Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1979

Transformation of H^p -Martingales by a Change of Law

Norihiko Kazamaki

Department of Mathematics, Toyama University, Gofuku, Toyama, 930 Japan

1. Introduction

Let M be a local martingale such that $M_0 = 0$ and $\Delta M_t = M_t - M_{t-} > -1$ for every t > 0, and consider the process Z defined by the formula

$$Z_t = \exp\left(M_t - \langle M^c, M^c \rangle_t / 2\right) \prod_{s \le t} (1 + \Delta M_s) \exp\left(-\Delta M_s\right), \quad t \ge 0$$
(1)

where M^c is the continuous part of M and $\langle M^c, M^c \rangle$ is the continuous increasing process such that $(M^c)^2 - \langle M^c, M^c \rangle$ is a local martingale. If Z is a uniformly integrable martingale such that $Z_{\infty} > 0$, then $d\hat{P} = Z_{\infty} dP$ is a probability measure equivalent to the underlying measure dP. For example, as is shown in the next section, if $M \in BMO$ and $\Delta M_t \ge -1 + \delta$ for some δ with $0 < \delta \le 1$, the process Z satisfies this property (see [4] or [5]). Let \mathscr{L} (resp. $\widehat{\mathscr{L}}$) denote the class of all local martingales X with $X_0 = 0$ relative to dP (resp. $d\hat{P}$). Then the mapping ϕ : $\mathscr{L} \to \widehat{\mathscr{L}}$ given by

$$\phi(X)_{t} = X_{t} - \int_{0}^{t} Z_{s}^{-1} d[X, Z]_{s}$$
⁽²⁾

is well-defined and linear ([9], p. 376). Furthermore, if M is continuous, then $[\phi(X), \phi(X)] = [X, X]$ under dP and $d\hat{P}$ ([10], p. 884). But, unfortunately, $\phi(X)$ is not always uniformly integrable even if $X \in H^p$ for all $p \ge 1$. Now, let \hat{H}^p

denote the H^p class associated with $d\hat{P}$. Similarly, $\hat{B}M\hat{O}$ denotes the class of all *BMO*-martingales with respect to $d\hat{P}$. In [7], assuming the sample continuity of

M and dealing only with continuous local martingales, we showed that \widehat{BMO} is isomorphic to *BMO* under the mapping ϕ , and that $\phi: X \to Z^{-1} \cdot \phi(X)$ is an isomorphism of H^1 onto \widehat{H}^1 . Here, $Z^{-1} \cdot \phi(X)$ denotes the stochastic integral of the process $Z^{-1} = (Z_t^{-1})$ relative to the \widehat{P} -local martingale $\phi(X)$.

In this paper we shall remove this continuity condition and prove the following.

Theorem. Let $1 and <math>0 < \delta \leq 1$. If $M \in BMO$ and $\Delta M_t \geq -1 + \delta$ for every t, then $\Phi_p: X \to Z_{-}^{-1/p} \cdot \phi(X)$ is an isomorphism of H^p onto \hat{H}^p . Furthermore, BMO and \widehat{BMO} are isomorphic under the mapping ϕ . In particular, if M is continuous, then we have

$$\exp\left\{-\|M\|_{BMO}^2/(2\,p)\right\} \le \|\Phi_p\| \le \exp\left\{\|M\|_{BMO}^2/(2\,q)\right\}$$
(3)

where $p^{-1} + q^{-1} = 1$ and $||\Phi_p||$ denotes the norm of Φ_p as an operator from H^p to \hat{H}^p .

From the definition of ϕ it follows at once that $\Phi_p(X) = \phi(Z_{-}^{-1/p} \cdot X)$. The isomorphism between H^1 and \hat{H}^1 is established in [3].

