Transformation of $\boldsymbol{H}^{\boldsymbol{p}}$-Martingales by a Change of Law

Norihiko Kazamaki
Department of Mathematics, Toyama University, Gofuku, Toyama, 930 Japan

1. Introduction

Let M be a local martingale such that $M_{0}=0$ and $\Delta M_{t}=M_{t}-M_{t-}>-1$ for every $t>0$, and consider the process Z defined by the formula

$$
\begin{equation*}
Z_{t}=\exp \left(M_{t}-\left\langle M^{c}, M^{c}\right\rangle_{t} / 2\right) \prod_{s \leqq t}\left(1+\Delta M_{s}\right) \exp \left(-\Delta M_{s}\right), \quad t \geqq 0 \tag{1}
\end{equation*}
$$

where M^{c} is the continuous part of M and $\left\langle M^{c}, M^{c}\right\rangle$ is the continuous increasing process such that $\left(M^{c}\right)^{2}-\left\langle M^{c}, M^{c}\right\rangle$ is a local martingale. If Z is a uniformly integrable martingale such that $Z_{\infty}>0$, then $d \hat{P}=Z_{\infty} d P$ is a probability measure equivalent to the underlying measure $d P$. For example, as is shown in the next section, if $M \in B M O$ and $\Delta \mathrm{M}_{t} \geqq-1+\delta$ for some δ with $0<\delta \leqq 1$, the process Z satisfies this property (see [4] or [5]). Let \mathscr{L} (resp. $\widehat{\mathscr{L}}$) denote the class of all local martingales X with $X_{0}=0$ relative to $d P$ (resp. $d \hat{P}$). Then the mapping ϕ : $\mathscr{L} \rightarrow \hat{\mathscr{L}}$ given by

$$
\begin{equation*}
\phi(X)_{t}=X_{t}-\int_{0}^{t} Z_{s}^{-1} d[X, Z]_{s} \tag{2}
\end{equation*}
$$

is well-defined and linear ([9], p. 376). Furthermore, if M is continuous, then $[\phi(X), \phi(X)]=[X, X]$ under $d P$ and $d \hat{P}([10]$, p. 884). But, unfortunately, $\phi(X)$ is not always uniformly integrable even if $X \in H^{p}$ for all $p \geqq 1$. Now, let \hat{H}^{p} denote the H^{p} class associated with $d \hat{P}$. Similarly, $\widehat{B M O}$ denotes the class of all $B M O$-martingales with respect to $d \hat{P}$. In [7], assuming the sample continuity of M and dealing only with continuous local martingales, we showed that $\widehat{B M O}$ is isomorphic to $B M O$ under the mapping ϕ, and that $\Phi: X \rightarrow Z^{-1} \cdot \phi(X)$ is an isomorphism of H^{1} onto \hat{H}^{1}. Here, $Z^{-1} \cdot \phi(X)$ denotes the stochastic integral of the process $Z^{-1}=\left(Z_{t}^{-1}\right)$ relative to the \hat{P}-local martingale $\phi(X)$.

In this paper we shall remove this continuity condition and prove the following.

Theorem. Let $1<p<\infty$ and $0<\delta \leqq 1$. If $M \in B M O$ and $\Delta M_{t} \geqq-1+\delta$ for every t, then $\Phi_{p}: X \rightarrow Z_{-}^{-1 / p} . \phi(X)$ is an isomorphism of H^{p} onto \hat{H}^{p}. Furthermore, BMO and $\widehat{B M O}$ are isomorphic under the mapping ϕ. In particular, if M is continuous, then we have

$$
\begin{equation*}
\exp \left\{-\|M\|_{B M O}^{2} /(2 p)\right\} \leqq\left\|\Phi_{p}\right\| \leqq \exp \left\{\|M\|_{B M O}^{2} /(2 q)\right\} \tag{3}
\end{equation*}
$$

where $p^{-1}+q^{-1}=1$ and $\left\|\Phi_{p}\right\|$ denotes the norm of Φ_{p} as an operator from H^{p} to \hat{H}^{p}.

