
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
46, 343 349 (1979) 

Zeitschrift far 

Wahrscheinl ichkei ts theorie  
und verwandte Gebiete 

�9 by Springer-Verlag lO7 L) 

Transformation of HP-Martingales 
by a Change of Law 

Norihiko Kazamaki 

Department of Mathematics, Toyama University, Gofuku, Toyama, 93(I Japan 

1. Introduction 

Let M be a local martingale such that M o = 0  and A M , = M t - M  ,_ > -  1 for 
every t > 0, and consider the process Z defined by the formula 

Z t = exp (M t - ( M  c, MC)t/2) H (1 + A M~) exp ( - A Ms), 
s < t  

t>o (1) 

where M C is the continuous part of M and ( M  c, M c) is the continuous increasing 
process such that (Me) 2-(Mc,M c) is a local martingale. If Z is a uniformly 
integrable martingale such that Zoo >0, then dff=Zoo dP is a probability mea- 
sure equivalent to the underlying measure dP. For example, as is shown in the 
next section, i f M e B M O  and AMt> - 1  +6  for some 6 with 0 < ~ <  1, the process 
Z satisfies this property (see [4] or [5]). Let 5r (resp. L,>) denote the class of all 
local martingales X with X o = 0 relative to dP (resp. dff). Then the mapping qS: 
5~ ---* 2,~ given by 

(x), = x , -  S z ;  -~ a Ix, z3s (2) 
0 

is well-defined and linear ([9], p. 376). Furthermore, if M is continuous, then 
[q~(X), ~b(X)] = IX, X] under dP and d/~ ([10], p. 884). But, unfortunately, ~b(X) 
is not always uniformly integrable even if X e l l  p for all p > l .  Now, let /tP 

denote the H p class associated with d/~. Similarly, BMO denotes the class of all 
BMO-martingales with respect to d/~. In [7], assuming the sample continuity of 

M and dealing only with continuous local martingales, we showed that BMO is 
isomorphic to BMO under the mapping qS, and that qs: X--+Z -a .O(X) is an 
isomorphism of H 1 onto/~1. Here, Z -1 .  ~b(X) denotes the stochastic integral of 
the process Z - I  =(Zt -1) relative to the /Lloca l  martingale ~b(X). 

In this paper we shall remove this continuity condition and prove the 
following. 
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Theorem. Let  1 < p < oo and 0 < 6 < 1. I f  M ~ B M O  and A M t > - 1 + ~ for  every t, 
then ~ p: X ~ Z - l Ip .  ~)(X) is an isomorphism o f  H p onto I4 p. Furthermore, B M O  

and B M O  are isomorphic under the mapping ~b. In particular, i f  M is continuous, 
then we have 

exp { -][Mll~Mo/(2p)} ~ II~pll <exp { IlMll~Mo/(2q)} (3) 

where p - t + q - l = l  and II%ll denotes the norm of  q)v as an operator from H p tO 
I~ p . 

From the definition of 4) it follows at once t h a t  I~)p(X)m~(Z-1/p .X) ,  The 
isomorphism between H 1 and/~1 is established in [3]. 

2. Preliminaries 

1. Notations and Definitions 

Let (f2,F,P) be a complete probability space, given an increasing right con- 
tinuous family (Ft)o__<t< o~ of sub a-fields of F such that F 0 contains all null sets. If 
X is a process with left limits, X denotes the process (Xt_). For a semi- 
martingale X, let [X, X] be the increasing process defined in [9]. By (2), any P- 
local martingale X is a P-semi-martingale and the process IX, X] under dP is 
equal to the one under d P  (see Proposition 3 in [8]). Throughout, for a semi- 
martingale X and a locally bounded predictable process 7 ~, we denote by 7-'. X 
the stochastic integral of 7 j relative to X. For 1 <p  < o% let H p denote the class 
of all local martingales X over (Ft) such that IlXll~p=E[[X,X]~2]l/P<oo. If 
1 <p  < o% then H p coincides with the class of all LV-bounded martingales. Let us 
denote by I[X[IBMo the smallest positive constant C such that C 2 dominates a.s., 
E [ [ X ,  X ] o ~ -  [X,  X ] r _  [Fr] for every stopping time T. B M O  is the class of those 
martingales X which satisfies I[XlIBMo< 0% and it is a Banach space with norm 
II'llBMO" As is well-known nowadays, B M O  is the dual space of H 1. Z always 
denotes the process defined by the formula (1). It is the unique solution of the 
stochastic integral equation 

t 

Z t = 1 + ~ Z s_ dMs,  
0 

which was pointed out by C. Dol6ans-Dade [2]. 
Let now 1 <p < oo. We say that Z satisfies (Bp) if for every stopping time T 