2. Preliminaries

1. Notations and Definitions

Let (Ω, F, P) be a complete probability space, given an increasing right continuous family $(F_t)_{0 \le t < \infty}$ of sub σ -fields of F such that F_0 contains all null sets. If X is a process with left limits, X_{-} denotes the process (X_{t-}) . For a semimartingale X, let [X, X] be the increasing process defined in [9]. By (2), any Plocal martingale X is a \hat{P} -semi-martingale and the process [X, X] under dP is equal to the one under $d\hat{P}$ (see Proposition 3 in [8]). Throughout, for a semimartingale X and a locally bounded predictable process Ψ , we denote by $\Psi \cdot X$ the stochastic integral of Ψ relative to X. For $1 \leq p < \infty$, let H^p denote the class of all local martingales X over (F_t) such that $||X||_{H^p} = E[[X, X]_{\infty}^{p/2}]^{1/p} < \infty$. If $1 , then <math>H^p$ coincides with the class of all L^p -bounded martingales. Let us denote by $||X||_{BMO}$ the smallest positive constant C such that C^2 dominates a.s., $E[[X, X]_{\infty} - [X, X]_{T-}|F_T]$ for every stopping time T. BMO is the class of those martingales X which satisfies $||X||_{BMO} < \infty$, and it is a Banach space with norm $\|\cdot\|_{BMO}$. As is well-known nowadays, BMO is the dual space of H^1 . Z always denotes the process defined by the formula (1). It is the unique solution of the stochastic integral equation

$$Z_t = 1 + \int_0^t Z_{s-} dM_s,$$

which was pointed out by C. Doléans-Dade [2].

Let now $1 . We say that Z satisfies <math>(B_p)$ if for every stopping time T

$$Z_T^{1/p} \leq K_p E[Z_\infty^{1/p}|F_T] \tag{4}$$

where K_p is a positive constant depending on p only. If Z is a positive uniformly integrable martingale, then the inequality (4) is clearly valid for $0 with <math>K_p = 1$. If $1 , then <math>(B_{p'})$ implies (B_p) , which follows from the Jensen inequality. (B_p) is in fact no other than the condition $(b_{1/p})$ which is stated in [3].

Transformation of H^p -Martingales by a Change of Law

The reader is assumed to be familiar with the martingale theory as expounded in [9]. Throughout the paper, let us denote by C a positive constant and by C_p a positive constant depending on p only, both letters are not necessarily the same in each occurrence.

2. Preliminary Lemmas

In the next lemma we need not assume the uniform integrability of Z.

Lemma 1. Let $0 < \delta \leq 1$. If $M \in BMO$ and $\Delta M_t \geq -1 + \delta$ for every t, then Z satisfies (B_n) for all p > 1. More precisely, for every stopping time T we have

$$Z_T^{1/p} \le \exp\left\{ \|M\|_{BMO}^2 / (2p\delta) \right\} E[Z_{\infty}^{1/p}|F_T].$$
(5)

Proof. Assume that $M \in BMO$ and $\Delta M_t \ge -1 + \delta$. By an elementary calculation,

 $(1+x) \exp(-x) \ge \exp\{-x^2/(2\delta)\}$

for $x \ge -1 + \delta$, and so we have

$$(1 + \Delta M_t) \exp(-\Delta M_t) \ge \exp\{-(\Delta M_t)^2/(2\delta)\}$$

for every t. Then $Z_T > 0$ a.s., for any stopping time T and

$$Z_{\infty}/Z_{T} \ge \exp\left\{\left(M_{\infty} - M_{T}\right) - \left(\left\langle M^{c}, M^{c} \right\rangle_{\infty} - \left\langle M^{c}, M^{c} \right\rangle_{T}\right)/2 - \sum_{t > T} (\Delta M_{t})^{2}/(2\,\delta)\right\}$$
$$\ge \exp\left\{\left(M_{\infty} - M_{T}\right) - \left(\left[M, M\right]_{\infty} - \left[M, M\right]_{T-1}\right)/(2\,\delta)\right\}.$$

Therefore, by the Jensen inequality

$$E[(Z_{\infty}/Z_{T})^{1/p}|F_{T}] \ge \exp\{-E[[M, M]_{\infty} - [M, M]_{T-}|F_{T}]/(2p\delta)\}\}$$

$$\ge \exp\{-\|M\|_{BMO}^{2}/(2p\delta)\},$$

which completes the proof.