From the definition of ϕ it follows at once that $\Phi_{p}(X)=\phi\left(Z_{-}^{-1 / p} \cdot X\right)$. The isomorphism between H^{1} and \widehat{H}^{1} is established in [3].

2. Preliminaries

1. Notations and Definitions

Let (Ω, F, P) be a complete probability space, given an increasing right continuous family $\left(F_{t}\right)_{0 \leqq t<\infty}$ of sub σ-fields of F such that F_{0} contains all null sets. If X is a process with left limits, X_{-}denotes the process (X_{-}). For a semimartingale X, let $[X, X]$ be the increasing process defined in [9]. By (2), any P local martingale X is a \hat{P}-semi-martingale and the process [$X, X]$ under $d P$ is equal to the one under $d \hat{P}$ (see Proposition 3 in [8]). Throughout, for a semimartingale X and a locally bounded predictable process Ψ, we denote by $\Psi \cdot X$ the stochastic integral of Ψ relative to X. For $1 \leqq p<\infty$, let H^{p} denote the class of all local martingales X over $\left(F_{t}\right)$ such that $\|X\|_{H^{p}}=E\left[[X, X]_{\infty}^{p / 2}\right]^{1 / p}<\infty$. If $1<p<\infty$, then H^{p} coincides with the class of all L^{p}-bounded martingales. Let us denote by $\|X\|_{B M O}$ the smallest positive constant C such that C^{2} dominates a.s., $E\left[[X, X]_{\infty}-[X, X]_{T-} \mid F_{T}\right]$ for every stopping time T. BMO is the class of those martingales X which satisfies $\|X\|_{B M O}<\infty$, and it is a Banach space with norm $\|\cdot\|_{B M O}$. As is well-known nowadays, $B M O$ is the dual space of $H^{1} . Z$ always denotes the process defined by the formula (1). It is the unique solution of the stochastic integral equation

$$
Z_{t}=1+\int_{0}^{t} Z_{s-} d M_{s}
$$

which was pointed out by C. Doléans-Dade [2].
Let now $1<p<\infty$. We say that Z satisfies $\left(B_{p}\right)$ if for every stopping time T

$$
\begin{equation*}
Z_{T}^{1 / p} \leqq K_{p} E\left[Z_{\infty}^{1 / p} \mid F_{T}\right] \tag{4}
\end{equation*}
$$

where K_{p} is a positive constant depending on p only. If Z is a positive uniformly integrable martingale, then the inequality (4) is clearly valid for $0<p \leqq 1$ with K_{p} $=1$. If $1<p<p^{\prime}$, then ($B_{p^{\prime}}$) implies (B_{p}), which follows from the Jensen inequality. $\left(B_{p}\right)$ is in fact no other than the condition $\left(b_{1 / p}^{-}\right)$which is stated in [3].

The reader is assumed to be familiar with the martingale theory as expounded in [9]. Throughout the paper, let us denote by C a positive constant and by C_{p} a positive constant depending on p only, both letters are not necessarily the same in each occurrence.

2. Preliminary Lemmas

In the next lemma we need not assume the uniform integrability of Z.
Lemma 1. Let $0<\delta \leqq 1$. If $M \in B M O$ and $\Delta M_{t} \geqq-1+\delta$ for every t, then Z satisfies $\left(B_{p}\right)$ for all $p>1$. More precisely, for every stopping time T we have

$$
\begin{equation*}
Z_{T}^{1 / p} \leqq \exp \left\{\|M\|_{B M O}^{2} /(2 p \delta)\right\} E\left[Z_{\infty}^{1 / p} \mid F_{T}\right] . \tag{5}
\end{equation*}
$$