Z~r/v < Kp E [Z~P[FT] (4) 

where Kp is a positive constant depending on p only. If Z is a positive uniformly 
integrable martingale, then the inequality (4) is clearly valid for 0 <p  < 1 with Kp 
= 1. If 1 < p < p', then (Bp,) implies (Bp), which follows from the Jensen inequality. 
(By) is in fact no other than the condition (bF/p) which is stated in [3]. 
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The reader is assumed to be familiar with the martingale theory as expound- 
ed in [9]. Throughout  the paper, let us denote by C a positive constant and by 
Cp a positive constant depending on p only, both letters are not necessarily the 
same in each occurrence. 

2. Preliminary Lemmas 

In the next lemma we need not assume the uniform integrability of Z. 

Lemma 1. Let 0 < 3 < 1 .  I f  M~BMO and A M t > - I + ( 5  for every t, then Z 
satisfies (Bp) for all p > 1. More precisely, for every stopping time T we have 

Z!r/P < exp {[I M r] 2~to/(2 P 3)} E [Z~P[Fr].  (5) 

Proof. Assume that M ~ BMO and A M t > - 1 + 3. By an elementary calculation, 

(1 +x)  exp ( - x ) >  exp { - x2/(2 c~)} 

for x > - 1 + 3, and so we have 

(1 +AM~) exp ( -  A M~) > exp { -(AMt)2/(2(~)} 

for every t. Then Z r > 0  a.s., for any stopping time T and 

M r c _ _  Z ~ / Z r > e x p { ( M ~ - M r ) - ( (  ,M )~ (Me, Me)r)~2 - ~ (AMt)2/(26)} 
t > T  

> exp {(Moo - Mr) - ( [ M ,  M] ~ - [M, M] r-)/(2 6)}. 

Therefore, by the Jensen inequality 

E [-(Z oo/Zr)1/PIFT] 2> exp { - E JIM, M] ~ - [M, M] r -  ] F r]/(2 P 3)} 

> exp { - r] M IF 2Mo/(2 P 3)}, 

which completes the proof. 
If A M t > - I ,  then the process Z given by (1) is a non-negative local 

martingale, and so Z~ ~ L ~. Therefore, if M ~ BMO and A M t > - 1 + 6 for some 
with 0 <3_< 1, then Z is a positive uniformly integrable martingale, because we 
have Z r < CE [Zoo I Fr] for any stopping time T by (5) and the Jensen inequality. 

In particular, if M is continuous, then, letting 6 = 1, we get 

Z~/P < exp {]IM [I 2Mo/(2 p)} E [Z ~P]Fr]. (6) 

In what follows, the process Z is assumed to be a uniformly integrable 
martingale such that Z ~ > 0 .  Now, let us consider the process 2 defined by 2 t 
= 1/Z~, which is a uniformly integrable martingale with respect to the weighted 
probability measure dP=Z~dP.  Let M = - ~ b ( M ) .  Then, under dP, Z is the 

t 

solution of the equation: 23= 1 +S 2~ d ~ r .  Thus the mapping q~: L ~ 5 ~  given 
0 
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by the formula 

t 
t t A 4(x),=xt-fzs ld[x',2],, x ' s2  (71 

0 

is well-defined. We now remark that, if X is a semi-martingale under either 
probability measure, then the stochastic integral 7 ' . X  with respect to dP 
coincides with the one relative to dP ([9], p. 379). For simplicity, let (/~p) denote 
the (Bp) condition associated with d/3. 

Lemma 2. Let p-1 +q-1 = 1 with 1 < p <  oo. Then Z satisfies (Bp) if and only if 2 
satisfies ( B q). 