If $\Delta M_t \ge -1$, then the process Z given by (1) is a non-negative local martingale, and so $Z_{\infty} \in L^1$. Therefore, if $M \in BMO$ and $\Delta M_t \ge -1 + \delta$ for some δ with $0 < \delta \le 1$, then Z is a positive uniformly integrable martingale, because we have $Z_T \le CE[Z_{\infty}|F_T]$ for any stopping time T by (5) and the Jensen inequality.

In particular, if M is continuous, then, letting $\delta = 1$, we get

$$Z_T^{1/p} \le \exp\left\{\|M\|_{BMO}^2/(2p)\right\} E[Z_{\infty}^{1/p}|F_T].$$
(6)

In what follows, the process Z is assumed to be a uniformly integrable martingale such that $Z_{\infty} > 0$. Now, let us consider the process \hat{Z} defined by $\hat{Z}_t = 1/Z_t$, which is a uniformly integrable martingale with respect to the weighted probability measure $d\hat{P} = Z_{\infty} dP$. Let $\hat{M} = -\phi(M)$. Then, under $d\hat{P}, \hat{Z}$ is the solution of the equation: $\hat{Z}_t = 1 + \int_0^t \hat{Z}_{s-1} d\hat{M}_s$. Thus the mapping $\hat{\phi}: \hat{Z} \to \mathcal{L}$ given

by the formula

$$\hat{\phi}(X')_t = X'_t - \int_0^t \hat{Z}_s^{-1} d[X', \hat{Z}]_s, \quad X' \in \hat{\mathscr{L}}$$

$$\tag{7}$$

is well-defined. We now remark that, if X is a semi-martingale under either probability measure, then the stochastic integral $\Psi \cdot X$ with respect to dP coincides with the one relative to $d\hat{P}$ ([9], p. 379). For simplicity, let (\hat{B}_p) denote the (B_p) condition associated with $d\hat{P}$.

Lemma 2. Let $p^{-1} + q^{-1} = 1$ with $1 . Then Z satisfies <math>(B_p)$ if and only if \hat{Z} satisfies (\hat{B}_q) .

Proof. We denote by $\hat{E}[\cdot]$ the expectation over Ω with respect to $d\hat{P}$. It is easy to see that for every \hat{P} -integrable random variable Y we have

$$\widehat{E}[Y|F_T] = E[Z_{\infty}Y|F_T]/Z_T \quad \text{a.s., under } dP \text{ and } d\widehat{P}.$$
(8)

Now, we assume that Z satisfies (B_p) . Then, dividing both sides of (4) by Z_T , we get

 $\hat{Z}_T^{1/q} \leq K_p E[Z_\infty^{1/p}|F_T]/Z_T$

and by (8) the right hand side is equal to $K_p \hat{E}[Z_{\infty}^{1/q}|F_T]$. Consequently, \hat{Z} satisfies (\hat{B}_q) . The proof of the converse is similar and so is omitted.

Lemma 3. The mapping $\phi: \mathcal{L} \rightarrow \hat{\mathcal{L}}$ is bijective.

Proof. Let $X \in \mathscr{L}$ and $\hat{M} = -\phi(M)$. Under dP, $\phi(X)$ and \hat{M} are semi-martingales. Clearly, $\phi(X)^c = X^c$ and $\hat{M}^c = -M^c$. In addition,

$$\Delta \phi(X)_t = (1 + \Delta M_t)^{-1} \Delta X_t \text{ and } \Delta \hat{M}_t = -(1 + \Delta M_t)^{-1} \Delta M_t.$$