Proof. Assume that $M \in B M O$ and $\Delta M_{t} \geqq-1+\delta$. By an elementary calculation,

$$
(1+x) \exp (-x) \geqq \exp \left\{-x^{2} /(2 \delta)\right\}
$$

for $x \geqq-1+\delta$, and so we have

$$
\left(1+\Delta M_{t}\right) \exp \left(-\Delta M_{t}\right) \geqq \exp \left\{-\left(\Delta M_{t}\right)^{2} /(2 \delta)\right\}
$$

for every t. Then $Z_{T}>0$ a.s., for any stopping time T and

$$
\begin{aligned}
Z_{\infty} / Z_{T} & \geqq \exp \left\{\left(M_{\infty}-M_{T}\right)-\left(\left\langle M^{c}, M^{c}\right\rangle_{\infty}-\left\langle M^{c}, M^{c}\right\rangle_{T}\right) / 2-\sum_{i>T}\left(\Delta M_{t}\right)^{2} /(2 \delta)\right\} \\
& \geqq \exp \left\{\left(M_{\infty}-M_{T}\right)-\left([M, M]_{\infty}-[M, M]_{T-}\right) /(2 \delta)\right\} .
\end{aligned}
$$

Therefore, by the Jensen inequality

$$
\begin{aligned}
E\left[\left(Z_{\infty} / Z_{T}\right)^{1 / p} \mid F_{T}\right] & \geqq \exp \left\{-E\left[[M, M]_{\infty}-[M, M]_{T-} \mid F_{T}\right] /(2 p \delta)\right\} \\
& \geqq \exp \left\{-\|M\|_{B M O}^{2} /(2 p \delta)\right\},
\end{aligned}
$$

which completes the proof.
If $\Delta M_{t} \geqq-1$, then the process Z given by (1) is a non-negative local martingale, and so $Z_{\infty} \in L^{1}$. Therefore, if $M \in B M O$ and $\Delta M_{t} \geqq-1+\delta$ for some δ with $0<\delta \leqq 1$, then Z is a positive uniformly integrable martingale, because we have $Z_{T} \leqq C E\left[Z_{\infty} \mid F_{T}\right]$ for any stopping time T by (5) and the Jensen inequality.

In particular, if M is continuous, then, letting $\delta=1$, we get

$$
\begin{equation*}
Z_{T}^{1 / p} \leqq \exp \left\{\|M\|_{B M O}^{2} /(2 p)\right\} E\left[Z_{\propto \delta}^{1 / p} \mid F_{T}\right] . \tag{6}
\end{equation*}
$$

In what follows, the process Z is assumed to be a uniformly integrable martingale such that $Z_{\infty}>0$. Now, let us consider the process \hat{Z} defined by \hat{Z}_{t} $=1 / Z_{t}$, which is a uniformly integrable martingale with respect to the weighted probability measure $d \hat{P}=Z_{\infty} d P$. Let $\hat{M}=-\phi(M)$. Then, under $d \hat{P}, \hat{Z}$ is the solution of the equation: $\hat{Z}_{t}=1+\int_{0}^{t} \hat{Z}_{s-} d \hat{M}_{s}$. Thus the mapping $\hat{\phi}: \hat{\mathscr{L}} \rightarrow \mathscr{L}$ given
by the formula

$$
\begin{equation*}
\hat{\phi}\left(X^{\prime}\right)_{t}=X_{t}^{\prime}-\int_{0}^{t} \hat{Z}_{s}^{-1} d\left[X^{\prime}, \hat{Z}\right]_{s}, \quad X^{\prime} \in \hat{\mathscr{L}} \tag{7}
\end{equation*}
$$

is well-defined. We now remark that, if X is a semi-martingale under either probability measure, then the stochastic integral $\Psi \cdot X$ with respect to $d P$ coincides with the one relative to $d \hat{P}$ ([9], p. 379). For simplicity, let (\hat{B}_{p}) denote the $\left(B_{p}\right)$ condition associated with $d \hat{P}$.
Lemma 2. Let $p^{-1}+q^{-1}=1$ with $1<p<\infty$. Then Z satisfies $\left(B_{p}\right)$ if and only if \hat{Z} satisfies $\left(\hat{B}_{q}\right)$.
Proof. We denote by $\hat{E}[\cdot]$ the expectation over Ω with respect to $d \hat{P}$. It is easy to see that for every \hat{P}-integrable random variable Y we have

$$
\begin{equation*}
\hat{E}\left[Y \mid F_{T}\right]=E\left[Z_{\infty} Y \mid F_{T}\right] / Z_{T} \quad \text { a.s., under } d P \text { and } d \hat{P} \tag{8}
\end{equation*}
$$