Proof. We denote b y / ~ [ ' ]  the expectation over ~ with respect to d/~. It is easy 
to see that for every/3-integrable random variable Y we have 

E[YIFr]=E[Z~oYIFr]/Z r a.s., under dP and dP. (8) 

Now, we assume that Z satisfies (Bp). Then, dividing both sides of (4) by Zr, 
we get 

^ilq < ilp zT _K,E[Z~o IFT]/Z~. 

and by (8) the right hand side is equal to gpE[Z~q[fr]. Consequently, 2 
satisfies (/~q). The proof of the converse is similar and so is omitted. 

Lemma 3. The mapping 4: ~ - - ' ~  is bijective. 

Proof. Let XeSP and ~r=_(b(M) .  Under dP, (o(X) and ~ are semi-mar- 
tingales. Clearly, ~b(X) c= X c and ~rc= _ Mt  In addition, 

A4(X)t=(I+AMt)-IAX, and AMt=-( I+AMt) - IAMt  . 

Then, combining these facts, we can find that 

4(X) = X + [X, /~] ,  (9) 

X = 0(X) + [(b (X), M].  (10) 

Therefore, [X, igI]+[O(X),M]=O under dP. The similar results holds under 
dP. It follows at once from (10) that (b is injective. To show that it is surjective, 
let X ' e  ~ and X = q~(X') where q~ is the mapping defined by (7). Then, by using 
(10) for ~ and (b we have 

x '  = 6 (x ' )  + [6(x'),  ~] 
= {4(x)  + [4(x),  M]} + IX, ~ ]  

= 4, (x). 

This implies that 4) is surjective. (fi is the inverse of qS. 

To prove that BMO is isomorphic to BMO, we need the next two lemmas. 
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Lemma 4. I f  IIXIIBMo < 1, then for any stopping time r we have 

E [exp ([X, X] - IX, X] r-) [  Fr] < (1 - I I Nil ~Mo)-l" (11) 

This inequality was obtained by Garsia [13 for discrete parameter mar- 
tingales. For the proof, see [63 . 

Lemma5.  Let 0 < 3 < 1 ,  and assume that - I + 3 < = A M t < C  for every t. Then 
M ~ BMO if and only if Z satisfies the condition 

Z T  E iNto 1/(p- ~)l F r ] . -  1 ~ Cp (am) 

for some p > 1, where T is arbitrary stopping time. 

For the proof, see [33, [4] or [5]. 

3. Proof of Theorem 

Assume that M ~ BMO and A M t > - 1 + 3 for some 3 with 0 < b < 1. Then, by 
Lemma 1, Z is a uniformly integrable martingale which satisfies (Bp) for all p > 1. 
Firstly we show that the inequality 

C1 IX, X] __< [4,(X), r < C 2 [X, X]  (12) 

is valid for every X e ~  under either probability measure, where C 1 = ( 1 +  
HMIFBMO) -2 and C2=3 -2. Recall that, if M is continuous, then [qS(X), qb(X)] 
= [ X , X ]  for all X ~ 2 L  To see (12), let us assume dP to be the underlying 
measure. Then ~b(X) is a semi-martingale and by the definition of [ ,  ] we have 

[q~(x), ,~(x)], = <r  c, q~(x)c>, + ~ (3 r 2. 
s<t 

But we know that ~b(X)c=X c, 

3 5 ( X ) , = ( l + A M , ) - I A X ,  and 3<=I+dM,<=I+IIMIrBMo. 

Therefore, by combining these facts, we can obtain (12). Similarly, the same 
conclusion follows under d/~. 

Now, let p - l + q - l = l  with l < p < o o ,  and we are going to prove that ~p: 
~'-- l/p X ~ L  �9 ~b (X) is a continuous mapping of H p into/~P. Let X E H p and Y'e  H q. 

Without loss of generality we may assume that Y' is bounded, for the class of all 
bounded martingales is dense in n ~ It follows from Lemma 5 that Z satisfies 
(Apo) for some P0 > 1, and so Z~o Z/(po-~)eL I (dP). Then, by the H61der inequality 
with exponents Po and qo =Po/(Po- 1) we get 

E[[Y' ,  , q/2 Y ]oo ] <E[Z~l/(po-1)]l/qoE[[y,, y]~, qpo/2] 1/po. 