Then, combining these facts, we can find that

$$\phi(X) = X + [X, \hat{M}], \tag{9}$$

$$X = \phi(X) + [\phi(X), M]. \tag{10}$$

Therefore, $[X, \hat{M}] + [\phi(X), M] = 0$ under dP. The similar results holds under $d\hat{P}$. It follows at once from (10) that ϕ is injective. To show that it is surjective, let $X' \in \hat{\mathscr{L}}$ and $X = \hat{\phi}(X')$ where $\hat{\phi}$ is the mapping defined by (7). Then, by using (10) for $\hat{\phi}$ and ϕ we have

$$\begin{aligned} X' &= \hat{\phi}(X') + \left[\hat{\phi}(X'), \hat{M}\right] \\ &= \left\{\phi(X) + \left[\phi(X), M\right]\right\} + \left[X, \hat{M}\right] \\ &= \phi(X). \end{aligned}$$

This implies that ϕ is surjective. $\hat{\phi}$ is the inverse of ϕ .

To prove that \widehat{BMO} is isomorphic to BMO, we need the next two lemmas.

346

Transformation of H^p -Martingales by a Change of Law

Lemma 4. If $||X||_{BMO} < 1$, then for any stopping time T we have

$$E[\exp([X, X] - [X, X]_{T_{-}})|F_{T}] \leq (1 - \|X\|_{BMO}^{2})^{-1}.$$
(11)

This inequality was obtained by Garsia [1] for discrete parameter martingales. For the proof, see [6].

Lemma 5. Let $0 < \delta \leq 1$, and assume that $-1 + \delta \leq \Delta M_t \leq C$ for every t. Then $M \in BMO$ if and only if Z satisfies the condition

$$Z_T E[Z_{\infty}^{-1/(p-1)}|F_T]^{p-1} \leq C_p \tag{A_p}$$

for some p > 1, where T is arbitrary stopping time.

For the proof, see [3], [4] or [5].

3. Proof of Theorem

Assume that $M \in BMO$ and $\Delta M_t \ge -1 + \delta$ for some δ with $0 < \delta \le 1$. Then, by Lemma 1, Z is a uniformly integrable martingale which satisfies (B_p) for all p > 1. Firstly we show that the inequality

$$C_{1}[X, X] \leq [\phi(X), \phi(X)] \leq C_{2}[X, X]$$
(12)

is valid for every $X \in \mathscr{L}$ under either probability measure, where $C_1 = (1 + ||M||_{BMO})^{-2}$ and $C_2 = \delta^{-2}$. Recall that, if M is continuous, then $[\phi(X), \phi(X)] = [X, X]$ for all $X \in \mathscr{L}$. To see (12), let us assume dP to be the underlying measure. Then $\phi(X)$ is a semi-martingale and by the definition of [,] we have

$$[\phi(X), \phi(X)]_t = \langle \phi(X)^c, \phi(X)^c \rangle_t + \sum_{s \le t} (\Delta \phi(X)_s)^2.$$

But we know that $\phi(X)^c = X^c$,

$$\Delta \phi(X)_t = (1 + \Delta M_t)^{-1} \Delta X_t$$
 and $\delta \le 1 + \Delta M_t \le 1 + \|M\|_{BMO}$.

Therefore, by combining these facts, we can obtain (12). Similarly, the same conclusion follows under $d\hat{P}$.

Now, let $p^{-1}+q^{-1}=1$ with $1 , and we are going to prove that <math>\Phi_p$: $X \rightarrow Z_{-}^{-1/p} \cdot \phi(X)$ is a continuous mapping of H^p into \hat{H}^p . Let $X \in H^p$ and $Y' \in \hat{H}^q$. Without loss of generality we may assume that Y' is bounded, for the class of all bounded martingales is dense in \hat{H}^q . It follows from Lemma 5 that Z satisfies (A_{p_0}) for some $p_0 > 1$, and so $Z_{\infty}^{-1/(p_0-1)} \in L^1(dP)$. Then, by the Hölder inequality with exponents p_0 and $q_0 = p_0/(p_0 - 1)$ we get

$$E[[Y', Y']_{\infty}^{q/2}] \leq E[Z_{\infty}^{-1/(p_0-1)}]^{1/q_0} \widehat{E}[[Y', Y']_{\infty}^{q_{p_0/2}}]^{1/p_0}.$$