Now, we assume that Z satisfies $\left(B_{p}\right)$. Then, dividing both sides of (4) by Z_{T}, we get

$$
\hat{Z}_{T}^{1 / q} \leqq K_{p} E\left[Z_{\infty}^{1 / p} \mid F_{T}\right] / Z_{T}
$$

and by (8) the right hand side is equal to $K_{p} \hat{E}\left[Z_{\infty}^{1 / q} \mid F_{T}\right]$. Consequently, \hat{Z} satisfies $\left(\hat{B}_{q}\right)$. The proof of the converse is similar and so is omitted.
Lemma 3. The mapping $\phi: \mathscr{L} \rightarrow \hat{\mathscr{L}}$ is bijective.
Proof. Let $X \in \mathscr{L}$ and $\hat{M}=-\phi(M)$. Under $d P, \phi(X)$ and \hat{M} are semi-martingales. Clearly, $\phi(X)^{c}=X^{c}$ and $\hat{M}^{c}=-M^{c}$. In addition,

$$
\Delta \phi(X)_{t}=\left(1+\Delta M_{t}\right)^{-1} \Delta X_{t} \quad \text { and } \quad \Delta \hat{M}_{t}=-\left(1+\Delta M_{t}\right)^{-1} \Delta M_{t}
$$

Then, combining these facts, we can find that

$$
\begin{align*}
& \phi(X)=X+[X, \hat{M}], \tag{9}\\
& X=\phi(X)+[\phi(X), M] \tag{10}
\end{align*}
$$

Therefore, $[X, \hat{M}]+[\phi(X), M]=0$ under $d P$. The similar results holds under $d \hat{P}$. It follows at once from (10) that ϕ is injective. To show that it is surjective, let $X^{\prime} \in \hat{\mathscr{L}}$ and $X=\hat{\phi}\left(X^{\prime}\right)$ where $\hat{\phi}$ is the mapping defined by (7). Then, by using (10) for $\hat{\phi}$ and ϕ we have

$$
\begin{aligned}
X^{\prime} & =\hat{\phi}\left(X^{\prime}\right)+\left[\hat{\phi}\left(X^{\prime}\right), \hat{M}\right] \\
& =\{\phi(X)+[\phi(X), M]\}+[X, \hat{M}] \\
& =\phi(X)
\end{aligned}
$$

This implies that ϕ is surjective. $\hat{\phi}$ is the inverse of ϕ.
To prove that $\widehat{B M O}$ is isomorphic to $B M O$, we need the next two lemmas.

Lemma 4. If $\|X\|_{B M O}<1$, then for any stopping time T we have

$$
\begin{equation*}
E\left[\exp \left([X, X]-[X, X]_{T-}\right) \mid F_{T}\right] \leqq\left(1-\|X\|_{B M O}^{2}\right)^{-1} \tag{11}
\end{equation*}
$$

This inequality was obtained by Garsia [1] for discrete parameter martingales. For the proof, see [6].

Lemma 5. Let $0<\delta \leqq 1$, and assume that $-1+\delta \leqq \Delta M_{t} \leqq C$ for every t. Then $M \in B M O$ if and only if Z satisfies the condition

$$
\begin{equation*}
Z_{T} E\left[Z_{\infty}^{-1 /(p-1)} \mid F_{T}\right]^{p-1} \leqq C_{p} \tag{p}
\end{equation*}
$$

for some $p>1$, where T is arbitrary stopping time.
For the proof, see [3], [4] or [5].

