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1. Introduction

Let M be a local martingale such that M,=0 and AM,=M,—M, > —1 for
every >0, and consider the process Z defined by the formula

Z,=exp (M, —(MS M,/2) T (1+AM ) exp(=4M,), 120 )

s=t

where M° is the continuous part of M and {M¢, M) is the continuous increasing
process such that (M¢)?— (M M) is a local martingale. If Z is a uniformly
integrable martingale such that Z_ >0, then dP=Z_ dP is a probability mea-
sure equivalent to the underlying measure dP. For example, as is shown in the
next section, if Me BMO and AM, = — 1+ 6 for some 6 with 0 <d <1, the process
Z satisfies this property (see [4] or [5]). Let & (resp. £) denote the class of all
local martingales X with X ,=0 relative to dP (resp. dP). Then the mapping ¢:
¥ — & given by

¢(X)I=Xt—£zs‘1d[X,Z]s 2

is well-defined and linear ([9], p. 376). AFurthermore, if M is continuous, then
[#(X), ¢(X)]=[X, X] under dP and dP ([10], p. 884). But, unfortunately, ¢QO
is not always uniformly integrable even if X eH? for all p=1. Now, let H?

~ P
denote the H? class associated with dP. Similarly, BMO denotes the class of all
BMO-martingales with respect to dP. In [7], assuming the sample continuity of

M and dealing only with continuous local martingales, we showed that ]ﬁd\o is
isomorphic to BMO under the mapping ¢, and that &: X—Z~'-¢(X) is an
isomorphism of H! onto H'. Here, Z~'- ¢(X) denotes the stochastic integral of
the process Z 1 =(Z; ) relative to the P-local martingale ¢(X).

In this paper we shall remove this continuity condition and prove the
following.
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Theorem. Let 1 <p< o0 and 0<0=1. If Me BMO and AM,= — 1+ for every t,
then @, X >Z="". ¢(X) is an isomorphism of HF onto HP. Furthermore, BMO

TN
and BMO are isomorphic under the mapping ¢. In particular, if M is continuous,
then we have

exp { — 1M 5ao/2 D)} S [0, Sexp {| M 5p0/(29)} 3)

where p~1+q~*

or.

From the definition of ¢ it follows at once that @,(X)=¢(ZZ""- X). The
isomorphism between H! and H! is established in [3].

=1 and [|®,|| denotes the norm of @, as an operator from H? to

2. Preliminaries
1. Notations and Definitions

Let (@, F,P) be a complete probability space, given an increasing right con-
tinuous family (F),«, ., of sub o-fields of F such that F;, contains all null sets. If
X is a process with left limits, X  denotes the process (X, ). For a semi-
martingale X, let [ X, X] be the increasing process defined in [9]. By (2), any P-
local martingale X is a P-semi-martingale and the process [ X, X] under dP is
equal to the one under dP (see Proposition 3 in [8]). Throughout, for a semi-
martingale X and a locally bounded predictable process ¥, we denote by ¥ - X
the stochastic integral of ¥ relative to X. For 1 £p < oo, let H? denote the class
of all local martingales X over (F)) such that |X|,,=E[[X, X]?/*]"?<co. If
1 <p< oo, then H? coincides with the class of all I’-bounded martingales. Let us
denote by [ X | g0 the smallest positive constant C such that C? dominates a.s.,
E[[X,X],—[X, X];_|Fr] for every stopping time T. BMO is the class of those
martingales X which satisfies || X || 350 < 00, and it is a Banach space with norm
|* |l garo- As is well-known nowadays, BMO is the dual space of H'. Z always
denotes the process defined by the formula (1). It is the unique solution of the
stochastic integral equation

t
Z=1+{Z, _dM,,
o]
which was pointed out by C. Doléans-Dade [2].
Let now 1 <p<oco. We say that Z satisfies (B,) if for every stopping time T
ZHP<K, E[ZP|F;] (4)

where K, is a positive constant depending on p only. If Z is a positive uniformly
integrable martingale, then the inequality (4) is clearly valid for 0<p=1 with K,
=1.If 1<p<p/, then (B,) implies (B,), which follows from the Jensen inequality.
(B,) is in fact no other than the condition (b7,,) which is stated in [3].
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The reader is assumed to be familiar with the martingale theory as expound-
ed in [9]. Throughout the paper, let us denote by C a positive constant and by
C, a positive constant depending on p only, both letters are not necessarily the
same in each occurrence.

2. Preliminary Lemmas

In the next lemma we need not assume the uniform integrability of Z.

