, (UT4, U -  To) g)l 

<= I ( f  - U f, Pg)l + l( U f, P(g-- Ug))[ + ](U f, T4,(U g-g))] + 1( U f - f ,  Te g)] 

<2 ] I f -  U f][1 + 2  Hg- Ug]]~ <e. 
By setting P~-- T,~ we complete the proof. 
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Remark. Let 3r 1 be the convex set of all Markov operators o n / 2  (X). Let O 
be the set of those T~,/r 1 such that T * s  ~ .  An immediate corollary to Theorem 1 
is that O is dense in 3//1 in the weak operator topology for [/2(X)]. Since every 
convex set in [/2(X)] has the same closure in the weak operator and the strong 
operator topologies [4, p. 477], the convex hull of O is dense in 3//1 in the strong 
operator topology. A result [7, Proposition 1.1] may be used to show that the 
mapping T--. T* of M//a onto ~ is not continuous when ,/~1 and ,/f/, respectively, 
endowed with the strong operator topology for [/2 (X)] and the strong operator 
topology for [L ~ (X)]. Hence the convex hull of ~ is not dense in M/l in the 
strong operator topology. 

We have the following strong approximation theorem for J / .  

Theorem 2. For each Markov operator P, there is a net (S~: 17) in ch(~g) con- 
verging to P in the strong operator topology. 

Proof A subbase at a Markov operator P for the strong operator topology 
is given by set of the form 

N(P,g,e)={Q: II(P-Q)glI~ <e} 

where geLs(X)  and e>0.  Choose 7roe/ /such that 

I leg-U~Pgll~<e/3 and Ilg-U=gllo~<e/3 

for all re>__ go- Let S = S~ and U = U~ be as in Lemma 2 where re__> rc o . We have 
that S e c h ( ~ )  and 

II(P- S) g]] oo < I ] (e -  GNU) gll o~ + II ( s g -  S) gll 

< liNg- Segllo~ + II U P ( g -  Ug)ll oo + IIS(Sg-g)lloo <e. 

Thus the net (S~ g) is eventually in N(N, g, e). This completes the proof. 

For  #-continuous Markov operator P, we prove the following uniform 
approximation theorem. 

Theorem 3. For each #-continuous Markov operator P, there is a sequence (Qk) 
in ch(~)  such that 

IIP-QklI~,I ~ o  as k- .oo.  

Proof Recall that U, denotes the conditional expectation operator relative 
to a dyadic partition A,. Let p be the kernel for P and let (U,| U,)p be the kernel 
for U, P U,. Since 

I lP -S ,  Ng, llo~,l <l lp-(U, |215 as n ~ o o ,  

we can choose a positive integer n such that 

IIP-U.PU.II~,a <e/2, 

where e>O is arbitrary. Choose a positive integer k o such that 2 "+1 <2k~ Let 
V be the operator as in Lemma 4. We have then 

II v 2~-  u, II2 < 4  2"+1 for all k>__ k o. 
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If S is the M a r k o v  opera tor  as in L e m m a  3 where ~ = A . ,  then U, PU,=SU n and 
I[S[ll <2".  It follows that  for each g~L~(X)  and k(>ko) ,  

I[(U.PU.- SV 2k) glh = II s ( u . -  v ~k) gill < HSlll II(U.- v2k) gill 

_-< [ISl[1 II(U. - V 2k) gll 2 --< IlS[[1 [I U . -  V2kll2 Ilgll2 < 2  [Igl[ oo 

and hence 
IIU, PU,-SV2klI~,I <5/2. 

Thus we have 
IIP--Sv2k{Ioo, I<5 for all k>k  o. 

If we set Qk=SV 2k, then Qkech(7  j) because v 2 k e c h ( ~ ) c c h ( ~ )  and SEch(tY). 
In particular, if P is doubly  stochastic, then by L e m m a  3 (ii), S ech  (~b) and hence 
QkeCh(~). This completes the proof. 

We state the La(x)-opera tor  no rm approximat ion  theorem for M a r k o v  
operators  of  Hilbert-Schmidt  type. 

Theorem 4. For each Markov operator P of Hilbert-Schmidt type, there is a 
sequence (Qk) in ch(~g) such that 

lIP-- QkJJ2 "-~ 0 as k--+oO. 

Proof This p roof  is similar to that  of Theorem 3. If P has the kernel 
pELZ(XxX),  then P is extended to a positive linear opera tor  on L2(X) with 

IIPII2 < [IPllL2(X• 
Note  that  

IIP-U.pu.II2<=l[p-(U.|215 as n - ~ .  

Thus we can choose n such that  

l I P -  G P G I I 2  <5/2 

where 5 > 0  is arbitrary. Choose  k o such that 2 "+1 <2k~ Let S and V be as in 
the p roof  of  Theorem 3. For  each k => ko, we have from L e m m a  3 (ii) that  

II U . P U . -  SV2~ll2--IIS(V.-  vik)ll2 < IISIl2 II G -  V2~ll2 < 5 / 2 1 / ~  < 5/2 

and thus IIP - S V 2 k [I 2 < 5. 

Since SV2kach(~) ,  the theorem follows. 
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