3. Proof of Theorem

Assume that $M \in B M O$ and $\Delta M_{t} \geqq-1+\delta$ for some δ with $0<\delta \leqq 1$. Then, by Lemma $1, Z$ is a uniformly integrable martingale which satisfies $\left(B_{p}\right)$ for all $p>1$. Firstly we show that the inequality

$$
\begin{equation*}
C_{1}[X, X] \leqq[\phi(X), \phi(X)] \leqq C_{2}[X, X] \tag{12}
\end{equation*}
$$

is valid for every $X \in \mathscr{L}$ under either probability measure, where $C_{1}=(1+$ $\left.\|M\|_{B M O}\right)^{-2}$ and $C_{2}=\delta^{-2}$. Recall that, if M is continuous, then $[\phi(X), \phi(X)]$ $=[X, X]$ for all $X \in \mathscr{L}$. To see (12), let us assume $d P$ to be the underlying measure. Then $\phi(X)$ is a semi-martingale and by the definition of [,] we have

$$
[\phi(X), \phi(X)]_{t}=\left\langle\phi(X)^{c}, \phi(X)^{c}\right\rangle_{t}+\sum_{s \leqq t}\left(\Delta \phi(X)_{s}\right)^{2}
$$

But we know that $\phi(X)^{c}=X^{c}$,

$$
\Delta \phi(X)_{t}=\left(1+\Delta M_{t}\right)^{-1} \Delta X_{t} \quad \text { and } \quad \delta \leqq 1+\Delta M_{t} \leqq 1+\|M\|_{B M O} .
$$

Therefore, by combining these facts, we can obtain (12). Similarly, the same conclusion follows under $d \hat{P}$.

Now, let $p^{-1}+q^{-1}=1$ with $1<p<\infty$, and we are going to prove that Φ_{p} : $X \rightarrow Z_{-}^{-1 / p} \cdot \phi(X)$ is a continuous mapping of H^{p} into \hat{H}^{p}. Let $X \in H^{p}$ and $Y^{\prime} \in \hat{H}^{p}$. Without loss of generality we may assume that Y^{\prime} is bounded, for the class of all bounded martingales is dense in \hat{H}^{q}. It follows from Lemma 5 that Z satisfies $\left(A_{p_{0}}\right)$ for some $p_{0}>1$, and so $Z_{\infty}^{-1 /\left(p_{0}-1\right)} \in L^{1}(d P)$. Then, by the Hölder inequality with exponents p_{0} and $q_{0}=p_{0} /\left(p_{0}-1\right)$ we get

$$
E\left[\left[Y^{\prime}, Y^{\prime}\right]_{\infty}^{q / 2}\right] \leqq E\left[Z_{\infty}^{-1 /\left(p_{0}-1\right)}\right]^{1 / q_{0}} \hat{E}\left[\left[Y^{\prime}, Y^{\prime}\right]_{\infty}^{q p_{0} / 2}\right]^{1 / p_{0}} .
$$

Moreover, by (12) we have

$$
E\left[[\phi(X), \phi(X)]_{\infty}^{p / 2}\right]^{1 / p} \leqq C\|X\|_{H^{p}}
$$

Thus the increasing process $\left\{\int_{0}^{t}\left|d\left[\phi(X), Y^{\prime}\right]_{s}\right|\right\}$ is integrable with respect to $d P$, and by using the stopping argument we may assume that the process $\left\{\int_{0}^{t} Z_{s-}^{-1 / p}\left|d\left[\phi(X), Y^{\prime}\right]_{s}\right|\right\}$ is also integrable. Since $\left(1+\|M\|_{B M O}\right)^{-1} Z_{s} \leqq Z_{s-}$ and Z satisfies (B_{q}), we have

$$
\begin{aligned}
& \hat{E}\left[\left|\left[\Phi_{p}(X), Y^{\prime}\right]_{\infty}\right|\right] \\
& \quad \leqq E\left[Z_{\infty} \int_{0}^{\infty} Z_{s-}^{-1 / p}\left|d\left[\phi(X), Y^{\prime}\right]_{s}\right|\right] \\
& \quad \leqq\left(1+\|M\|_{B M O}\right)^{1 / p} E\left[\int_{0}^{\infty} Z_{s}^{1 / q}\left|d\left[\phi(X), Y^{\prime}\right]_{s}\right|\right] \\
& \quad \leqq\left(1+\|M\|_{B M O}\right)^{1 / p} K_{q} E\left[\int_{0}^{\infty} E\left[Z_{\infty}^{1 / q} \mid F_{s}\right]\left|d\left[\phi(X), Y^{\prime}\right]_{s}\right|\right] .
\end{aligned}
$$