Lemma 1. Let 0<8<1. If MeBMO and AM,=z —1+40 for every t, then Z
satisfies (B,) for all p>1. More precisely, for every stopping time T we have

Z3P <exp {IM |30/ (2p0)} ELZF| Fr]. (5)
Proof. Assume that M e BMO and AM,= — 14 4. By an elementary calculation,
(1+x) exp (—x)=exp { —x*/(20)}
for x= —1+44, and so we have
(1+4M,)exp(—AM,)=exp {—(4AM,)*/(26)}
for every ¢t. Then Z,>0 a.s, for any stopping time T and

Z ol Z g2 €xp {(M o — Mp) = ((MS, M) — (M, M) 4))2 —tZT (4M)*/20)}

zexp{(M,,—Mp)— (M, M],,—[M, M];_)/29);.
Therefore, by the Jensen inequality
E[(Z ,/Z0)"?|F]2 exp { — E[[M, M1, — [M, M1,_|F;1/(2p3)}
zexp{— HMHIZBMO/(zpé)}’

which completes the proof.

If AM,=—1, then the process Z given by (1) is a non-negative local
martingale, and so Z_ € L!. Therefore, if M e BMO and AM,> —1+ 6 for some §
with 0<§<1, then Z is a positive uniformly integrable martingale, because we
have Z, < CE[Z |F,] for any stopping time T by (5) and the Jensen inequality.

In particular, if M is continuous, then, letting =1, we get

2y <exp (| M| 3o/ 20} ELZLP|Fy). ©

In what follows, the process Z is assumed to be a uniformly integrable
martingale such that Z_>0. Now, let us consider the process Z defined by Z,
=1/Z,, which is a uniformly integrable martingale with respect to the weighted
probability measure dP=7_dP. Let M= —¢(M). Then, under dP,Z is the

t
solution of the equation: Z,=1+{Z_ dM,. Thus the mapping ¢: £ —.% given
0
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by the formula
t
X)) =X,—[{Z7*d[X',Z]),, Xe¥ 7
0

is well-defined. We now remark that, if X is a semi-martingale under either
probability measure, then the stochastic integral ¥-X with respect to dP
coincides with the one relative to d P ([9], p. 379). For simplicity, let (B,) denote
the (B,) condition associated with dP.

Lemma 2. Let p~' +q~ =1 with 1 <p<oo. Then Z satisfies (B,) if and only if Z
satisfies (B,).

Proof. We denote by E [-] the expectation over @ with respect to dP. It is easy
to see that for every P-integrable random variable Y we have

E[Y|F1=E[Z_Y|F/)/Z; a.s., under dP and dP. (8)

Now, we assume that Z satisfies (B,). Then, dividing both sides of (4) by Z,
we get

Z{ <K, E[ZY|F]/Z,

and by (8) the right hand side is equal to KPE [Z4|F,]. Consequently, Z
satisfies (B,). The proof of the converse is similar and so is omitted.

Lemma 3. The mapping ¢: ¥ — L is bijective.

Proof. Let Xe % and M =—¢(]A\/I). Under dP, ¢(X) and M are semi-mar-
tingales. Clearly, ¢(X)*=X° and M‘= — M*. In addition,

AP(X),=(1+4M) ' 4X, and AM,=—(1+AM) ' AM,.

Then, combining these facts, we can find that
¢(X)=X+[X, M], )
X=¢X)+[o(X), M]. (10)

Therefore, [X, M]+[¢(X), M]=0 under dP. The similar results holds under
dP. It follows at once from (10) tAhat ¢ is injective. To show that it is surjective,
let X'e.# and X =@(X’) where ¢ is the mapping defined by (7). Then, by using
(10) for ¢ and ¢ we have
X'=¢(X)+[(X"), M]

={¢(X)+[$(X), MT} +[X, M]

=¢(X).
This implies that ¢ is surjective. ¢ is the inverse of ¢.

S
To prove that BMO 1s isomorphic to BMO, we need the next two lemmas.
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Lemma 4. If | X | gp0 <1, then for any stopping time T we have
Elexp ([X, X1—[X, X1r )IF ] =1~ | X i3a0) " (11)
This inequality was obtained by Garsia [1] for discrete parameter mar-

tingales. For the proof, see [6].

Lemma 5. Let 0<d=<1, and assume that —1+6<AM,£C for every t. Then
M eBMO if and only if Z satisfies the condition

ZTE[Z;”“"”|FT]”‘1§CP (A,)

Jor some p>1, where T is arbitrary stopping time.

For the proof, see [3], [4] or [5].

3. Proof of Theorem

Assume that M e BMO and AM,> —1+6 for some 6 with 0<&<1. Then, by
Lemma 1, Z is a uniformly integrable martingale which satisfies (B,) for all p>1.
Firstly we show that the inequality

CiIX, X]=[¢(X), (X)]1 = C,[X, X] (12)

is valid for every X e under either probability measure, where C,=(1+
IMgso)~? and C,=06"% Recall that, if M is continuous, then [$(X), ¢(X)]
=[X,X] for all Xe%. To see (12), let us assume dP to be the underlying
measure. Then ¢(X) is a semi-martingale and by the definition of [ , ] we have

[A(X), (X)), =<D(X), p(X)D,+ ) (49(X))*.

st

But we know that ¢(X) = X*,
Ap(X),=(1+4M)~'4X, and 6=<1+AM, <1+ M| g0

Therefore, by combining these facts, we can obtain (12). Similarly, the same
conclusion follows under dP.