Moreover, by (12) we have

 $E[[\phi(X), \phi(X)]_{\infty}^{p/2}]^{1/p} \leq C \|X\|_{H^{p}}.$

Thus the increasing process $\left\{ \int_{0}^{t} |d[\phi(X), Y']_{s}| \right\}$ is integrable with respect to dP, and by using the stopping argument we may assume that the process $\left\{ \int_{0}^{t} Z_{s-}^{-1/p} |d[\phi(X), Y']_{s}| \right\}$ is also integrable. Since $(1 + ||M||_{BMO})^{-1} Z_{s} \leq Z_{s-}$ and Z satisfies (B_{a}) , we have

$$\begin{split} \hat{E}[|[\Phi_{p}(X), Y']_{\infty}|] \\ &\leq E\left[Z_{\infty}\int_{0}^{\infty} Z_{s-}^{-1/p} |d[\phi(X), Y']_{s}|\right] \\ &\leq (1+\|M\|_{BMO})^{1/p} E\left[\int_{0}^{\infty} Z_{s}^{1/q} |d[\phi(X), Y']_{s}|\right] \\ &\leq (1+\|M\|_{BMO})^{1/p} K_{q} E\left[\int_{0}^{\infty} E[Z_{\infty}^{1/q}|F_{s}] |d[\phi(X), Y']_{s}|\right]. \end{split}$$

But the expectation on the right hand side is $E\left[Z_{\infty}^{1/q}\int_{0}^{\infty}|d[\phi(X), Y']_{s}|\right]$, which is smaller than $E\left[Z_{\infty}^{1/q}[\phi(X), \phi(X)]_{\infty}^{1/2}[Y', Y']_{\infty}^{1/2}\right]$. Then, applying the Hölder inequality with exponents p and q to this term, we can find that

$$\hat{E}[|[\Phi_p(X), Y']_{\infty}|] \leq C_p E[[\phi(X), \phi(X)]_{\infty}^{p/2}]^{1/p} ||Y'||_{\hat{H}^q}$$

$$\leq C_{p,\delta} ||X||_{H^p} ||Y'||_{\hat{H}^q}.$$

Therefore, the inequality $\|\Phi_p(X)\|_{\hat{H}^p} \leq C_{p,\delta} \|X\|_{H^p}$ follows from the usual duality argument. It is clear that Φ_p is linear and injective. We now remark that, if M is continuous, then the process Z is, of course, continuous and $[X, X] = [\phi(X), \phi(X)]$ under dP and $d\hat{P}$, so that by (6) we can obtain the right side of (3).

On the other hand, by Lemma 2, \hat{Z} satisfies (\hat{B}_p) for all p > 1. Moreover, as is proved in [3] and [5], $\hat{M} = -\phi(M)$ belongs to \widehat{BMO} and $\Delta \hat{M}_t = -(1 + \Delta M_t)^{-1} \Delta M_t \ge -1 + (1 + ||M||_{BMO})^{-1}$, so that the mapping $\hat{\Phi}_p$: $\hat{H}^p \to H^p$ defined by $\hat{\Phi}_p(X')_t = \int_0^t \hat{Z}_{s-}^{-1/p} d\hat{\phi}(X')_s$, $X' \in \hat{H}^p$, is linear and continuous. And it is easy to see that $\hat{\Phi}_p$ is the inverse of Φ_p . Consequently, H^p and \hat{H}^p are isomorphic with the mapping Φ_p .