But the expectation on the right hand side is $E\left[Z_{\infty}^{1 / q} \int_{0}^{\infty}\left|d\left[\phi(X), Y^{\prime}\right]_{s}\right|\right]$, which is smaller than $E\left[Z_{\infty}^{1 / a}[\phi(X), \phi(X)]_{\infty}^{1 / 2}\left[Y^{\prime}, Y^{\prime}\right]_{\infty}^{1 / 2}\right]$. Then, applying the Hölder inequality with exponents p and q to this term, we can find that

$$
\begin{aligned}
\hat{E}\left[\left|\left[\Phi_{p}(X), Y^{\prime}\right]_{\infty}\right|\right] & \leqq C_{p} E\left[[\phi(X), \phi(X)]_{\infty}^{p / 2}\right]^{1 / p}\left\|Y^{\prime}\right\|_{\hat{H}^{q}} \\
& \leqq C_{p, \delta}\|X\|_{H^{p}}\left\|Y^{\prime}\right\|_{\hat{H}^{q}} .
\end{aligned}
$$

Therefore, the inequality $\left\|\Phi_{p}(X)\right\|_{\hat{H}^{p}} \leqq C_{p, \delta}\|X\|_{H^{p}}$ follows from the usual duality argument. It is clear that Φ_{p} is linear and injective. We now remark that, if M is continuous, then the process Z is, of course, continuous and $[X, X]$ $=[\phi(X), \phi(X)]$ under $d P$ and $d \hat{P}$, so that by (6) we can obtain the right side of (3).

On the other hand, by Lemma $2, \hat{Z}$ satisfies $\left(\hat{B}_{p}\right)$ for all $p>1$. Moreover, as is proved in [3] and [5], $\hat{M}=-\phi(M)$ belongs to $\widehat{B M O}$ and $\Delta \hat{M}_{t}=-(1+$ $\left.\Delta M_{t}\right)^{-1} \Delta M_{t} \geqq-1+\left(1+\|M\|_{B M O}\right)^{-1}$, so that the mapping $\hat{\Phi}_{p}: \hat{H}^{p} \rightarrow H^{p}$ defined by $\hat{\Phi}_{p}\left(X^{\prime}\right)_{t}=\int_{0}^{t} \hat{Z}_{s-}^{-1 / p} d \hat{\phi}\left(X^{\prime}\right)_{s}, X^{\prime} \in \hat{H}^{p}$, is linear and continuous. And it is easy to see that $\hat{\Phi}_{p}$ is the inverse of Φ_{p}. Consequently, H^{p} and \hat{H}^{p} are isomorphic with the mapping Φ_{p}.

Finally, we shall establish the isomorphism between $B M O$ and $\widehat{B M O}$. For that, we show that, if Z satisfies $\left(A_{p}\right)$, then the inequality

$$
\begin{equation*}
\|X\|_{B M O} \leqq C_{p}\|\phi(X)\|_{B M O} \tag{13}
\end{equation*}
$$

is valid for all $X \in \mathscr{L} .\|\phi(X)\|_{\widehat{B M O}}=0$ implies $X=0$, so that we may assume $0<\|\phi(X)\|_{\widehat{B M O}}<\infty$. Now let T be any stopping time, and set a $=\left(2 p\|\phi(X)\|_{\widehat{B M O}}^{2}\right)^{-1}$. Then from Lemma 4

$$
\hat{E}\left[\exp \left\{\operatorname{ap}\left([\phi(X), \phi(X)]_{\infty}-[\phi(X), \phi(X)]_{T-}\right)\right\} \mid F_{\Gamma}\right] \leqq 2
$$