Now, let p~*+g~'=1 with 1<p< oo, and we are going to prove that &, :
X—-Z-'". $(X) is a continuous mapping of H” into H”. Let X € H? and Y’ e A4,
Without loss of generality we may assume that Y’ is bounded, for the class of all
bounded martingales is dense in H% It follows from Lemma 5 that Z satisfies
(4,,) for some p,>1, and so Z_Po~De L1(dP). Then, by the Holder inequality
with exponents p, and g, =p,/(p,— 1) we get

E[[Y’, Y’]%Z] éE[Z; 1/(170—1)]1/!10 E[[Y’, Y']zgo/ljl/po‘
Moreover, by (12) we have

E[[¢(X), ¢ 1P < Cl1 X | -



348 N. Kazamaki

t
Thus the increasing process {j [d[p(X), Y/]s|} is integrable with respect to dP,
0

and by using the stopping argument we may assume that the process

}Zs'_lfpld[qb(X), Y14 is also integrable. Since (1+ | M||pp0) ' Z,£Z,_ and Z
s:ftisfies (B,), we have
E[I[®,(X), Y,

<E [Zw [zt (X, Y/]s|]
4]
<+ | M gyyo)? E [g) Z1|d[p(X), Y’]s|]

<(1+ [ Ml yyyo) P K, E [(3; E[ZL9F]|d[$(X), Y’]s|].

But the expectation on the right hand side is E [z;/q [ 14[(x), Y’]s|], which is
0

smaller than E[ZY1[¢(X), ¢(X)]*[Y’, Y] /*]. Then, applying the Holder in-
equality with exponents p and g to this term, we can find that

E[I[2,(X), Y11= C,E[[$(X), ¢(X)IZTP Y| 2
SCo sl Xlpe 1Yl ga-
Therefore, the inequality [|®,(X)| g, < C, ;| X|y» follows from the usual duality
argument. It is clear that &, is linear and injective. We now remark that, if M is

continuous, then the process Z is, of course, continuous and [X, X]
=[¢(X), ¢(X)] under dP and d P, so that by (6) we can obtain the right side of

(3)- R R
On the other hand, by Lemma 2, Z satisfies (B,) for all p>1. Moreover, as is

proved in [3] and [5], M= —¢(M) belongs to ﬂ{[\O and AM,=—(1+

AM) ' AM,= =1+ (1 4[| M| gp0) ", so that the mapping &,: H”— H?” defined
t .

by 6,(X),=[Z;?d$(X"),, X' H”, is linear and continuous. And it is easy to
0

see that @p is the inverse of @,. Consequently, H” and H? are isomorphic with
the mapping &,.
P
Finally, we shall establish the isomorphism between BMO and BMO. For
that, we show that, if Z satisfies (4,), then the inequality
X pao = Cpll¢(X) 53r0 (13)

is valid for all Xe 2. |¢p(X)|lzm5=0 implies X =0, so that we may assume
0<li¢(X)gmp<0. Now let T be any stopping time, and set a
=Q2pllo(X)%s) " . Then from Lemma 4

Elexp {ap([¢(X), ¢(X)1,, —[$(X), ¢(X)]7 )} Fr] <2
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follows, and by the definition of (4,) E[(Z4/Z,,)"/?~ "|F,]< C,. Applying now
the left side of (12) and the Holder inequality we have

E[LX, X1, —[X, X1 _|F7]

<(C,a) ' E[exp{a([p(X), p(X)].,, — [$(X), ¢(X)]r_)} | Fr]
S C X gm0 ENZ4/Z )P~ |Fpe-1p

x Elexp {ap([¢(X), $(X)1,, —[d(X), ¢(X)17_)} | Fr1M7
<G, lIo(X) I 5m-

o TN -
Thus (13) is proved. On the other hand, as MeBMO and 1+4M,=2(1+
M| BMQ)_l’ for some p>1 the process Z satisfies the (4,) condition associated
with dP by Lemma 5. Therefore, the inequality

1 X' 5770 = Cp 1 (X paro (14)
is valid for all X'e4. Then, setting X'=¢(X) in (14), we get

6 (X)) za5= Cpll Xl paro- Hence, BMO and @\O are isomorphic under the
mapping ¢. This completes the proof.

In [7], it is pointed out that the assumption “M e BMO” cannot be omitted
for the validity of the theorem.

Finally, we remark that the spaces H? and H? are isometrically isomorphic
under the mapping &, whenever M is continuous and the process Z is a
uniformly integrable martingale with Z_ >0.
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