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1. Introduction 

Let {Xi}={(Xil ..... X i p ) ' , - ~ < i < ~ }  be a strictly stationary sequence of 
stochastic p(_->l) dimensional vectors defined on a probability space (O, ~r P) 
with each X i j ( - ~ < i < ~ ,  l<_j<=p) having the uniform distribution on the 
interval [0, 1]. Let J//~ denote the a-algebra generated by X~, a-< i_< b. Suppose 
that the sequence satisfies one of the following conditions: for all BeJ / /~n  with 
probability one 

[P(BIJ/k~)-P(B)[<=~b(n)+O ( n ~ )  (1) 

(the @mixing condition) and 

sup [P(A c~ B)-  P(A) P(B)I =< a(n),~0 (n--* ~ )  (2) 

(the strong mixing (s.m.) condition). Here the supremum is taken over all A e j / k  
and B e ~ / ~ n .  The difference between the @mixing and the s.m. conditions is 
explained in [4] and [5 ] .  

Let 

F[j](t)=P{Xij<__t}=t, 0_<t_< 1, j=l ,  ...,p 

and put 

F(t)=P{Xi<-_t}, teE p (3) 

where E'= {t: 0_<t_< l} is the p-dimensional unit cube, 0=(0,  ..., 0), l= (1 ,  ..., l) 
and a_-< b means that a~ <= by, 1 _~j ~: p. Note that F(t) = 0 if at least one coordinate 
of t is 0. For a sample X1, ... , X, of size n, the empirical df is defined by 

~(t)=n -1 ~ c(t-x~), teE", n=>l (4) 
i=l 

where c (u)=l  if and only if u=>0, and 0 otherwise. Fn(t)=0, when at least one 
coordinate of t is 0. Let W, = { W,(t): teE"} be the empirical processes defined by 

W,(t)=n~[Fn(t)-F(t)], teE", n>=l. (5) 

For every n=> 1, the process W~ belongs to the space DP[0, 1] of all real valued 
functions on E" with no discontinuities of the second kind, and with D'[0,  1] 
we associate the (extended) Skorokhod Jl-topology. Let W={W(t): teE"} be 
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the p-dimensional Gaussian process where 

EW(t)=0,  t~E v (6) 

and for every s, t6E v, 

R(s, t) = EW(s) W(t) 

= E {c(s - X 1) c(t - X1) - F(s) F(t)} (7) 

+ ~ E {c(s -  X 1) c ( t -  Xk) + c(s-- Xk) c(t-- X 1) - 2F(s) F(t)}. 
k = 2  

(Note that by Theorem 18.5.4 in [5] the series on the right side of (7) converges 
when ~ ~(n) < ~.)  

For @mixing sequences and p =  1, Billingsley [2] proved firstly that the 
weak convergence of W, to W holds under the condi t ion~ n 2 q~r ~ and the 
author [-9] proved the same result under the condition ~p(n)=O(n-2). Further, 
for @mixing sequences and general p > 1, Sen [7] proved that the weak convergence 
of W, to W holds under the condition ~ nq~r ~ .  We remark here that from 
the methods of the proofs of Theorem 2.1 in [-7] and Theorem in [-9], it is obvious 
that the Sen's theorem holds under the weaker condition $(n)= O(n-2). 

On the other hand, for s.m. sequences and p =  1, among others, the author 
proved the weak convergence of W, to W under the condition ~(n)=O(n -3-~) 
�9 (6 > 0). (See [4] and [8].) 

The object of this paper is to prove that the analogous results to Sen's theorems 
in [7] hold for p-dimensional stochastic vectors satisfying some s.m. conditions 
(Theorems 1 and 2). 

2. Weak Convergence of Empirical Processes 

The following theorem extends Theorem 1 in [4] and Theorem in [-8] and Theo- 
rem I in [10]. 

Theorem 1. Suppose that {X~) is a strictly stationary s.m. sequence of stochastic 
vectors, defined in Section 1, with mixing coefficient ~(n). Then, W, converges in 
law (in the Skorohod Jl-topology on D p [0, 1]) to the Gaussian process W, defined 
in Section 1, if the mixing coefficient ~(n) satisfies one of the following conditions: 

(i) ~(n)=O(n -5/2-~) forsome 3 > 0  i f p = l ;  

(ii) ~(n)=O(n -3p/2-~) for some 6 > 0  if p>=2. 

Next, as in [7], we shall consider a sequence of stochastic processes 

W,*= {W,*(t, u); teE",  0 =  < u <  1} (n> 1), (7) 

defined on the D v+l [0, 1] space, where 

W,*(t,u)=[nu]~ W~n,j(t)/n ~ (O<u< l ; t s E  p) (8) 

and [s] is the largest integer contained in s. Let 

W* = { W*(t, u); t eE  p, O<u< 1} (9) 
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be the Gaussian function with EW*(t, u)=0 and 

EW*(s, v) W*(t, u)= min (u, v)R(s, t) (10) 

for every s, t e E  p, O<u, v < l  where R(s, t) is defined by (7). Then, we have the 
following theorem. 