follows, and by the definition of $\left(A_{p}\right) E\left[\left(Z_{T} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{T}\right] \leqq C_{p}$. Applying now the left side of (12) and the Hölder inequality we have

$$
\begin{aligned}
E[& {\left.[X, X]_{\infty}-[X, X]_{T-} \mid F_{T}\right] } \\
& \leqq\left(C_{1} a\right)^{-1} E\left[\exp \left\{a\left([\phi(X), \phi(X)]_{\infty}-[\phi(X), \phi(X)]_{T-}\right)\right\} \mid F_{T}\right] \\
& \leqq C_{p}\|\phi(X)\|_{B M O}^{2} E\left[\left(Z_{T} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{T}\right]^{(p-1) / p} \\
& \times \widehat{E}\left[\exp \left\{a p\left([\phi(X), \phi(X)]_{\infty}-[\phi(X), \phi(X)]_{T-}\right)\right\} \mid F_{T}\right]^{1 / p} \\
& \leqq C_{p}\|\phi(X)\|_{B M O}^{2} .
\end{aligned}
$$

Thus (13) is proved. On the other hand, as $\hat{M} \in \widehat{B M O}$ and $1+\Delta \hat{M}_{t} \geqq(1+$ $\left.\|M\|_{B M O}\right)^{-1}$, for some $p>1$ the process \hat{Z} satisfies the $\left(A_{p}\right)$ condition associated with $d \hat{P}$ by Lemma 5 . Therefore, the inequality

$$
\begin{equation*}
\left\|X^{\prime}\right\|_{\widehat{B M O}} \leqq C_{p}\left\|\hat{\phi}\left(X^{\prime}\right)\right\|_{B M O} \tag{14}
\end{equation*}
$$

is valid for all $X^{\prime} \in \hat{\mathscr{L}}$. Then, setting $X^{\prime}=\phi(X)$ in (14), we get $\|\phi(X)\|_{\widehat{B M O}} \leqq C_{p}\|X\|_{B M O}$. Hence, BMO and $\widehat{B M O}$ are isomorphic under the mapping ϕ. This completes the proof.

In [7], it is pointed out that the assumption " $M \in B M O$ " cannot be omitted for the validity of the theorem.

Finally, we remark that the spaces H^{2} and \hat{H}^{2} are isometrically isomorphic under the mapping Φ_{2} whenever M is continuous and the process Z is a uniformly integrable martingale with $Z_{\infty}>0$.

References

1. Garsia, A.M.: Martingale inequalities. Seminar Notes on Recent Progress. New York: Benjamin 1973
2. Doléans-Dade, C.: Quelques applications de la formule de changement de variables pour les semi-martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 16, 181-194 (1970)
3. Doléans-Dade, C., Meyer, P.A.: Inégalités de normes avec poids. Séminaire de Probabilités XIII, Université de Strasbourg, Lecture Notes in Math., Berlin-Heidelberg-New York: Springer. (To appear)
4. Izumisawa, M., Sekiguchi, T., Shiota, Y.: Remark on a characterization of BMO-martingales. Tôhoku Math. J. (To appear).
5. Kazamaki, N.: A sufficient condition for the uniform integrability of exponential martingales. Math. Rep. Toyama Univ. vol. 2. (To appear)
6. Kazamaki, N.: On transforming of $B M O$-martingales by a change of law. Tôhoku Math. J. (To appear)
7. Kazamaki, N., Sekiguchi, T.: On the transformation of some classes of martingales by a change of law. Tôhoku Math. J. (To appear)
8. Lenglart, E.: Transformation des martingales locales par changement absolument continu de probabilités. Z. Wahrscheinlichkeitstheorie verw. Gebiete 39, 65-70 (1977)
9. Meyer, P.A.: Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Université de Strasbourg. Lecture Notes in Math. 511, Berlin-Heidelberg-New York: Springer-Verlag 1976
10. Van Schuppen, J.H., Wong, E.: Transformation of local martingales under a change of law. Ann. Probability 2, 879-888 (1974)