Moreover, by (12) we have 

E [[4 (X), q~(X)]~ 231/p __< C Ir X II,~,. 
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Thustheincreasingprocess{ild[~(X),Y']~l}isintegrablewithrespecttodP, 

and by using the stopping argument we may assume that the process 

ZjJ/P Id[qS(X), Y']~I is also integrable. Since (1 + ItMIIBMo)- a Z~<Zs- and Z 

satisfies (Bq), we have 

EEIE~(x), r ' ]~l]  

<=E [Z~ ~ Z~2/~Id[q)(X), r']~,] 
0 

<(1 + IIMIIBMo)~/"E Z2/q Id[4(X), g']s 
t- 0 

But the expectation on the right hand side is E [Z ~/q f Id[qS(X), Y'],I , which is 

smaller than E[z~q[~(X), ~b(X)]~-' [Y', ' 1/2 Y ]~o ]. Then, applying the HSlder in- 
equality with exponents p and q to this term, we can find that 

s Y']o~l] ~ c~ggE4)(x), qS(x)]G=] ~/~ II Y'II~ 
<= C,,o IlXll~ I[ Y'lla~. 

Therefore, the inequality II ~p(X) ll ~p < C~,~ IIS [IH, follows from the usual duality 
argument. It is clear that ~bp is linear and injective. We now remark that, if M is 
continuous, then the process Z is, of course, continuous and IX, X] 
= [qS(X), ~b(X)] under dP and d/3, so that by (6) we can obtain the right side of 
(3). 

On the other hand, by Lemma 2, 2 satisfies (/?,) for all p > 1. Moreover, as is 

proved in [3] and [5], M-- -~b(M)  belongs to ~ and A~It=-(l+ 
A Mr)- 1 A M~ > - 1 + (1 + [1M I] BMO)- 1, SO that the mapping qSp: /~e ~ H p defined 

t 

by ^ ' fbp(X )z =S 2s X' e /?  p, is linear and continuous. And it is easy to 
0 

see that ~p is the inverse of ~p. Consequently, H p a n d / l P  are isomorphic with 
the mapping ~p. 

Finally, we shall establish the isomorphism between BMO and BMO. For 
that, we show that, if Z satisfies (Ap), then the inequality 

IlXblB~o < C~ II~(X) I I ~  (13) 

is valid for all X e S .  ]lq~(X)ll~-~o=0 implies X=O, so that we may assume 
0<l[qS(X)ll~o<OO. Now let T be any stopping time, and set a 
= (2 p II q5 (X)][zB-~0)- 1. Then from Lemma 4 

/~[exp {ap([qS(X), ~b(X)]o~ - [~b (X), qS(X)]T_)} ]FT] <2  
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follows, and by the definition of (Ap) E[(Zr/Z~) I/(p- 1)lFr] ~ Cp. Applying now 
the left side of (12) and the H6lder inequality we have 

E [ [ x ,  x ] ~  - [ z ,  x ] ~ _  IF~] 

=<(C 1 a)- 1E[exp {a([qS(X), qS(X)] o ~ - [q~ (X), 0(X)]r_)} IFr] 

II ~ o  E [(ZT/Zoo) 1/(p - -  1) I 

x s  {ap(E~(X), ~b(X)]| - [~b(X), ~b(X)]r_)} [Fr] ~/" 
2 ~  <= C~ IIr 

Thus (13) is proved. On the other hand, as ATIeBMO and I + A M t > ( I +  
riM]PBMo )- 1, for some p > 1 the process 2 satisfies the (Av) condition associated 
with d/~ by Lemma 5. Therefore, the inequality 

IIX IIBMo < C~ IIcS(X')IIBMo (14) 

is valid for all X ' E 2 .  Then, setting X'=qS(X) in (14), we get 

I l O ( X ) l l ~ M o < C p l l X l l ~ u o  . Hence, BMO and BMO are isomorphic under the 
mapping 4). This completes the proof. 

In [7], it is pointed out that the assumption " M  E BMO" cannot be omitted 
for the validity of the theorem. 

Finally, we remark that the spaces H 2 and/~2 are isometrically isomorphic 
under the mapping ~2 whenever M is continuous and the process Z is a 
uniformly integrable martingale with Zoo > 0. 
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