Finally, we shall establish the isomorphism between BMO and $\hat{B}M\hat{O}$. For that, we show that, if Z satisfies (A_p) , then the inequality

$$\|X\|_{BMO} \le C_p \|\phi(X)\|_{\widehat{BMO}} \tag{13}$$

is valid for all $X \in \mathscr{L}$. $\|\phi(X)\|_{\widehat{BMO}} = 0$ implies X = 0, so that we may assume $0 < \|\phi(X)\|_{\widehat{BMO}} < \infty$. Now let T be any stopping time, and set $a = (2p \|\phi(X)\|_{\widehat{BMO}}^2)^{-1}$. Then from Lemma 4

$$\widehat{E}\left[\exp\left\{ap\left(\left[\phi(X),\phi(X)\right]_{\infty}-\left[\phi(X),\phi(X)\right]_{T}\right)\right\}|F_{T}\right] \leq 2$$

follows, and by the definition of $(A_p) E[(Z_T/Z_{\infty})^{1/(p-1)}|F_T] \leq C_p$. Applying now the left side of (12) and the Hölder inequality we have

$$\begin{split} E[[X, X]_{\infty} - [X, X]_{T-} | F_T] \\ &\leq (C_1 a)^{-1} E[\exp\{a([\phi(X), \phi(X)]_{\infty} - [\phi(X), \phi(X)]_{T-})\} | F_T] \\ &\leq C_p \|\phi(X)\|_{BMO}^2 E[(Z_T/Z_{\infty})^{1/(p-1)} | F_T]^{(p-1)/p} \\ &\times \widehat{E}[\exp\{ap([\phi(X), \phi(X)]_{\infty} - [\phi(X), \phi(X)]_{T-})\} | F_T]^{1/p} \\ &\leq C_p \|\phi(X)\|_{BMO}^2. \end{split}$$

Thus (13) is proved. On the other hand, as $\hat{M} \in BMO$ and $1 + \Delta \hat{M}_t \ge (1 + \|M\|_{BMO})^{-1}$, for some p > 1 the process \hat{Z} satisfies the (A_p) condition associated with $d\hat{P}$ by Lemma 5. Therefore, the inequality

$$\|X'\|_{\widehat{BMO}} \leq C_p \|\widehat{\phi}(X')\|_{BMO} \tag{14}$$

is valid for all $X' \in \hat{\mathscr{D}}$. Then, setting $X' = \phi(X)$ in (14), we get $\|\phi(X)\|_{\widehat{BMO}} \leq C_p \|X\|_{BMO}$. Hence, *BMO* and \widehat{BMO} are isomorphic under the mapping ϕ . This completes the proof.

In [7], it is pointed out that the assumption " $M \in BMO$ " cannot be omitted for the validity of the theorem.

Finally, we remark that the spaces H^2 and \hat{H}^2 are isometrically isomorphic under the mapping Φ_2 whenever M is continuous and the process Z is a uniformly integrable martingale with $Z_{\infty} > 0$.

References

- Garsia, A.M.: Martingale inequalities. Seminar Notes on Recent Progress. New York: Benjamin 1973
- Doléans-Dade, C.: Quelques applications de la formule de changement de variables pour les semi-martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 16, 181–194 (1970)
- Doléans-Dade, C., Meyer, P.A.: Inégalités de normes avec poids. Séminaire de Probabilités XIII, Université de Strasbourg, Lecture Notes in Math., Berlin-Heidelberg-New York: Springer. (To appear)
- Izumisawa, M., Sekiguchi, T., Shiota, Y.: Remark on a characterization of *BMO*-martingales. Tôhoku Math. J. (To appear).
- 5. Kazamaki, N.: A sufficient condition for the uniform integrability of exponential martingales. Math. Rep. Toyama Univ. vol. 2. (To appear)
- Kazamaki, N.: On transforming of BMO-martingales by a change of law. Tôhoku Math. J. (To appear)
- 7. Kazamaki, N., Sekiguchi, T.: On the transformation of some classes of martingales by a change of law. Tôhoku Math. J. (To appear)
- Lenglart, E.: Transformation des martingales locales par changement absolument continu de probabilités. Z. Wahrscheinlichkeitstheorie verw. Gebiete 39, 65-70 (1977)
- Meyer, P.A.: Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Université de Strasbourg. Lecture Notes in Math. 511, Berlin-Heidelberg-New York: Springer-Verlag 1976
- Van Schuppen, J.H., Wong, E.: Transformation of local martingales under a change of law. Ann. Probability 2, 879-888 (1974)