Theorem 2. Under the condition in Theorem 1, W,* converges in law (in the 
extended Skorokhod Jl-topology on D p+I [0, 1] space) to W*, defined above. 

From Theorem 2, the following corollary easily follows. 

Corollary. Let {N~,v>l} be a sequence of positive integer valued random 
variables such that as v--, oo v-X N~--* ~ in probability where ~ is a positive random 
variable defined on the same probability space (f2, d ,  P). Then, under the conditions 
in Theorem 1 { Wu~} converges weakly to W as v ~ oo. 

3. Proofs 

In what follows, by the letter K, we shall denote any positive quantity (not always 
the same) which is bounded and does not depend on n. Let the process {z,} be a 
strictly stationary sequence of Bernoullian random variables, centered at ex- 
pectations satisfying some s.m. conditions. Let z = E [ z  l[z and jlz[[r={Elzlr} 1/~ 
for r > l .  Then, Elz~l=2z and IlzlIr<={Elzl}l/r<=2z 1it for r > l .  Furthermore, 
let S.  = z 1 + . . .  + z . .  

Now, we shall prove the basic two lemmas. 

Lemma 1. I f  {z,} satisfies the s.m. condition with mixing coefficient ~(n)= 
O(n -3/~) ( 0 < 7 <  1), then 

ES4 < K(n 2 z4/3 + zl -~ n log n) (11) 

for all n sufficiently large. 

Proof We follow the proof of Lemma 2.1 in [6]. We denote by ~ ,  the sum- 
mation over all i,j, k>_O_ for which i+j+k<_n,_ and let ~ ) ,  z.,,V(2) and ~(3) be, 
respectively, the components of ~ ,  for which i>(j,  k) , j>(i ,  k) and k>(i, j) .  Then 
we have 

4< ~1) ~z) IEzozizi+jzi+j+kl. (12) E S , = 2 4 n { Z ,  + Z ,  -[-2 (n3)} 

c~ O" '-  3/~ Since ( j)= tJ ~, so it follows from Lemma 2.1 in [3] that the following 
inequalities hold for all n sufficiently large: 

Z(. 1~ [Ezo z, zi+izi+j+kl 

__< 6 2 (1) {c~(i)} ~ l[ Zo [[Ca -7)-'----< Kzl -~ 2 (1) {0~( i)}2' 

< K z  1 -~ ~ (i+ 1) 2 {c~(i)}~ < K z  1 -~ log n; (13) 
i=1 
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< ~(,2) [ Ezo zi[ ]Ezo Zk I + 6 ~(2) {c~(j)} ~ II ZO Zi L[ (1 - ~)-1 

< 36 ~(2) {~(i)}1/3 {~(k)}~/a II Zo [[ 2/2 + 6 Z(, 2) {~(j)}~ z 1 -~ 

< KT4/3 E(2) {0~(i)}1/3 {~(k)}l/3 A V K,c1 -~ ~~(2) {~(j)}~ 

< K n r  4/3 {e(i)} 1/3 + K ~  1 - '  ( j+  1) 2 {e(j)}' 
ki=l j = l  

< K ( n z  4/3 q- r 1 -~ log n); (14) 

Y,(. ~ IEZo z,z,+~z,+j+kl 
< 6  Z(, 3) {~(k)} ~ [[ z o I](1 -~)-, 

-<Kz 1 -~ ~ (k+ 1) 2 {~(k)}~<Kz a -~ log n. (15) 
k=l 

Thus, (11) follows from (12), (13), (14) and (15), and the proof is completed. 

Lemma 2. I f  {z,} satisfies the s.m. condition with mixing coefficient ~(n)= 
O(n -5/z-a) for some 6>0,  then for all n sufficiently large 

ES4 < K(n 2 z6/s + n 2 -o Zl -~) (16) 

where ? is a number such that 2/(2 + 6) < y < 1 and p = (5/2 + 6) ~ - 2. 

Proof. We use the same notations as in the proof of Lemma 1. Since for all n 
sufficiently large 

( j + l ) 2 { ~ ( j ) } 7 ~ K n  1-p and ~ {c~(i)}2/5<oo, 
j = l  i=1 

so for all n sufficiently large 

E~. ~ IEZo z,z,+~,+j+~l 

< K z  1 -~ ~ (i+ 1) 2 {e( i )}~<Kn 1 -ovl -~ ,  
i=1 

Y1~lEzoz, z~+jz,+j+~t 

< K n z  a/5 {c~(i)} 2/5 + K z l  -~ ( j+  1)2 {e(j)}, 
t-i=1 j = l  

< K(n ~:6/~ + n ~ -~ ~1 --3'), 

~(.3~lEzoz~z~+~z~+~+~l 

~ K ' ~  1 - '  ~ (kq-1)  2 {a(k)}'<Kn 1 -~ 
k=l 

Thus, we have the lemma. 
Now, the proofs of Theorems 1 and 2 follow along the same line as of the proofs 

of Theorems 2.1 and 2.2 of Sen [7] using Lemmas 1 and 2 instead of using Lem- 
ma 2.1 of Sen [6-], and so are omitted. 
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